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Abstract

We propose a generalized form of optimal teleportation witness to demonstrate their importance

in experimental detection of the larger set of entangled states useful for teleportation in higher

dimensional systems. The interesting properties of our witness reveal that teleportation witness can

be used to characterize mixed state entanglement using Schmidt numbers. Our results show that while

every teleportation witness is also a entanglement witness, the converse is not true. Also, we show

that a hermitian operator is a teleportation witness iff it is a decomposable entanglement witness. In

addition, we analyze the practical significance of our study by decomposing our teleportation witness

in terms of Pauli and Gell-Mann matrices, which are experimentally measurable quantities.

PACS numbers: 03.67.-a

1 Introduction

Quantum entanglement [1,2] is an essential feature of quantum mechanics which has no classical ana-

logues. The existence of long range quantum correlations between entangled particles allows the use

of entangled systems as resources for efficient information transfer through protocols such as quantum

computing [3], cryptography [4], teleportation [5] and dense coding [6, 7]. Although entangled states

are used for various theoretical applications in quantum information processing, the practical use of an

entangled resource is restricted to the successful experimental realization of the resource. In real ex-

perimental set-ups, it is always a challenge to create and detect entangled states. Also, the prepared

entangled channel may not be robust enough to preserve the necessary quantum correlations and thus

may or may not be entangled. Hence, successful generation and detection of entanglement are essential

features in any quantum information processing protocol. For this reason, it is important to develop

efficient and easy to implement experimental set-ups to create and detect quantum entanglement. In-

terestingly, class of entanglement witnesses is necessary and sufficient to detect entanglement [8]. The

importance of such witness becomes even more significant due to their decomposition in terms of Pauli
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spin matrices (for qubits) and Gell-Mann matrices (for qutrits and other higher dimensions) which are

experimentally measurable quantities [9]. Recently, a teleportation witness was proposed to demonstrate

whether an underlying quantum state can be used for teleportation or not [10]. The measurement of

the expectation value of the witness for unknown states reveals which states are useful as resource for

performing teleportation.

In this article, we further address the question of efficiently distinguishing entangled states for quan-

tum teleportation using teleportation witness. For this, we propose a general Hermitian operator and

demonstrate that it can be successfully used as a teleportation witness to differentiate between entangled

classes that can or cannot be used for teleportation. The interesting properties of our witness show that

it is also an optimal witness of Schmidt number r (≥ 2) as compared to the previous work [10] where

the witness is an optimal witness of Schmidt number 2 only. As the witness proposed here is optimal,

it therefore detects a much larger set of entangled states in comparison to other witnesses that are not

optimal. In addition, we also prove that all teleportation witnesses are also entanglement witnesses but

every entanglement witness may not be a teleportation witness. Our results are of importance not only

for practical detection of a larger set of entangled states useful for quantum teleportation, they also

shed light on the characterization of mixed state entanglement using Schmidt number. The experimental

realization of the witness by decomposing it into the form of Pauli matrices for r = 2 and in the form of

Gell-Mann matrices for r > 2 adds another important dimension to our study.

In section 2, we provide an introduction to witnesses and then propose our generalized optimal teleporta-

tion witness for the detection of entangled states useful for the successful completion of teleportation and

demonstrate its properties through theorems and illustrations. Section 3 is devoted to the application of

our teleportation witness in determining the Schmidt number for the entangled systems. We discuss the

decomposition of teleportation witness in terms of Pauli and Gell-mann matrices for the experimental

detection of entanglement in section 4. This is followed by the conclusion.

2 Entanglement and Teleportation Witnesses

Quantum communication protocols use entanglement between particles for efficient information transfer

from one remote location to another with reliability. Hence, for an unknown quantum state to be used as

a resource in communication protocols, one of the most significant questions we need to answer is whether

the underlying quantum state is useful for communication purposes or not. For this, one needs to detect

whether the unknown quantum state is entangled or separable. In lower dimensions, Peres-Horodecki

criterion provides a necessary and sufficient condition for separability based on the fact that separable

states have a positive-partial transpose (PPT) [11]. However in higher dimensions, the complex nature

of quantum entanglement does not allow for a necessary and sufficient condition for its detection. For

example, in higher dimensions, one can find entangled states with negative (NPT) as well as positive

partial transpose. One solution to this problem is entanglement witnesses [12,13], which provide a way to
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detect whether an unknown quantum state is entangled or not. Such witnesses are Hermitian operators

with at least one negative eigenvalue; acting as a hyperplane separating entangled states and separable

states. The notion of an entanglement witness was extended to Schmidt number witness, which detects the

Schmidt number of quantum states [14]. Moreover, witnesses can be separated into two different classes-

decomposable and non-decomposable witnesses [15]. Although non-decomposable witnesses detect both

NPT and PPT entangled states, the decomposable witnesses can only detect NPT entangled states. In

this article, we provide a necessary and sufficient condition to show that a witness is a teleportation

witness if it is decomposable.

Quantum teleportation allows for the transmission of arbitrary information from a sender to a receiver

using a shared entangled resource between the two. The significant question in this context is the use-

fulness of the entangled resource for the communication process. We propose a generalized teleportation

witness to detect whether an unknown entangled state is useful for teleportation or not. In order to

facilitate the discussion of our results, we first briefly describe the fully entangled fraction (FEF) [16], a

property of entangled states which is related to the efficacy of quantum teleportation. The fully entangled

fraction of a composite system defined by a density matrix ρ can be represented as

F (ρ) = maxU 〈φ
+|U † ⊗ IρU ⊗ I|φ+〉 (1)

where |φ+〉 = 1√
d

∑d−1
i=0 |ii〉. The FEF provides a sufficient condition for the determination of states useful

for the teleportation process. For example, states in d⊗d dimensions can always be used as entanglement

resources for successful teleportation if the FEF of states is > 1/d. We propose a Hermitian operator

that successfully distinguishes between the states having FEF > or ≤ 1/d. Our teleportation witness is

optimal and serves as a hyperplane that distinguishes between separable and a larger set of entangled

states. We now proceed to propose our generalized teleportation witness as

TW =
1

d
I − |φ+〉〈φ+| − 〈ρ0,

1

d
I − |φ+〉〈φ+|〉I

=
[

〈φ+|ρ0|φ
+〉I − |φ+〉〈φ+|

]

(2)

where ρ0 is any reference physical state. In order to show that the Hermitian operator TW is a telepor-

tation witness, we need to prove that the Hermitian operator TW satisfies the following two conditions

(i)〈σ, TW 〉 ≥ 0, for all states σ which are not useful for teleportation. (3)

(ii)〈̺, TW 〉 < 0, for at least one state ̺ which is useful for teleportation. (4)

where, 〈σ, TW 〉 = Tr(σTW ). From Eq. (2), it is clear that our teleportation witness is equivalent to the

teleportation witness [10]

W =
1

d
I − |φ+〉〈φ+| (5)
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if 〈φ+|ρ0|φ
+〉 = 1

d
. The similarity and differences between the two teleportation witnesses TW and W

will be discussed in detail as we move further. For now, we focus on proving that our witness TW is

indeed a teleportation witness. For this, we first demonstrate that the operator TW gives a non-negative

expectation over all states which are not useful for teleportation.

Theorem 1: The hermitian operator TW is a teleportation witness if 〈φ+|ρ0|φ
+〉 ≥ 1

d
.

Proof: Let us choose a state ρ0 in such a way that 〈φ+|ρ0|φ
+〉 ≥ 1

d
. The operator TW would be a

teleportation witness if it satisfies the conditions (3) and (4).

(i) Let σ be an arbitrary state chosen from the set which is not useful for teleportation, i.e. F (σ) ≤ 1
d
.

Hence, we have

〈σ, TW 〉 = 〈σ,
[

〈φ+|ρ0|φ
+〉I − |φ+〉〈φ+|

]

〉

=
[

〈φ+|ρ0|φ
+〉 − 〈φ+|σ|φ+〉

]

≥
[

〈φ+|ρ0|φ
+〉 −maxU 〈φ

+|U † ⊗ IσU ⊗ I|φ+〉
]

=
[

〈φ+|ρ0|φ
+〉 − F (σ)

]

≥ 0 (6)

Therefore, the expectation value of the Hermitian operator TW is non-negative for all bipartite d-

dimensional states which are not useful for teleportation. Hence, the Hermitian operator TW satisfies (3).

(ii) To prove that our witness detects at least one entangled state ̺ that is useful for teleportation, we

fix ρ0 and ̺ as

ρ0 = k|φ+〉〈φ+|+
1− k

d2
I, 0 ≤ k ≤ 1 (7)

and

̺ = β|φ+〉〈φ+|+
1− β

d2
I,

−1

d2 − 1
≤ β ≤ 1 (8)

where ̺ is an isotropic state and is entangled ∀ β > 1
d+1 . Moreover, the condition 〈φ+|ρ0|φ

+〉 ≥ 1
d
shows

that

k ≥
1

d+ 1
(9)

Hence, 〈̺, Tw〉 can be rewritten as

〈̺, TW 〉 = 〈̺,
[

〈φ+|ρ0|φ
+〉I − |φ+〉〈φ+|

]

〉

= [〈φ+|ρ0|φ
+〉)− 〈φ+|̺|φ+〉]

=
(k − β)(d2 − 1)

d2
< 0, when k < β (10)

Therefore, our witness TW detects at least one state useful for teleportation when 1
d+1 ≤ k < β and

thus satisfies (4). Our analysis shows that all entangled isotropic states can be successfully used for
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teleportation, which is a well known result [17]. This completes the proof that our witness satisfies both

the required conditions (3) and (4) and thus is a teleportation witness.

The form of teleportation witness TW suggests that one can also replace 〈φ+|ρ0|φ
+〉 = s; a real constant,

but for reasons to be described below, we would like to retain the original form of our operator TW

= 〈φ+|ρ0|φ
+〉I − |φ+〉〈φ+|. For example, if one uses the form T ′

W = sI − |φ+〉〈φ+|, then the condi-

tion 〈̺, T ′
W 〉 < 0 requires that β > s. Hence, the operator detects states useful for teleportation when

1
d
≤ s < β which shows that the operator T ′

W detects a smaller set of entangled states with respect to

TW , at least in this particular case.

Theorem 2: Every teleportation witness in d ⊗ d dimensions (d > 2) is an entanglement witness, but

every entanglement witness in d⊗ d dimensions (d > 2) may not be a teleportation witness.

Proof: A Hermitian operator A is an entanglement witness if it satisfies the following two conditions:

(i) The expectation value of the operator A must always be non-negative for all separable states in d⊗ d

dimensions i.e. for states with FEF ≤ 1
d
.

(ii) The expectation value of the operator A must be negative for at least one entangled state in d ⊗ d

dimensions i.e. for a state with FEF > 1
d
.

Teleportation witnesses also satisfy above two conditions as required by the conditions (3) and (4). Hence

every teleportation witness is also an entanglement witness.

Conversely, we can always show that there exists an indecomposable entanglement witness which would

not satisfy the condition (4) and therefore cannot be termed as a teleportation witness. For example, one

can always find at least one bound entangled state for which the expectation value of non-decomposable

entanglement witnesses would be negative [18]. Thus, non-decomposable entanglement witnesses detect

at least one bound entangled state which is not useful for teleportation (since the singlet fraction of a

bound entangled state is equal to 1
d
). Hence, non-decomposable entanglement witnesses do not satisfy the

required condition (4) to be a teleportation witness. This completes the proof that in d⊗ d dimensions

(d > 2), every teleportation witness is also an entanglement witness, however the converse is not true.

Corollary 1: In 2⊗2 dimensions, every teleportation witness is an entanglement witness and vice versa.

Proof: In 2⊗ 2 dimensions, every entangled bi-partite state can be made useful for teleportation up to

stochastic local operation and classical communication (SLOCC) [19]. Thus teleportation and entangle-

ment witnesses will always satisfy the conditions (3) and (4). Hence, every teleportation witness in 2⊗ 2

dimensions will also be an entanglement witness and vice versa.

Corollary 2: A witness is a teleportation witness iff it is decomposable.

Proof: By definition, the expectation value of teleportation witnesses for all bound entangled states is

always non-negative. Using theorem 2, we have shown that every teleportation witness is an entanglement

witness and since teleportation witnesses cannot detect bound entangled states, a teleportation witness
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can only be a decomposable entanglement witness.

Conversely, a decomposable entanglement witness can only detect NPT states i.e. states for which the

expectation value of the decomposable entanglement witness would be negative (4). As it also satisfies

the condition (3), a decomposable entanglement witness is also a teleportation witness.

3 Optimal Teleportation Schmidt Witness

In this section, we show that our generalized teleportation witness is also an optimal witness. In addition,

we analyze the Schmidt number of an arbitrary mixed state useful for teleportation by constructing a

Schmidt number teleportation witness. The results obtained in this section provide a way to characterize

the mixed state entanglement in bi-partite systems. For example, we propose a form of teleportation

Schmidt witness to demonstrate its significance in calculating the Schmidt number of mixed entangled

states for a given range of parameters. For bipartite systems, Schmidt number indicates the number of

degrees of freedom that are entangled between two subsystems.

Theorem 3: Teleportation witness TW with 〈φ+|ρ0|φ
+〉 ≥ 1

d
in d⊗ d dimensions is an optimal telepor-

tation witness of Schmidt number r ≥ 2.

Proof: An optimal entanglement witness of Schmidt number r in d⊗ d dimensions is given by [20]

Wopt = I −
d

r − 1
|φ+〉〈φ+| (11)

If r = 2, we have

Wopt = I − d|φ+〉〈φ+|

= d(
1

d
I − |φ+〉〈φ+|)

∝ W from[Eq.(5)]

= TW if 〈φ+|ρ0|φ
+〉 =

1

d
(12)

Hence, teleportation witnesses W and TW are optimal teleportation witnesses of Schmidt number 2. For

〈φ+|ρ0|φ
+〉 > 1

d
, the teleportation witness TW can be re-expressed as

TW = 〈φ+|ρ0|φ
+〉I − |φ+〉〈φ+|

= 〈φ+|ρ0|φ
+〉

[

I −
1

〈φ+|ρ0|φ+〉
|φ+〉〈φ+|

]

(13)

Comparing Eqs. (11) and (13) shows that the teleportation witness TW is proportional to the optimal

witness Wopt if

r = d〈φ+|ρ0|φ
+〉+ 1

> 2, since 〈φ+|ρ0|φ
+〉 >

1

d
(14)
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This completes the proof that our teleportation witness TW is an optimal witness of Schmidt number

r ≥ 2.

Illustration: Let us consider a family of states for d× d dimensional systems

χβ = β|φ+〉〈φ+|+
1− β

d2
I,

−1

d2 − 1
≤ β ≤ 1 (15)

where the state χβ is entangled ∀ β > 1
d+1 . In this illustration, we propose the form of our teleportation

Schmidt witness to demonstrate that it identifies the ranges of parameters for which the state in Eq. (15)

is of Schmidt number r ≥ 2.

For this, we fix the reference state ρ0 as

ρ0 =
1− f0
d2 − 1

I +
d2f0 − 1

d2 − 1
|φ+〉〈φ+| (16)

which gives f0 = 〈φ+|ρ0|φ
+〉, satisfying 1

d
≤ f0 ≤ 1.

Also, the singlet fraction of ρ0 is given by [17]

F (ρ0) = f0,
1

d
≤ f0 ≤ 1 (17)

Thus, the expectation value of the teleportation witness TW in the state χβ is

Tr(TWχβ) =
(d2f0 − 1)− β(d2 − 1)

d2
(18)

If we take f0 = 1
d
then the teleportation witness TW assures that the state χβ , useful for teleportation,

is of Schmidt number 2 when β ∈
(

1
d+1 ,

2d−1
d2−1

]

. In general, if we take f0 = r−1
d

, (r = 2, 3, ....d) then

the corresponding teleportation witness (TW )r assures that the state χβ, useful for teleportation, is of

Schmidt number r when β ∈
(

d(r−1)−1
d2−1 , dr−1

d2−1

]

. For example, in 3⊗3 dimensions the state χβ is entangled

for ∀ β > 1
4 and the range of β confirms that 2 < r ≤ 3. Therefore, the Schmidt number of the state

χβ must be 3 for the given range of β. Similarly, one can calculate the Schmidt number for higher

dimensional systems for the given range of parameters. Hence, our teleportation Schmidt witness can

also be used to characterize mixed state entanglement in terms of Schmidt numbers.

4 Experimental determination of TW

In this section, we analyze the decomposition of our teleportation witness in terms of Pauli spin matrices

for 2 ⊗ 2 systems, and Gell-Mann matrices for higher dimensional systems. Such decompositions allow

for the experimental detection of entanglement in an unknown state through the measurements of expec-

tation values of teleportation witness. For experimental realization of teleportation witnesses, we need

to decompose them into projectors of the form [13]

TW =

j
∑

i=1

ki |ei〉 〈ei| ⊗ |fi〉 〈fi| (19)
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If 〈φ+|ρ0|φ
+〉 = 1

2 then the form of TW is equivalent to the teleportation witness W in Eq. (5) and thus

can be decomposed in form of Pauli spin matrices such that

TW =
1

2
[I ⊗ I − σx ⊗ σx + σy ⊗ σy − σz ⊗ σz] (20)

Eq. (20) indicates that the total number of measurements required to estimate our witness is limited to 3

as compared to the measurement of 15 parameters required for full state tomography. This difference in

number of measurements is even more evident for higher dimensional systems providing a practical utility

to our results when compared to full state tomography in distinguishing the useful states for quantum

teleportation. Similarly, for d⊗ d systems our teleportation witness can be decomposed as

T d
W =

(

〈

φ+
∣

∣ ρ0
∣

∣φ+
〉

−
1

d2

)

I −
1

2d
Λ (21)

where

Λ =
∑

i<j

Λij
s ⊗Λij

s −
∑

i<j

Λij
a ⊗Λij

a +

d−1
∑

m=1

Λm ⊗ Λm (22)

The suffix s, a and superscript m represent the symmetric, antisymmetric and diagonal Gell-Mann ma-

trices [21], respectively. For example, in case of qutrits i.e. 3 ⊗ 3 dimensional systems the teleportation

witness TW can be represented as

T 3
W =

(

〈

φ+
∣

∣ ρ0
∣

∣φ+
〉

−
1

9

)

I −
1

6
Λ (23)

where

Λ = Λ12
s ⊗ Λ12

s + Λ13
s ⊗ Λ13

s + Λ23
s ⊗ Λ23

s − Λ12
a ⊗ Λ12

a − Λ13
a ⊗ Λ13

a − Λ23
a ⊗ Λ23

a

+ Λ1 ⊗ Λ1+Λ2 ⊗ Λ2 (24)

and Λ12
s =









0 1 0

1 0 0

0 0 0









, Λ13
s =









0 0 1

0 0 0

1 0 0









, Λ23
s =









0 0 0

0 0 1

0 1 0









, Λ12
a =









0 −i 0

i 0 0

0 0 0









,

Λ13
a =









0 0 −i

0 0 0

i 0 0









, Λ23
a =









0 0 0

0 0 −i

0 i 0









, Λ1 =









1 0 0

0 −1 0

0 0 0









, Λ2 = 1√
3









1 0 0

0 1 0

0 0 −2









.

Hence, the decomposition of our teleportation witness in terms of measurable quantities not only allows

for the experimental detection of entanglement but also provides a way to decrease the requirement of

number of measurements when compared to full state tomography.

5 Conclusion

We have proposed an optimal teleportation witness and demonstrated its practical utility in distinguishing

the entangled states useful for teleportation. The form of teleportation witness TW studied here is a
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generalized form of the witness W discussed in [10]. The results obtained in this article are different from

the previous study [10] in a sense that the witness W is an optimal witness of Schmidt number 2, but

our witness TW is an optimal witness of Schmidt number ≥ 2. This allows for the detection of larger sets

of mixed entangled states useful for teleportation in higher dimensions as well. We found that all the

teleportation witnesses are also entanglement witnesses, however the converse is not true. It also turned

out that a teleportation witness is always a decomposable entanglement witness, which is a necessary

and sufficient condition. The experimental determination of such teleportation witnesses decreases the

number of parameters to be measured in comparison to the full state tomography of an unknown state

useful for teleportation, indicating the practical significance of our study. In future, we would like to study

the utility of such witnesses for other communication protocols as well. Another question of particular

interest would be the form and characteristics of teleportation witnesses in multiqubit systems.
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