Header menu link for other important links
X
Exchange bias effect in BiFeO3-NiO nanocomposite
K. Chakrabarti, B. Sarkar, V. Dev Ashok, K. Das, S. Sinha Chaudhuri, , S.K. De
Published in
2014
Volume: 115
   
Issue: 1
Abstract
Ferromagnetic BiFeO3 nanocrystals of average size 11 nm were used to form nanocomposites (x)BiFeO3/(100 - x)NiO, x = 0, 20, 40, 50, 60, 80, and 100 by simple solvothermal process. The ferromagnetic BiFeO 3 nanocrystals embedded in antiferromagnetic NiO nanostructures were confirmed from X-ray diffraction and transmission electron microscope studies. The modification of cycloidal spin structure of bulk BiFeO3 owing to reduction in particle size compared to its spin spiral wavelength (62 nm) results in ferromagnetic ordering in pure BiFeO3 nanocrystals. High Neel temperature (TN) of NiO leads to significant exchange bias effect across the BiFeO3/NiO interface at room temperature. A maximum exchange bias field of 123.5 Oe at 300 K for x = 50 after field cooling at 7 kOe has been observed. The exchange bias coupling causes an enhancement of coercivity up to 235 Oe at 300 K. The observed exchange bias effect originates from the exchange coupling between the surface uncompensated spins of BiFeO 3 nanocrystals and NiO nanostructures. © 2014 AIP Publishing LLC.
About the journal
JournalJournal of Applied Physics
ISSN00218979
Open AccessNo