Header menu link for other important links
X
Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy
N. Kuthala, , Y.-N. Li, C.-S. Chiang, K.C. Hwang
Published in Wiley-VCH Verlag
2017
PMID: 28620939
Volume: 29
   
Issue: 31
Abstract
Glioblastoma multiforme (GBM) is a very common type of “incurable” malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented 10B-enriched (96% 10B enrichment) boron nanoparticle nanomedicine (10BSGRF NPs) surface-modified with a Fluorescein isothiocyanate (FITC)-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg 10B g−1 cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The 10BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging-guided BNCT, prolonging the half-life of mice from 22 d (untreated group) to 39 d. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
About the journal
JournalData powered by TypesetAdvanced Materials
PublisherData powered by TypesetWiley-VCH Verlag
ISSN09359648