Header menu link for other important links
Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection
D. Yadav, N. Kohli, A. Agarwal, , , A. Noore
Published in IEEE Computer Society
Volume: 2018-June
Pages: 685 - 692
Iris recognition systems may be vulnerable to presentation attacks such as textured contact lenses, print attacks, and synthetic iris images. Increasing applications of iris recognition have raised the importance of efficient presentation attack detection algorithms. In this paper, we propose a novel algorithm for detecting iris presentation attacks using a combination of handcrafted and deep learning based features. The proposed algorithm combines local and global Haralick texture features in multi-level Redundant Discrete Wavelet Transform domain with VGG features to encode the textural variations between real and attacked iris images. The proposed algorithm is extensively tested on a large iris dataset comprising more than 270,000 real and attacked iris images and yields a total error of 1.01%. The experimental evaluation demonstrates the superior presentation attack detection performance of the proposed algorithm as compared to state-of-the-art algorithms. © 2018 IEEE.
About the journal
JournalData powered by TypesetIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
PublisherData powered by TypesetIEEE Computer Society