Header menu link for other important links
Extracting piezoresistance in SiNWs using thermal induced buckling of micro-bridges
C.C. Wong, P. Neuzil, , J. Reboud, K. Liao
Published in Materials Research Society
Volume: 1186
Pages: 61 - 66
The recent reports on giant piezoresistance effect in highly resistive silicon nanowires (SiNWs) have offer greater sensitivity in stress measurements. Despite enhanced sensitivity, the piezoresistance of highly conductive silicon are preferred as they are less prone to thermal noise and hence better accuracy. Here we report a thermal induced buckled micro-bridge technique to accurately characterize the temperature dependent piezoresistivity effect in SiNWs. Phosphorus doped (110) SiNWs with 50 nm wide, 60 nm thick and 100 μm in length were encapsulated within SiO2 micro-bridges. The electrical measurement of both reference SiNWs and SiNWs at micro-bridges was carried out, followed by the optical profiling of the micro-bridges with embedded SiNWs. N-type SiNWs with doping of 1×1020 ion/cm3 exhibit a strong dependence on temperature with a piezoresistive coefficient that decreased by 22.5% between 25°C to 60°C; whereas its bulk counterpart is independent of temperature across this range. The results demonstrated that thermal noise may be more detrimental to nano-scale electromechanical sensors than its bulk counterparts. © 2009 Materials Research Society.
About the journal
JournalMaterials Research Society Symposium Proceedings
PublisherMaterials Research Society