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Evolution of coherence and non-classicality under global environmental interaction
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A master equation has been constructed for a global system-bath interaction both in the absence
as well as presence of non-Markovian noise. For the memoryless case, it has been exactly solved for
a paradigmatic class of two qubit states in high and zero temperature thermal environment. For
the non-Markovian model, it has been solved for zero temperature bath. The evolution of quantum
coherence and entanglement has been observed in presence of the above mentioned interactions. We
show that the global part of the system-bath interaction compensates for the decoherence, resulting
in slow down of coherence and entanglement decay. For an appropriately defined limiting case, both
coherence and entanglement show freezing behaviour for the high temperature bath. In case of
zero temperature bath, the mentioned interaction not only stabilizes the non-classical correlations,
but also enhances them for a finite period. For the memory dependent case, we have seen that
the global interaction enhances the back-flow of information from environment to the system, as
it enhances the regeneration of coherence and entanglement. Also we have studied the generation
of Quantum Fisher information by the mentioned process. An intuitive measure of non-classicality
based on non-commutativity of quantum states has been considered. Bounds on generated quantum
Fisher information has been found in terms of quantumness and coherence. This gives us a novel
understanding of Quantum Fisher information as a measure of non-classicality.

PACS numbers: 03.65.Yz, 03.65.Ta

I. INTRODUCTION

The main objective of the theory of open quantum
systems is to develop a comprehensive description of
various kind of interactions of the system with its
ambient environment and their effect on the dynamics
of the system of interest [1, 2]. Any realistic quantum
system is bound to get affected by its environment
and therefore the dynamical features of open quantum
systems are particularly important from the practical
perspective. Due to the advent of quantum technologies
such as quantum communication [3–5], quantum cryp-
tography [6, 7], there has been an upsurge of interest in
the application of several techniques of open quantum
systems. Markovian dynamics of open systems have
been extensively studied and implemented successfully
in a wide variety of problems [1, 8–12].

However, due to impressive developments in the ex-
perimentation with quantum systems and their control
[13], it has been realized that open quantum systems do
not generally behave within the domain of Markovian
dynamics [14, 15]. Particularly for the case of systems
constituting more than one interacting sub-systems,
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where the interactions between the parties may be
comparable to the interaction strength of the coupling
to the bath, it is natural for the dynamics to deviate
from Markovian behavior [16]. Effects of non-Markovian
structured environment on quantum coherence and
correlation has been theoretically and experimentally
studied [17–21]. A number of measures of deviation
from Markovianity have been proposed recently, where
“Non-Markovianity” is recognized as the departure
from monotonic behavior of certain measures under
strictly Markovian dynamics [22–30]. Generally, a
quantitative measure, which shows monotonic behavior
under Markovian dynamics is addressed and departure
from that monotonicity is taken to be a signature of
non-Markovianity. For example, we can consider the
dynamics of entanglement in an open system scenario.
Since local trace preserving completely positive maps
do not increase the amount of entanglement, evidently
it can be surmised that the entanglement with an
ancillary system decays monotonically within Markovian
regime. Thus, for example, in Ref. [25] the dynamics
of entanglement was used as a signature to identify the
non-Markovian characteristics of a system-environment
interaction.

In recent times, the theory of quantum coherence
as a resource has attracted much attention [31–38].
Coherence plays a central role in quantum mechanics
enabling operations or tasks which are impossible within



2

the regime of classical mechanics. Coherence underlies
the non-classical behavior of a quantum system, like
entanglement. In Ref. [31] several measures, like the l1
norm and the relative entropy were introduced to char-
acterize the coherence of a quantum system. The valid
measures of coherence should not increase under allowed
incoherent operations. Based on this, it can be inferred
that the measures of quantum coherence are monotone
under Markovian dynamics. Hence any deviation from
the montonicity of coherence measure can also be taken
as a signature of deviation from Markovian dynamics
[39, 40]. The central theme of our work revolves around
this specific issue of the dynamical behavior of coher-
ence monotones under a specific system-environment
interaction which is not strictly Markovian. Usually
for the case of Markovian dynamics of a composite
system, the environment acts locally on each of the
parties. For the bipartite case, considered here, the
environment is globally interacting with the system.
This enables us to consider two parts of the non-unitary
evolution. One is of course the local Lindbladian and
the other is an interactive part which is essentially
causing the deviation from Markovian evolution. Here
we have taken a two qubit atomic system interacting
with a Harmonic oscillator bath. A similar model with
a squeezed thermal bath has been studied earlier for
estimating the entanglement dynamics of the atomic
system [41, 42]. Based on the above mentioned model,
the first part of our work is to present an analytical
estimation of the dynamics of coherence, for the purpose
of characterization of the deviation from monotonicity
and to find the conditions under which such deviation
occurs. After that we will extend our study to calculate
the exact expression of concurrence for a special class
of two qubit X states in order to observe the dynamics
of entanglement in our proposed system-bath interaction.

Next, we consider the generation of quantum Fisher in-
formation by the global environmental interaction. The
Fisher information is a measure of intrinsic accuracy in
statistical ensemble theory [43, 44]. Quantum generaliza-
tion of the Fisher information has also been introduced
[45, 46], which can be considered as a measure of
non-classicality for quantum system [47, 48]. A measure
of quantumness has been proposed in a recent work [49],
based on the non-commutativity of quantum states. We
have shown that the Quantum Fisher information is
lower bounded by the above mentioned quantumness
with a factor of 1/4 and upper bounded by the l1 norm
of coherence with a factor of 1/2. This gives us an
intuitive understanding of Quantum Fisher information
as a measure of non-classicality. We have estimated the
amount of quantumness and Fisher information that can
be generated by the global environmental interaction.
Then, we extend our study by considering the memory
effect of environmental interaction. We have used a
non-Markovian noise model to generalize the global
master equation for memory dependent system-bath

interactions. We also solve the master equation for two
qubit X states to obtain analytical expressions for the
l1 norm of coherence and concurrence and study their
dynamics. Further we also investigate the generation of
quantumness in the memory dependent environmental
interaction.

The organisation of the paper is as follows. In Section II,
we will construct the master equation of the concerned
system and obtain analytical solution for a particular
class of density matrices. In Sections III and IV, we dis-
cuss the dynamics of quantum coherence, concurrence
quantum Fisher information and quantumness, respec-
tively. In Section V we generalize the master equation
to incorporate memory dependent environmental inter-
actions. We then present our conclusions in Section VI.

II. DYNAMICS OF COMPOSITE QUANTUM

SYSTEM IN GLOBAL ENVIRONMENTAL

INTERACTION

The dynamics of the reduced density matrix of the sys-
tem of interest, undergoing a completely positive (CP)
evolution, can be expressed in terms of the Kraus opera-
tor sum representation (OSR) as

ρ(t) =
∑

i

Mi(t)ρ(0)M
†
i (t). (2.1)

The Kraus operatorsMi must satisfy the trace preserving
condition, i.e.,

∑

i

M †
i (t)Mi(t) = I. (2.2)

The Kraus operator sum representation governs a CP
evolution. The Markovian master equation can be con-
structed from the Kraus representation [51]. For a small
time interval δt, if we consider

Mi(t) ≈
√
δtLi, ∀ i 6= 0

M0(t) ≈ I− δt
2

∑

i6=0 L
†
iLi,

(2.3)

then it can be seen from equation (2.1), that

ρ(t)− ρ(0)

δt
=
∑

i

[

LiρL
†
i −

1

2

(

L†
iLiρ+ ρL†

iLi

)

]

.

(2.4)
Now if we consider Li =

√
γiAi , then for δt → 0, we

get the differential equation

dρ

dt
=
∑

i

γi

[

AiρA
†
i −

1

2

(

A†
iAiρ+ ρA†

iAi

)

]

, (2.5)

where γis are the decay parameters. This is basically the
usual Markovian master equation. Following Ref. [52],
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for a fixed operator basis {Aα}nα=0, with A0 = I, we can
define Li =

∑n
α=0 biαAα. Using equation (2.3), it can be

seen that the master equation becomes

dρ

dt
=
∑

α,β

γαβ

[

AαρA
†
β − 1

2

(

A†
αAβρ+ ρA†

αAβ

)

]

, (2.6)

where {γαβ =
∑

i biαb
∗
iβ} represents a coefficient matrix,

called as the damping basis. The positivity of this kind
of dynamical map depends on the positivity of the {γαβ}
matrix [52]. If all the eigenvalues of the damping basis
matrix are positive, then the map is completely positive.

Here we are dealing with a two qubit atomic system. Let
us first begin by writing down the master equation for
such systems, which is of the form (2.5)

dρ

dt
=
∑

i=1,2

γi(N + 1)

(

σ−
i ρσ

+
i − 1

2

(

σ+
i σ

−
i ρ+ ρσ+

i σ
−
i

)

)

+
∑

i=1,2

γiN

(

σ+
i ρσ

−
i − 1

2

(

σ−
i σ

+
i ρ+ ρσ−

i σ
+
i

)

)

, (2.7)

where

N =
1

exp( ~ω
kBT )− 1

, (2.8)

is the Planck distribution function and

σ−
1 = σ− ⊗ I ; σ+

1 = σ+ ⊗ I,
σ−
2 = I⊗ σ− ; σ+

2 = I⊗ σ+,
(2.9)

are the dipole lowering and raising operators acting lo-
cally on the two parties.
Let us now generalize this master equation for the two
qubit system following [41], where the environment is
modelled as a thermal radiation field, which is interact-
ing with the system in a global way. This is achieved by

a coupling dependent upon the qubit position rn. The
effective Hamiltonian of the two qubit system can be ex-
pressed as

HS =
∑

n=1,2

~ωnσ
z
n +Hint, (2.10)

with

Hint = ~
(

Ω21σ
− ⊗ σ+ +Ω12σ

+ ⊗ σ−) (2.11)

where

Ωij =
3

4

√
γiγj

[

−(1− (µ̂.r̂ij)
2)
cos k0rij
k0rij

+ (1 − 3(µ̂.r̂ij)
2)

[

sin k0rij
(k0rij)2

+
cos k0rij
(k0rij)3

]]

. (2.12)

Here µ̂ = µ̂1 = µ̂2 are the dipole moment operators and
r̂ij are the unit vectors along the atomic transition dipole
moments with rij = ri − rj. Also k0 = ω0/c, where ω0 =

(ω1 + ω2)/2 and γi = ω3
i µ

2
i /3πε~c

3 is the spontaneous
emission rate. Following Ref. [41], the non-unitary part
of the global master equation can be written as

dρ

dt
=
i

~
[ρ,HS ]+

∑

i,j=1,2

γij(N+1)

(

σ−
i ρσ

+
j − 1

2

(

σ+
i σ

−
j ρ+ ρσ+

i σ
−
j

)

)

+
∑

i,j=1,2

γijN

(

σ+
i ρσ

−
j − 1

2

(

σ−
i σ

+
j ρ+ ρσ−

i σ
+
j

)

)

,

(2.13)

where

γij =
√
γiγja(k0rij) ; ∀i 6= j

γi =
ω3

iµ
2

i

3πε~c3 ,
(2.14)
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with

a(k0rij) =
3

2

[

(1− (µ̂.r̂ij)
2)
sin k0rij
k0rij

+ (1− 3(µ̂.r̂ij)
2)

[

cos k0rij
(k0rij)2

− sin k0rij
(k0rij)3

]]

. (2.15)

The interaction Hamiltonian Hint with characteristic
frequency Ωij governs the coherent part of the evolution
and the non-unitary part with characteristic frequency
γij regulates the incoherent part of the evolution. Note
that, γij arises due to multi qubit interaction of the
composite system with the bath and is the reason
behind the global nature of the system-bath interaction.
Basically, the bath opens up a channel between the
two system qubits, an aspect of global interaction not
seen for local interactions. It is to be noted that both
Ωij and γij are environment dependent, where the
environment factor of Ωij is described by the elements in
the square brackets of Eq. (2.12) and the corresponding
factor of γij comes from the parameter a(k0rij) in Eq.
(2.15) quantifying the coupling between qubits and bath.

For a two qubit system with identical parties we have
γ12 = γ21 and γ1 = γ2 = γ. Also, k0 = 2π/λ0 is the
resonant wave vector, and occurring in the term k0rij
indicates a resonant length scale. Now the damping basis
matrix for the equation (2.13) will be







γ(N + 1) 0 γ12(N + 1) 0
0 γN 0 γ12N
γ12(N + 1) 0 γ(N + 1) 0
0 γ12N 0 γN






. (2.16)

From (2.16), we see that the condition for positivity is
γ12 ≤ γ, that is, a(k0rij) ≤ 1 (for the rest of the paper
we will denote it by a). Using (2.15), we find the specific
condition for positivity as

R sin2 φ
sin(k0rij − θ)

k0rij
≤ 2

3
, (2.17)

with

R =

√

(

1 +
2 cot2 φ− 1

(k0rij)2

)2

+

(

2 cot2 φ− 1

k0rij

)2

, (2.18)

and

tan θ =
2 cot2 φ− 1

korij +
2 cot2 φ−1

k0rij

. (2.19)

For a specific case, we can take cotφ = 1/
√
2, so that

tan θ = 0 and R = 1. For this case, the condition of
positivity reduces to

sin k0rij
k0rij

≤ 1. (2.20)

From (2.20), it is evident that the limiting condition
(a→ 1) can be reached, when the separation (rij) is very
small compared to the resonant wavelength λ0. This is
attainable when λ0 is very large, i.e., the separation be-
tween the energy levels of both the atomic qubits is small.
Our aim here is to find a solution for the master equation
given by (2.13). For that purpose we take a special class
of density matrices of the form of X-states







ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
ρ∗14 0 0 ρ44






. (2.21)

X states are very important in the study of quantum in-
formation theory because of their simple representation
[53, 54]. This class includes, among others, the well-
known Bell diagonal and Werner states. X states has
been studied extensively in the literature [53, 54]. Their
invariance properties and the underlying symmetry have
been studied [54]. It has been shown that they remain
form invariant under the considered quantum operations.
Inserting (2.21) in (2.13), we get the following set of cou-
pled differential equations

ρ̇11 = −2γ(N + 1)ρ11 + γN(ρ22 + ρ33) + γ12N(ρ23 + ρ∗23),
ρ̇22 = γ(N + 1)ρ11 + γNρ44 − γ(2N + 1)ρ22

− γ12

2 (2N + 1)(ρ23 + ρ∗23) + iΩ12(ρ23 − ρ∗23),
ρ̇33 = γ(N + 1)ρ11 + γNρ44 − γ(2N + 1)ρ22

− γ12

2 (2N + 1)(ρ23 + ρ∗23)− iΩ12(ρ23 − ρ∗23),
ρ̇44 = −(ρ̇11 + ρ̇22 + ρ̇33),
ρ̇23 = −γ(2N + 1)ρ23 + γ12(N + 1)ρ11 + γ12Nρ44

− γ12

2 (2N + 1)(ρ22 + ρ33) + iΩ12(ρ22 − ρ33),
ρ̇14 = −γ(2N + 1)ρ14 − 4iωρ14.

(2.22)

We are going to solve this for two cases of high and zero
temperature.
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A. High temperature case

For the case when the thermal bath is at high temper-
ature (N >> 1), the rates of dissipation and absorption
are equal. The solution of the master equation is then
given by

ρ11(t) =W (t) +W ′(t), ρ44(t) =W (t)−W ′(t),
ρ22(t) = U(t) + U(′t), ρ33(t) = U(t)− U ′(t),
ρ23 = V (t) + iV ′(t), ρ14(t) = ρ14(0) exp [− (2γN + 4iω) t] .

(2.23)

where

W (t) = W (0)+U(0)
2 −

(

U(0)−W (0)
2

)

e−3γNt

[

cosh
(

γNt
√
1 + 8a2

)

− sinh(γNt
√
1+8a2)√

1+8a2

]

+ 2a√
1+8a2

V (0)e−3γNt sinh
(

γNt
√
1 + 8a2

)

,
(2.24)

U(t) = W (0)+U(0)
2 +

(

U(0)−W (0)
2

)

e−3γNt

[

cosh
(

γNt
√
1 + 8a2

)

− sinh(γNt
√
1+8a2)√

1+8a2

]

− 2a√
1+8a2

V (0)e−3γNt sinh
(

γNt
√
1 + 8a2

)

,
(2.25)

V (t) = V (0)e−3γNt

[

cosh
(

γNt
√
1 + 8a2

)

+
sinh(γNt

√
1+8a2)√

1+8a2

]

− 2a√
1+8a2

(U(0)−W (0))e−3γNt sinh
(

γNt
√
1 + 8a2

)

,

(2.26)

U ′(t) = U ′(0)e−2γNt cos(2Ω12t)− V ′(0)e−2γNt sin(2Ω12t) (2.27)

V ′(t) = V ′(0)e−2γNt cos(2Ω12t) + U ′(0)e−2γNt sin(2Ω12t) (2.28)

W ′(t) =W ′(0)e−2γNt (2.29)

From Eq.(2.23) and Eq. (2.26), we can clearly see that,
due to the presence of global system-environment inter-
action (whose strength is characterized by a), the off-
diagonal components are getting feedback from the diag-
onal parts and is unlike that of local Markovian decay. If
we approximate that the interactive part of the evolution
is negligible, then setting a→ 0, we get

ρ23(t) = ρ23(0) exp(−2γNt), (2.30)

which is consistent with the usual local Markovian de-
cay.

B. Zero Temperature case

Let us now consider the other extreme situation, where
the bath is at zero temperature (N → 0). In this case

there will be no absorption part of the Lindbladian. The
solution of the master equation can then be given by

ρ11(t) = ρ11(0)e
−2γt,

ρ22(t) = Uc(t) + Uc(
′t),

ρ33(t) = Uc(t)− U ′
c(t),

ρ44(t) = 1− ρ11(t)− 2Uc(t),
ρ23 = Vc(t) + iV ′

c (t),
ρ14(t) = ρ14(0) exp [− (γ + 4iω) t] .

(2.31)

where
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Uc(t) = Uc(0)e
−γt cosh(aγt)− Vc(0)e

−γt sinh(aγt) + ρ11(0)
2

[

1+a
1−ae

−(1+a)γt
(

1− e−(1−a)γt
)

+ 1−a
1+ae

−(1−a)γt
(

1− e−(1+a)γt
)

]

,

(2.32)

Vc(t) = Vc(0)e
−γt cosh(aγt)− Uc(0)e

−γt sinh(aγt) + ρ11(0)
2

[

1+a
1−ae

−(1+a)γt
(

1− e−(1−a)γt
)

− 1−a
1+ae

−(1−a)γt
(

1− e−(1+a)γt
)

]

,

(2.33)

U ′
c(t) = U ′

c(0)e
γt cos(2Ω12t)− V ′

c (0)e
−γt sin(2Ω12t) (2.34)

V ′
c (t) = V ′

c (0)e
−γt cos(2Ω12t) + U ′

c(0)e
−γt sin(2Ω12t) (2.35)

Here also we can see that for the usual local markovian
case, the dynamics of the off-doagonal term is reduced
down to ρ23(t) = ρ23(0)e

−γt.

III. EVOLUTION OF COHERENCE AND

ENTANGLEMENT

Coherence is one of the fundamental properties of a
quantum system closely connected to quantum superpo-
sition. Though quantum optics was the initial framework
for understanding the concept and physical significance
of coherence [55, 56], over the years its importance has
been realized in many different fields, such as supercon-
ducting devices [57] and even in complex biological sys-
tems like photosynthetic reaction centers [58, 59]. Co-
herence is also very important from the perspective of
quantum thermodynamics [60–64]. In non-equilibrium
situations, presence of coherence raises serious questions
over the classical notion of a thermodynamic bath in
a Carnot engine [65, 66]. It has impact on quantum
transport efficiency [67–69], leading to the violation of
Fourier’s Law [70]. Dissipative quantum thermodynam-
ics offers the possibility to generate resources which are
essential for technologies like quantum communication,
cryptography, metrology and computation [71]. From
these perspectives, it is very important to understand the
role of quantum coherence for the future development of
robust quantum memory devices. All these recent devel-
opments provided the motivation for constructing a rig-
orous framework of coherence resource theory [31], where
it was shown that any valid measure of coherence C(ρ)
has the following properties:

1. C(ρ) = 0 iff ρ ∈ I, where I denotes incoherent

states, which are the diagonal states in the pre-
ferred basis.

2. Monotonicity under incoherent selective measure-
ments : C(ρ) ≥ ∑

n pnC(ρn). Here ρn = K̂nρK̂†
n

and pn = Tr(K̂nρK̂†
n) with

∑

n K̂†
nK̂n = I and

K̂nIK̂†
n ⊂ I.

3. Convexity : C(
∑

n pnρn) ≤ ∑

n pnC(ρn) for any
set of states {ρn} and probability distribution
{Pn}.

Based on these properties, the ‘l1 norm of coherence’ and
the ‘relative entropy of coherence’ were shown to be valid
measures characterizing the coherence of a quantum sys-
tem [31]. Here, we will take the l1 norm of coherence
Cl1(ρ) to study the dynamics of coherence. It is an in-
tuitive measure related to the off-diagonal elements of
a density matrix and is defined as the l1 matrix norm
Cl1(ρ) =

∑

i6=j ‖ρij − Iij‖. After doing the optimization

over all possible incoherent states (I), it can be shown
to be

Cl1(ρ) =
∑

i6=j

|〈i|ρ|j〉|, (3.1)

that is, the sum of the magnitudes of all the off-diagonal
elements. Interestingly, it is important to note that the
l1-norm of coherence truly captures the notion of wave
nature as it satisfies a duality relation [72]. Also it has
been shown that the notion of quantum coherence plays a
prominent role in understanding of neutrino oscillations
[73]. For our two cases, we find the l1 norm of coherence
to be

CH
l1
(ρ) = 2|ρ14(0)| exp(−2γNt) + 2

√

V 2(t) + V ′2(t)

CZ
l1
(ρ) = 2|ρ14(0)| exp(−γt) + 2

√

V 2
c (t) + V ′2

c (t)
(3.2)
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For example, let us take a particular Werner state

1

4







1− x 0 0 0
0 x+ 1 − 2x 0
0 − 2x x+ 1 0
0 0 0 1− x






, (3.3)

where x is a non-zero parameter lying between −1/3 and
1. For these particular states, the l1 norm of coherence
for hot bath is given by Eq. (3.4). Here the coherence
defined in the usual computational basis (| 00〉, | 01〉,
| 10〉, | 11〉), is given by

CH
L1(ρW ) = xe−3Nγt

[

cosh
(

γNt
√

1 + 8a2
)

+

(

1 + 2a√
1 + 8a2

)

sinh
(

γNt
√

1 + 8a2
)

]

. (3.4)

The l1 norm of coherence for the zero temperature case is given by

CZ
L1(ρW ) = xe−γt cosh(aγt) + 1+x

2 e−γt sinh(aγt)− 1−x
4

[

1+a
1−ae

−(1+a)γt
(

1− e−(1−a)γt
)

− 1−a
1+ae

−(1−a)γt
(

1− e−(1+a)γt
)

]

(3.5)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ýN t

C

a=1
a= 3 � 4
a=1� 2
a=0

FIG. 1: (Colour online) Coherence C with respect to γNt
for the Werner state with x = 1, with a as a parameter.
We have taken a = 0, 1/2, 3/4, 1 respectively. The red (large
dashed) plot is for a = 0, which is the usual Markovian case.
The blue (thin line) plot is for a = 1/2, while black (small
dashed) and green (thick line) denote a = 3/4 and a = 1,
respectively. The figure shows that with increment of a, the
decay of coherence slows down and for the limiting case, it
freezes after some time. The increment of coherence is the
signature of the deviation from Markovian behavior.

In Fig.1, the evolution of Cl1 with time (scaled by the
decay parameter γ) is depicted. It can be seen that with
the increment of the strength of the non-local environ-
mental interaction, the decay of coherence slows down.
For the limiting case of a = 1, the l1 norm of coherence
is constant and equals to Cl1 = x. This limiting condition
is attainable when the separation between the energy lev-
els of both the atomic qubits is small. Whereas, for the
local Markovian case we have Cl1 = xe−2γNt. Hence it is
clear, that the global part of the environmental interac-
tion imposes a reverse flow of coherence into the system

as opposed to the usual Markovian decay. Due to this re-
verse flow, the usual decoherence process slows down and
may even stop, depending on the strength of the global
interaction. The global interaction therefore generates a
feedback to coherence at the expense of the population.
In a recent work [74], a dynamical condition has been
proposed, under which the coherence of qubit systems is
totally unaffected by noise. There the dynamical process
under which the qubit system evolves is considered to be
incoherent; that is, the process maps any incoherent state
to the set of incoherent states. From the perspective of
coherence resource theory, what we are claiming here is
different from the motivation of that work. Here, we have
taken a dynamical map, which acts as a resource for gen-
erating quantum coherence in a qubit system. For the
low temperature case, we encounter a more interesting
situation. Here the dynamics depends on the mixedness
x of the Werner state we have taken. For the initial pure
state charectesized by x = 1, the Coherence can be given
by CZ

L1 = e−(1−a)γt. Hence, for the limiting case of a = 1,
the coherence is frozen at it’s initial maximum value 1.
But for other cases (x < 1), we have a finite contribu-
tion from the white noise part of the initial state, which
makes the situation different.

From FIG. 2, we see that in the zero temperature
regime, with the increase of global interaction, coherence
not only stabilizes but also increase from it’s initial value,
which shows a generation of coherence due to the global
interaction.

Next, we will consider the dynamics of other quantum
correlations like the entanglement and the Fisher infor-
mation to further extend our study.

Let us now compare the dynamics of the coherence with
that of the entanglement, expressed as the concurrence
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FIG. 2: (Colour online) Coherence C with respect to γt
for the Werner state with x = 1/2, with a as a parameter.
We have taken a = 0.75, 0.8, 0.9, 0.95 respectively. The fig-
ure shows that with increment of a, the decay of coherence
slows down and as the global interaction increases, there is a
generation of coherence.

[75, 76]. Entanglement is a very basic property of a
composite quantum system, which gives rise to nontrivial
phenomena in quantum information science. It is well
known that many composite quantum systems having
coherence (even some maximally coherent states) may
not be entangled at all. For example, the maximally
coherent state |ψ〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉) can be

written in the form |ψ〉 = 1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 + |1〉),

that is, the state is a product state and hence not
entangled. This indicates that entanglement is a much

more restricted quantum characteristic than coherence.
We will now study the dynamics of concurrence for the
global environmental interaction, to see whether it has a
similar effect on entanglement as it had on coherence.

For any two qubit system, concurrence may be explicitly
calculated from the density matrix as

Ec(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (3.6)

where the quantities λi (i=1,2,3,4) are the eigenvalues of
the matrix (in decreasing order )

τ = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy). (3.7)

Here ρ∗ is the complex conjugate of the density matrix
ρ in the usual computational basis. For the X states we
have taken in (2.21), the concurrence can be expressed
in a simpler form as given by

Ec = 2max{0, (|ρ23| −
√
ρ11ρ44), (|ρ14| −

√
ρ22ρ33)}.

(3.8)

For the case of Werner states (3.3), the concurrence
will be Ec = 2max{0, |ρ23| −

√
ρ11ρ44}. Hence, when

|ρ23| >
√
ρ11ρ44, the state is entangled. When the sys-

tem is interacting with a hot bath, the expression of en-
tanglement for Werner state is given by

EH
c (ρW ) = x

2 e
−3γNt

[

3 cosh
(

γNt
√
1 + 8a2

)

+
(

6a−1√
1+8a2

)

sinh
(

γNt
√
1 + 8a2

)

]

− 1
2 . (3.9)

From the Fig. 3, we see that entanglement decay also
slows down with the increase in the strength of the global
environmental interaction. For the limiting value a = 1,
after some initial decay, it also saturates like coherence.
In this section, we have shown that the global system-
bath interaction prolongs the lifetime of coherence and
entanglement. With the increasing strength of the global
part of the interaction (which is characterized by the pa-
rameter a ), the lifetime of both the coherence and the
entanglement increases.
Let us now consider the zero temperature situation. If we
start from a maximally entangled state (x = 1), we find
that the entanglement can then be given by the expres-
sion E(t) = e−(1−a)γt. Which shows that entanglement
decays exponentially. With the increase of the global
interaction, the decay slows down and for the limiting
case, it freezes. Similar to the case of coherence, here
also the situation is a little different, when we start from
an initial mixed state. Let us consider Werner state with

x = 1/2. In FIG. 4, we can see the evolution of entan-
glement with time. From the figure we can see that for
zero temperature bath, there is a region of the evolution
where entanglement is generated due to the global nature
of the environmental interaction and it even surpasses the
initial entanglement.

It is also important to note that not all states will show
this behaviour of coherence and correlation freezing. For

example, Werner states of the form (1−x)
4 I + x|ψ+〉〈ψ+|

with |ψ+〉 = (|00〉 + |11〉)/
√
2, will not show the above

observed behavior of slowing down of coherence and cor-
relation decay. This could be attributed to the form of
the coherent part of the effective Hamiltonian (2.10) and
(2.11), due to the global nature of the system-reservoir
interaction. Following Ref. [42], we can infer that under
the evolution determined by the interaction Hamiltonian
(2.11), the two atom system behaves as a single four level
system with the ground state |g〉, the excited state |e〉 and
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FIG. 3: (Colour online) Concurrence EC versus γt for the
Werner state with x = 1, with a as a parameter. We have
taken a = 0, 1/2, 3/4, 1 respectively. The red (large dashed)
plot is for a = 0, which is the usual Markovian case. The blue
(thin line) plot is for a = 1/2, black (small dashed) plot is for
a = 3/4 and green (thick line) is for a = 1. The figure shows
that with increment of a, the sudden death of entanglement
slows down, like a slow decay. For a = 1, the sudden death
vanishes completely and entanglement freezes to a particular
value after a small initial decay.
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FIG. 4: (Colour online) Concurrence EC versus γt for the
Werner state with x = 1/2, with a as a parameter. We have
taken a = 0.75, 0.8, 0.9, 0.95 respectively.

two intermediate symmetric and anti-symmetric states
|s〉 and |as〉, respectively. Where

|g〉 = |00〉, |e〉 = |11〉,
|s〉 = 1√

2
(|10〉+ |01〉),

|as〉 = 1√
2
(|10〉 − |01〉).

(3.10)

The Hamiltonian (2.10), which is generated by dipole-
dipole interactions [42], does not affect the ground and
excited states. Only the symmetric and anti-symmetric
states are affected by it. The incoherent part of the
dipole-dipole interaction is basically the global part of
the dynamical map with the strength γ12. Therefore, the
global interaction affects only ρ23 and ρ∗23, which are the
components of the symmetric and anti-symmetric states.
For the limiting case of a = 1, the master equation can

be written as

dρ
dt = i

~
[ρ,H ]

+γ(N + 1)
(

J−ρJ+ − 1
2 (J

+J−ρ+ ρJ+J−)
)

+γN
(

J+ρJ− − 1
2 (J

−J+ρ+ ρJ−J+)
)

,
(3.11)

with J± = σ±
1 +σ±

2 . For this case the global interaction
creates a decoherence free evolution for |s〉 and |as〉 and
thus preserves the non-classicality of the states.

IV. GENERATION OF QUANTUMNESS AND

BOUND ON FISHER INFORMATION

In this section, we investigate the generation of non-
classicality by the action of global bath in detail. We have
considered a measure of quantumness and explicitely find
it’s connection with quantum Fisher information and
quantify the capacity of generation of “quantumness” of
a global channel in detail. The Fisher information has
considerable significance in statistical estimation theory,
as a measure of “intrinsic accuracy” [43]. A quantum
generalization of the Fisher information was proposed in
Refs. [45] and [46]. Here, we develop on the theme that
the Fisher information can also be considered as a mea-
sure of non-classicality of a quantum system. It has been
shown [47] that the Fisher information of a quantum ob-
servable is proportional to the difference between quan-
tum variance and the classical variance of the conjugate
variable. The Fisher information of a parameterized fam-
ily of probability densities {pθ : θ ∈ R} on R, is defined
as

F (pθ) =
∫

R

(

∂
∂θp

1/2
θ (x)

)2

dx = 1
4

∫

R

(

∂
∂θ log p

1/2
θ (x)

)2

pθdx.

(4.1)
Particularly, when Pθ(x) = pθ(x − θ), then by transla-
tional invariance of the Lebesque integral, one can con-
clude that the Fisher information F (pθ) is independent
of θ. In that case the Fisher information can be denoted
as F (p) [77]. A natural generalization of the Fisher in-
formation [77, 78] arises from (4.1), when we consider

∂

∂θ
pθ =

1

2

(

∂

∂θ
log pθ.pθ + pθ.

∂

∂θ
log pθ

)

. (4.2)

By replacing the integration by trace, probability pθ by
density matrix ρθ and the logarithmic derivative ∂

∂θ log pθ
by the symmetric logarithmic derivative Lθ, determined
by

∂

∂θ
ρθ =

1

2
(Lθρθ + ρθLθ), θ ∈ R, (4.3)

the Fisher information can be expressed as [77]
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F (pθ) =
1

4
Tr(L2

θρθ). (4.4)

Now, if it is independent of the parameter θ, it can be
shown that F (ρ,H) = 1

4Tr(ρL
2) [77], where i(ρH −

Hρ) = 1
2 (Lρ+ρL). After some algebra, the Fisher infor-

mation of an operator H can be shown to be

F (ρ,H) =
1

2

∑

m,n

(λm − λn)
2

λm + λn
|〈ψm|H |ψn〉|2, (4.5)

where λm and |ψm〉 are the eigenvalues and eigenvec-
tors of the density matrix, respectively. It is to be noted
that, if H commutes with ρ, then the Fisher informa-
tion F (ρ,H) becomes zero. Hence, we will have non-
zero Fisher information for an observable only when it
is skewed or non-commuting with the density matrix. In
Ref. [47], it was shown that, in the Schrödinger picture,
the position Fisher information is equal to the square
of the variance of the non-classical part of the conju-
gate momentum with a factor 4/~2. This means that
the Fisher information gives us a certain quantification
of non-classicality or quantumness of a system. Hence
the dynamics of Fisher information would be related to
the dynamics of non-classicality associated with a quan-
tum system.
Let us now elaborate the issue of “non-classicality” ex-
plicitely. In a recent work [49], the notion of quantumness
based on the non-commutivity of the algebra of observ-
ables has been investigated. A measure of quantumness
has also been proposed based on the imcompatibility of
quantum states. The mutual incompatibility of two given
states ρa and ρb can be quantified by twice of the Hilbert-
Schmidt norm of their commutator [50].

Q(ρa, ρb) = 2 ‖ [ρa, ρb] ‖2= 4Tr((ρaρb)
2 − ρ2aρ

2
b) (4.6)

We know that the trace of a positive operator is always
positive and vanishes only when the operator is null. So
Q(ρa, ρb) is zero only when the the two density matrix
commutes with each other. Given this fact, Q(ρa, ρb)
can be considered as a powerfull quantumness witness
obeying the relation

0 ≤ Q(ρa, ρb) ≤ 1 (4.7)

The intuitive understanding of Q(ρa, ρb) as a measure
of quantumness is clearly stated in Ref. [49]. Given an
algebra A of the system observables, one can define the
state ρ to be classical if Tr(ρ, [A,B]) = 0 ∀A,B ∈ A,
and the state is quantum otherwise. So the state is clas-
sical, if it does not detect the non-commutativity of the
observables. Hence, intuitively it could be stated that if
two states ρa and ρb do not commute, they are quantum
and classical if otherwise. In Ref. [49] it has been shown

that Q(ρa, ρb) is proper witness of the global quantum
nature of the given states. Now by chosing ρa = ρ0 and
ρb = ρt as the initial and final state, we can quantify the
generation of quantumness by a certain operation. If ρ0 is
a diagonal state in a given basis and the operation only
alters the probability distribution, then the final state
will also be a diagonal state. So then there will be no
generation of non-commutativity and hence no genera-
tion of quantumness by the operation. For example, if
we choose the initial state to be a incoherent state; i.e.
the state is diagonal in the preffered basis and apply only
incoherent operation, then the final state will also remain
incoherent and no quantumness will be produced.
So let us take the initial state to be a diagonal state

ρ0 =
∑d

j=1 λi|i〉〈i| and find the quantumness generated

by any arbitrary process. Using Eq. (4.6), we find that

Q(ρ0, ρt) = 2
∑

i6=j

(λi − λj)
2|〈i|ρt|j〉|2 (4.8)

Let us now quantify the quantum Fisher information
generated by the process starting from a diagonal state.
Using Eq. (4.5), we find that the generated Fisher infor-
mation can be expressed as

F (ρ0, ρt) =
1

2

∑

i6=j

(λi − λj)
2

λi + λj
|〈i|ρt|j〉|2. (4.9)

Now we know that

1

λi + λj
≥ 1 ∀ i, j (4.10)

and

|〈i|ρt|j〉| ≤ 1 ∀ i, j (4.11)

Using Eq. (4.10) and (4.11), we find the following in-
equality

Q(ρ0, ρt)

4
≤ F (ρ0, ρt) ≤

Cl1(ρ0, ρt)

2
. (4.12)

The relation gives us the intuitive insight on the nature
of quantum Fisher information as a measure of quan-
tumness. The left equality of (4.12) will strictly hold
for two level system, which is the smallest possible quan-
tum system. For higher dimensional systems and systems
consisting more than one party, the situation gets much
more complicated. Because for composite system, quan-
tum correlation comes into picture. From (4.12), we also
surmise that the created coherence is always more than
the created Fisher information.
Let us now calculate the quantumness and Fisher infor-
mation generated by our specific global operation. Here
we will consider an initial diagonal state of the form
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ρ0 =







ρ11(0) 0 0 0
0 ρ22(0) 0 0
0 0 ρ33(0) 0
0 0 0 ρ44(0)






(4.13)

The generated quantumness and Fisher information by
the action of our global operation can thus be respectively
expressed as

Q(ρ0, ρt) = (ρ22(0)− ρ33(0))
2C2(ρ0, ρt) (4.14)

F (ρ0, ρt) =
(ρ22(0)− ρ33(0))

2

ρ22(0) + ρ33(0)

C2(ρ0, ρt)

4
(4.15)

where C(ρ0, ρt) = 2|ρ23(t)| is the generated coherence.
For the case of global environmental interaction, we find
the inequality

Q(ρ0, ρt)

4
≤ F (ρ0, ρt) ≤

C2(ρ0, ρt)

4
. (4.16)

Since 0 ≤ C(ρ0, ρt) ≤ 1, we find that the created co-
herence will always be greater than the created Fisher
information and quantumness.

For the hot bath, we find the quantumness produced from
a diagonal state can be expressed as

Q(ρ0, ρt) = 16U ′2(0)e−6γNt

[

4a2

1 + 8a2
(U(0)−W (0))2 sinh2

(

γNt
√

1 + 8a2
)

+ U ′2(0)e2γNt sin2(2Ω12t)

]

(4.17)

The generated quantum Fisher information can be ex-
pressed as

F (ρ0, ρt) =
Q(ρ0, ρt)

8U(0)
(4.18)

So we see that the generated Fisher information
is equal to the generated quantumness with a factor
1/8U(0). Let us consider a particular case with ρ11(0) =
ρ44(0) = 0, ρ22(0) = 3/4 and ρ33(0) = 1/4. For this case
F (ρ0, ρt) = Q(ρ0, ρt)/4. Now in the case of high temper-
ature bath (N >> 1), the contribution from the unitary
evolution will not play a significant role.
From FIG. 5, we see the generation of quantumness

with increasing global interaction. In FIG. 6 we see the
generation of coherence with increasing global interac-
tion. The strength of the unitary interaction is charac-
terized by Ω12 given by equation (2.12). For the rest of
the numerical study, we parametrize b = Ω12/γ.
But for the high temperature case, no generation of

entanglement is observed.
It is important to state that in this case of high tempera-
ture bath, the role of the unitary evolution in generating
quantumness is not prominant, because it is suppressed
by the much stronger non-unitary dynamics of the qubit-
bath interaction. Whereas in the Zero temperature bath
we see a different picture.
From FIG.7 and FIG.8, we see the generation of quan-

tumness and coherence in zero temperature bath, start-
ing from a initial diagonal state. Importantly, for zero
temperature global bath, we can also see a generation of
entanglement from FIG. 9, which is unlike the case of
high temperature bath.

FIG. 5: (Colour online) Generated Quantumness Q as a func-
tion of γNt. We have taken the global interaction parameter
a = 0.64, 0.90, 0.95, 0.99 respectively. Corresponding to each
value of a, we have b = 0,−0.45,−0.78,−1.84 respectively.
But for the High temperature case as presented in this plot,
the effect of b, which is due to the unitary evolution is very
small

V. GLOBAL MASTER EQUATION WITH TIME

VARYING PARAMETERS

In this section, we further generalize our global mas-
ter equation by considering the memory effect of the
bath. In a practical situation, an environment usually
has memory. In an experiment, a composite quantum
system can be exposed to various kind of noises such as
vacuum noise, phase noise, thermal noise as well as a
mixture of different kind of noises. Different noise mod-
els has been proposed in recent years to model solvable
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FIG. 6: (Colour online) Generated Coherence C as a function
of γNt. We have taken the global interaction parameter a =
0.64, 0.90, 0.95, 0.99 respectively. Corresponding to each value
of a, we have b = 0,−0.45,−0.78,−1.84 respectively.

FIG. 7: (Colour online) Generated Quantumness Q for zero
temperature bath case as a function of γt. We have taken
the global interaction parameter a = 0.64, 0.74, 0.83, 0.90
respectively. Corresponding to each value of a, we have
b = 0,−0.10,−0.24,−0.45 respectively.

approximate master equations [79, 80]. Correlation dy-
namics in the Markovian (no memory) regime has been
extensively studied [81]. However, in practice, an envi-
ronment is more likely to be non-Markovian. A system-
atic investigation of the dynamics of quantum coherence
and correlation in the presence of non-Markovian noise
is an ongoing study [82, 83]. Here we are going to ana-
lyze the time dependent global environmental operation
based on a non-markovian model of quantum state dif-
fusion [84]. For certain cases, the Lindblad type master
equation can be constructed from non-linear stochastic
Schrödinger equation of the form

d

dt
ψt = −iHψt + Lψt ◦ zt −

1

2
L†
∫ t

0

α(t, s)
δψt

δzt
ds. (5.1)

where zt is a white complex valued Wiener process:
zt =

∑

ν zνe
iνt. The correlation relations are defined as

M [z∗t zs] = δ(t− s) ; M [ztzs] = 0, (5.2)

FIG. 8: (Colour online) Generated Coherence C for zero
temperature bath case as a function of γt. We have taken
the global interaction parameter a = 0.64, 0.74, 0.83, 0.90
respectively. Corresponding to each value of a, we have
b = 0,−0.10,−0.24,−0.45 respectively.

FIG. 9: (Colour online) Generated Entanglement E for zero
temperature bath case as a function of γt. We have taken
the global interaction parameter a = 0.64, 0.74, 0.83, 0.90
respectively. Corresponding to each value of a, we have
b = 0,−0.10,−0.24,−0.45 respectively.

and α(t, s) is the environmental correlation function.
HereM [· · · ] is the ensemble mean over the classical noise
zt and the system density matrix ρt = M [|ψ(t)〉〈ψ(t)|].
The system Hamiltonian is taken to be H = ω

2 σz . The
stochastic environmental influence is expressed by the
gaussian Wiener process Zt, which drives the system
through the operator L. For our case of dissipative pro-
cess described by amplitude damping operation, L is cho-
sen as λσ−. Here λ is a parameter describing the strength
of interaction. Now for dissipative interactions, one can
choose

δψt

δzt
= f(t, s)σ−ψt, (5.3)

where f(t, s) is a function to be determined. For the
dynamics to be physically consistant this function satis-
fies the relation [84]
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∂tf(t, s) = [iω + λF (t)]f(s, t), (5.4)

with the initial condition f(s, s) = λ. Here

F (t) =
∫ t

0
α(t, s)f(t, s)ds. Assuming exponen-

tially decaying environmental correlation α(t, s) =
γ0

2 exp (−γ0|t− s|+iξ(t− s)), we find the reduced map
for the system to be

(

ρ11(0)e
−

∫
t

0
(F (s)+F∗(s))ds ρ12(0)e

−iωt−
∫

t

0
F (s)ds

ρ21(0)e
iωt−

∫
t

0
F∗(s)ds 1− ρ11(t)

)

(5.5)
with

F (t) = γ0

2λ −
√

γ2

0
−2γ0λ2

2λ

× tanh

[

t
2

√

γ20 − 2γ0λ2 + tanh−1

(

γ0√
γ2

0
−2γ0λ2

)]

.

(5.6)
Here the resonant situation ω = ξ is considered. Here

two different cases can be considered. The first one is
short memory or weak coupling with γ > 2λ2. The much
more interesting situation appears for long memory or
strong coulping case where we have γ < 2λ2. Then we
have

F (t) = γ0

2λ +

√
2γ0λ2−γ2

0

2λ

× tan

[

t
2

√

2γ0λ2 − γ20 − tan−1

(

γ0√
2γ0λ2−γ2

0

)]

.

(5.7)
The master equation of the mentioned operation can

be derived from the map given in Eq. (5.5) with the form

ρ̇ = i
ω

2
[σZ , ρ]+λ[F (t)+F

∗(t)]

(

σ−ρσ+ − 1

2
{σ+σ−, ρ}

)

(5.8)
Note that, here only the zero temperature situation is

considered for simplicity. So there is only the dissipation
part, but no reheating. But it can always be generalized
for a finite temperature bath. Now for a two qubit system
with identical qubits, where the bath acting globally, we
can generalize the master equation as

dρ
dt = − i

~
[ρ,HS(t)] +

∑

i,j γij(t)
(

σ−
i ρσ

+
j − 1

2{σ
+
i σ

−
j , ρ}

)

,

(5.9)
with

HS(t) =
∑

i=1,2

(

1

2
~σi

Z + ~Ωij(t)
(

σ−
i σ

+
j + σ+

i σ
−
j

)

)

(5.10)
and

Ω12 = 3
4γ(t)b(k0r12)

γ12 = 3
2γ(t)a(k0r12)

γ(t) = λ[F (t) + F ∗(t)]
(5.11)

The solution of Eq. (5.9) takes the form

ρ11(t) = ρ11(0)e
−2G(t),

ρ22(t) = Un(t) + Un(
′t),

ρ33(t) = Un(t)− U ′
n(t),

ρ44(t) = 1− ρ11(t)− 2Un(t),
ρ23 = Vn(t) + iV ′

n(t),
ρ14(t) = ρ14(0) exp (−G(t)) .

(5.12)

where

Un(t) = Un(0)e
−G(t) cosh(aG(t))− Vn(0)e

−(G(t)) sinh(aG(t))

+ ρ11(0)
2

[

1+a
1−ae

−(1+a)G(t)
(

1− e−(1−a)G(t)
)

+ 1−a
1+ae

−(1−a)G(t)
(

1− e−(1+a)G(t)
)

]

,
(5.13)

Vn(t) = Vn(0)e
−G(t) cosh(aG(t)) − Un(0)e

−G(t) sinh(aG(t))

+ ρ11(0)
2

[

1+a
1−ae

−(1+a)G(t)
(

1− e−(1−a)G(t)
)

− 1−a
1+ae

−(1−a)G(t)
(

1− e−(1+a)G(t)
)

]

,

(5.14)

U ′
n(t) = U ′

n(0)e
−G(t) cosh(2bG(t))− V ′

n(0)e
−G(t) sinh(2bG(t)) (5.15)
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V ′
n(t) = V ′

n(0)e
−G(t) cosh(2bG(t))− U ′

n(0)e
−G(t) sinh(2bG(t)) (5.16)

where

G(t) = γ0t− 2 ln

[
√

2γ0λ2

2γ0λ2 − γ20

∣

∣

∣

∣

∣

cos

(

t

2

√

2γ0λ2 − γ20 − tan−1

(

γ0
√

2γ0λ2 − γ20

))∣

∣

∣

∣

∣

]

(5.17)

A. Dynamics of coherence and entanglement for

Werner state

In this subsection, we are analysing the dynamics of
coherence and concurrence for two qubit Werner state as
mentioned in Eq. (3.3). For a initial pure state (x = 1),
the coherence dynamics is given by C(ρW ) = e−(1−a)G(t).
From FIG. 10 we see that global environmental interac-
tion helps the backflow of information process and as a
consequence we see a periodic revival of coherence with
increasing global interaction.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

ý0 t

C

a=0.90
a=0.75
a=0.5
a=0

FIG. 10: (Colour online) Dynamics of coherence C for Werner
state with x = 1 interacting with a zero temperature global
non-markovian bath case as a function of γ0t. We have taken
the global interaction parameter a = 0, 0.5, 0.75, 0.90 respec-
tively. Here we have taken λ2 = γ0.

For entanglement also, we see that the global environ-
mental interaction helps the periodic revival of entangle-
ment, as shown in FIG. 11.

B. Generation of Quantumness

Here we analyse the generation of quantumness by
global non-marokivan interaction. Here also we see
that global interaction enhances the generation of non-

0 2 4 6 8 10 12
0.0
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0.4

0.5

0.6

ý0 t

E
c

a=0.95
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FIG. 11: (Colour online) Dynamics of entanglement Ec for
Werner state with x = 1/2 interacting with a zero tem-
perature global non-markovian bath case as a function of
γ0t. We have taken the global interaction parameter a =
0, 0.5, 0.75, 0.90 respectively. Here we have taken λ2 = γ0.

classicality.

VI. CONCLUSION

To conclude, in this work we exploit a useful global
system-environment interaction and study the effect of
non-Markovian behaviour on various facets of quantum
coherence and correlations. Here we have found that the
global part of the environmental interaction is acting as a
resource to compensate the decoherence effect. We have
further extended our result to the case where the bath
has memory. We have given the exact solution of the
proposed master equation for two separate cases of high
temperature and zero temperature bath for the memo-
ryless case. For the case for environmental interaction
in presence of memory, we have given exact solution for
the zero temperature bath. But it can be easily extended
to the case of finite temperature bath as well. We have
shown that with increasing strength of the global part of
the environmental interaction, both coherence and entan-
glement decay slows down and for the limiting case they
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FIG. 12: (Colour online) Generated Quantumness Q for zero
temperature bath case as a function of γt. We have taken
the global interaction parameter a = 0.64, 0.74, 0.83, 0.90
respectively. Corresponding to each value of a, we have
b = Ω12/2γ = 0,−0.10,−0.24,−0.45 respectively.

eventually freeze. The limiting condition is attainable
when the separation between the energy levels of both
the atomic qubits is small. For the memory dependent
non-Markovian case, we have seen that the global inter-
action enhances the regeneration of coherence, entangle-
ment and quantumness. Which tells us that the global
interaction helps the backflow of information from envi-
ronment to the system via non-Markovian interaction. It
is also very important to mention here that for the case of
zero temperature bath, as the strength of the global inter-
action increases, the unitary interaction between the two
qubits will dominate. In that case, the limiting condition
is unattainable. Because then the environment cannot re-
solve the two interacting qubits. Instead it sees the sys-
tem as a single four level level system in the eigenbasis of
it’s total Hamiltonian. Moreover, we have also quantified

the amount of non-classicality generated by global envi-
ronmental interaction. It has been shown that the gener-
ated quantum Fisher information is lower bounded by the
Quantumness with a factor of 1/4 and upper bounded by
the l1 norm of coherence with a factor of 1/2. This gives
us an intuitive understanding of quantum Fisher informa-
tion as a measure of non-classicality. Fisher information
and the quantumness measure are both based on the non-
commutativity of states and this property is precisely un-
derstood as the non-classicality of quantum states. Now
from the inequality relation given by Eq. (4.12), we find
that the created coherence by any arbitrary global op-
eration is always greater than the created quantumness
and Fisher information. So we understand that coherence
contains more than the non-classicality of quantum states
and hence cannot be considered as a proper measure of
Quantumness. To summarize, in this work we have exam-
ined the emergence of non-Markovianity and its impact
on the evolution of a number of facets of quantumness
in the system. It is observed that non-Markovianity can
play a nontrivial and useful role in various quantum in-
formation tasks where coherence and entanglement are
considered as resources.
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