This paper describes the framework for event triggered control of a plant possessing two time scales. The periodic sampling requirement is relaxed and states are sampled based on a triggering rule. The dynamic trigger function where event triggering threshold varies with time has been used. Triggering function parameters are different for slow and fast states and events are detected independently in the two subsystems. This also allows the sensors for slow and fast states to be geographically distributed in the network. Further singular perturbation technique is used to decouple the system into fast and slow subsystems and stability of the overall system is investigated. It is proved that the closed loop system asymptotically converges to an adjustable region around the equilibrium point and a minimum bound on inter-execution time is also guaranteed. Asymptotic stability may also be obtained if the parameters of trigger function are adequately selected. Simulation results manifest the efficacy of the proposed approach and verify the theoretical analysis. © 2017 IEEE.