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Effect of The Latent Structure on Clustering with

GANs
Deepak Mishra, Aravind Jayendran and Prathosh A. P.

Abstract—Generative adversarial networks (GANs) have
shown remarkable success in generation of data from natural
data manifolds such as images. In several scenarios, it is desirable
that generated data is well-clustered, especially when there is
severe class imbalance. In this paper, we focus on the problem of
clustering in generated space of GANs and uncover its relation-
ship with the characteristics of the latent space. We derive from
first principles, the necessary and sufficient conditions needed to
achieve faithful clustering in the GAN framework: (i) presence of
a multimodal latent space with adjustable priors, (ii) existence
of a latent space inversion mechanism and (iii) imposition of
the desired cluster priors on the latent space. We also identify
the GAN models in the literature that partially satisfy these
conditions and demonstrate the importance of all the components
required, through ablative studies on multiple real world image
datasets. Additionally, we describe a procedure to construct a
multimodal latent space which facilitates learning of cluster
priors with sparse supervision. The code for the implementation
can be found at https://github.com/NEMGAN/NEMGAN-P

I. INTRODUCTION

A. Background and Contributions

Generative Adversarial Networks(GANs) [11], [1], [23],

[4], [22] and its variants are a category of highly successful

generative neural models which learn mappings from arbitrary

latent distributions to highly complex real-world distributions.

In several downstream tasks such as conditional generation,

data augmentation and class balancing [14], [3], [25], [17],

[6], it is desirable that the data generated by a generative

model is clustered. However, it is well known that GANs in

their raw formulation are unable to fully impose all the cluster

properties of the real-data on to the generated data [2], [29],

[15], [4], especially when the real-data has skewed clusters.

While a lot of efforts have been devoted in past to stabilize the

GAN training [26], [12], [15], little attention has been given

to understand the impact of latent space characteristics on data

generation (a brief review of related methods is given in Sec.

4). Motivated by these observations, we propose to accomplish

the following:

1) Starting from the first principles, formulate the necessary

and sufficient conditions needed for faithful clustering in

the generated space of GAN.

2) Demonstrate the importance of each of the condition

through ablative studies using different GAN models that

partially satisfy them, on four large-scale datasets.
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3) Propose a method for the construction of a learnable

multi-modal latent space that facilitates sparsely super-

vised learning of the cluster priors.

B. Problem setting

In the context of GANs, clustering in generated space refers

to inheritance of the cluster properties of real data on the

generated data. In GANs, a generator g, which is a function

of the latent variable (z), is tasked to sample from the desired

data (x) distribution via an adversarial game [11]. Suppose

PX and PW , respectively be the distributions of the generated

and real data, with X and W representing their support. We

call a distribution clustered (or equivalently multi-modal) if its

support is a disconnected union of non-empty pairwise-disjoint

connected open subsets. For instance, PW is a clustered

distribution with M clusters if W is a disconnected union

of M non-empty pairwise disjoint connected open subsets
(

Wi, i ∈ {0, 1, ...,M − 1}
)

and W ≡
⋃M−1

i=0
Wi, with Wi

denoting the support of the ith mode 1. With this definition,

clustering in generated space amounts to the following: if PW

is clustered in the aforementioned way, PX is also clustered

in the exact same way. That is, the probability masses of PW

and PX over each individual cluster (or mode) are the same.

II. CLUSTERING IN GANS - REQUIREMENTS

Firstly, we show that to obtain a clustered generated space

or equivalently, a multimodal PX , it is necessary to have a

multimodal latent space PZ with a structure similar to the

real-data.

Lemma 1: Let Z denote the support of PZ . If Zi ⊆ Z

denote the inverse images of Xi under g, then
⋂

i Xi = Φ
only if

⋂

i Zi = Φ, where Φ is an empty set.

Proof: Without the loss of generality we assume M = 2.

Assume X0 ∩X1 = Φ and Z0 ∩Z1 6= Φ =⇒ ∃zi ∈ Z0 ∩Z1.

Given zi ∈ Z0, let g(zi) = xi0 ∈ X0 and similarly, given

zi ∈ Z1, g(zi) = xi1 ∈ X1. Since g is a continuous function,

xi0 = xi1 = xi =⇒ xi ∈ X0∩X1 contradicting the fact that

X0 ∩ X1 = Φ, hence Z0 ∩ Z1 = Φ.
Even though a multimodal latent space is a necessary

condition (Lemma 1), it is not sufficient. The generating

function g can be non-injective, implying that multiple modes

of the latent space can collapse to a single mode in the

generated space. However, if there exists another continuous

mapping h : X → Ŷ which maps the generated samples x, to

1For simplicity, we have assumed that the clusters do not overlap albeit all
the analysis can be extended to the case where clusters have minimal overlap.
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another auxiliary random variable ŷ such that P
Ŷ

is also multi-

modal, then Lemma 1 can be applied again on h to guarantee

multimodality on PX , as stated in the following corollary to

Lemma 1.

Corollary 1.1. Let h : X → Ŷ and Ŷi ⊆ Ŷ be a subset

of Ŷ. Then
⋂

i Ŷi = Φ only if
⋂

i Xi = Φ. Given
⋂

i Zi = Φ,

the condition
⋂

i Ŷi = Φ is sufficient for
⋂

i Xi = Φ.

Corollary 1.1 states that if the latent distribution (PZ) is

multimodal with M modes and h maps x to any multimodal

distribution (P
Ŷ

) with M modes, the generated distribution,

PX , will also have M modes. Even though in principle,

it is sufficient that if P
Ŷ

is any M modal distribution to

achieve clustering in PX , the clusters may not be optimal as

ascertained in the following corollary.

Corollary 1.2. Suppose g is the generator network of a

GAN which maps PZ to PX and h is an inverter network

which maps PX to P
Ŷ

. Further, let us assume all the distri-

butions, PZ , PX and P
Ŷ

, along with the real data distribution

PW are multimodal with M modes having disjoint supports.

The cluster properties of the real data W will not be reflected

in the generated data X, if the probability mass under every

mode (cluster) in PZ does not match with the modal masses

of PW (Proof in the Supplementary material).

Thus, if either PZ or P
Ŷ

are chosen such that their mode

(cluster) masses do not match with that of real data distribution

PW , the adversarial game played in the GAN objective cannot

force PX to follow PW . In other words, cluster properties of

the real data W will not be reflected in the generated data X

leading to incorrect coverage of the clusters in the generated

data as observed in [16]. In summary, the following are the

necessary and sufficient conditions required to accomplish

clustering in the generated space of a GAN.

1) The latent space which is the input to the GAN, should

be multimodal with number of modes equal to the

number of clusters in the real data (C1).

2) There should be a continuous mapping from the gener-

ated space to an auxiliary multimodal random variable

with same cluster properties as the real data (C2).

3) The mode (cluster) masses of the distributions of the

latent and auxiliary variables must match to the mode

masses of the distribution of the real data (C3).

III. CLUSTERING IN GANS - REALIZATION

In this section, we describe the possible methods for real-

izing the requirements for clustering with GANs.

A. Multimodal Latent space

Two known ways of constructing a multimodal latent space

are 1) using the mixture of continuous distributions such as

GMM [13], 2) using the mixture of a discrete and a continuous

distribution [5], [24]. Latter one is more popular and often

realized by concatenation of discrete and continuous random

variables. We describe a more general form of this by using an

additive mixture of a pair of discrete and continuous random

variables, which facilitates flexible mode priors.

Let the latent space be represented by Z and PZ denote

its distribution with M modes. This could be obtained by

taking an additive mixture of a generalized discrete distribution

and a compact-support continuous distribution such as uniform

distribution. Let y ∼ PY and ν2 ∼ PN2
denote samples drawn

from the discrete and continuous distributions, respectively.

Accordingly, the latent space z is obtained as: z = y + ν2.

This results in a multi-modal continuous distribution with

disconnected modes since PZ = PY ∗ PN2
, where ∗ denotes

the convolution product. The support of PN2
is chosen in such

a way that the modes of PZ are disjoint. In PZ , the number and

the mass of the modes are obtained from discrete component

(PY ) and the continuous component (PN2
) ensures variability.

The discrete component y ∼ PY can also be interpreted as an

indicator of the modes of z. Formally, y := i ∀z ∈ Zi, which

implies that
∫

Zi

PZ dz = PY (y = i).
Note that in all the aforementioned latent space construction

strategies, the latent space parameters are fixed and cannot

be changed or learned to suit the real-data distribution. To

alleviate this problem, we propose to reparameterize a second

continuous uniform distribution, PN1
, using a vector α to

construct the desired PY . Let α = [α0, α1, ....., αM−1]
T ,

αi ∈ R be an arbitrary vector and ν1 ∼ PN1
(ν1) = U[0, 1]. We

define a function, f (α, ν1) : R
M×R → R

M reparameterizing

PY as follows.

fi (αi, ν1) =

{

σh (ai − ν1)− σh (ai−1 − ν1) ; i 6= 0

σh (ai − ν1) ; i = 0
(1)

wherefi is the ith element of f , σh is a unit step function and

ai is given as

ai =
1

∑

k e
αk

i
∑

j=0

eαi (2)

With these, one can reparametrize a uniform distribution

using α and f , to obtain a multinoulli distribution.

Lemma 2: Define y =: argmaxi∈{0,..,M−1} fi, then y

follows a multinoulli distribution PY with

PY (y = i) =
eαi

∑

k e
αk

(Proof in the supplementary material).

Therefore, starting from an arbitrary discrete valued real

vector and sampling from a known uniform distribution, one

can obtain a multinoulli random variable whose parameters

become a function of the chosen arbitrary discrete vector α

which may be fixed according to the real data or learned

through some inductive bias.

B. Latent inverter

1) Clustering: As mentioned in the previous sections, it is

necessary to have a mapping from the generated data space

to an auxiliary random variable that would have same mode

masses as the real data. This can be ensured by choosing

h(x) = ŷ (a neural network) that would minimize a divergence

measure, D(P
Ŷ
, PY ), such as KL-divergence, between the

distribution of its output ŷ and the distribution of the discrete

part of the latent space (y). Learning an h this way, would

not only lead to clustered generation, but also ensures that the

modal (cluster) properties of the latent space (and thus real
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data) is reflected in the generated space as described in the

following lemma:

Lemma 3: Let x̂ be a discrete random variable that is

an indicator of clusters (modes) of PX . That is, P
X̂
(x̂ =

i) =
∫

Xi

PX dx. Then minimization of KL divergence,

DKL(PŶ
||PY ), leads to minimization of DKL(PŶ

||P
X̂
).

(Proof given in the supplementary material).

Note that h(x) or ŷ acts like a posterior of the cluster

assignment conditioned on the generated data. Therefore if the

parameters of the input latent distribution (αi’s) are chosen

in accordance with the modal properties of the real data

distribution, generated data space will be well-clustered within

a standard GAN training regime. If g is the Generator of a

GAN with d denoting the usual discriminator network and h

is a neural network operating on the output of the generator to

produce ŷ, the objective function to be optimized for faithful

clustering is given by:

min
g,h

max
d

L (g, h, d) (3)

L (g, h, d) = Ew[log d(w)] + Ez[log (1− d ◦ g(z))]

+D(P
Ŷ
, PY ) (4)

where w represents samples from the real data distribution. For

implementation, cross-entropy for the KL-term in equation 4

is used, since the entropy of PY is a constant for a given

dataset. A block diagram representing the learning pipeline is

given in the Supplementary material (Fig. 2).

2) Learning cluster priors: The presence of the inverter

network provides an additional advantage. It helps in learning

the true mode (cluster) priors in presence of a favourable

inductive bias [21]. In our formulation, information about the

mode-priors is parameterized through the vector α. Let there

be a set of few labelled real data samples, call it Ws, which

provides the required inductive bias. As observed previously,

the network h(x) is an estimator of the posterior of the cluster

assignments given the data, P (ŷ|x). Thus, marginalizing the

output of h(x) over all x amounts to computing Ex[h(x)],
which provides an estimate of P

Ŷ
. Analogous to Ex[h(x)],

the quantity eαi
∑

k
eαk

provides an estimate of PY (Lemma 2).

If the assumed α is incorrect, then h would mis-assign cluster

labels on some of Ws. In other words, PY and P
Ŷ

aren’t the

same which would be the same if the priors were correct. In

this scenario, we propose to retrain h(x) on Ws using a cross-

entropy loss so that it assigns correct cluster labels on all of

Ws. Subsequently, we re-estimate Ex[h(x)] for an arbitrary

subset of unlabelled data (typically less than 1%), with the

new h(x). Now since h(x) is changed (via retraining), one

can use the mismatch between Ex[h(x)] and eαi
∑

k
eαk

to re-

compute α.

The following is the loss function used that incorporates the

aforementioned idea for learning α:

min
h,α

Lα = min
h

Lcc +min
α

∣

∣

∣

∣Ex[h(x)]−
eαi

∑

k e
αk

∣

∣

∣

∣

1
(5)

where Lcc is the cross-entropy loss used to train h on Ws.

Note that prior-learning component is optional and indepen-

dent of the GAN training which is completely unsupervised.

However, since we have shown that with incorrect priors,

GANs cannot cluster faithfully, the priors can be first learned,

if unknown, and GANs can be trained with the correct priors.

IV. GAN MODELS

In this section, we identify the GAN models that satisfy at-

least one of the three conditions required for clustering. Vanilla

GANs such as DCGAN [25], WGAN [1], SNGAN [23] etc.

satisfy none of the three conditions. Models such as DeliGAN

[13], GANMM [30], MADGAN [10] constructs a multimodal

latent space using mixture models to avoid mode-collapse,

nevertheless they neither have a latent inverter (C2) nor mode-

matching (C3). Latent inverter network (with different choices

for d) has been incorporated in the context of regularizing

GAN training in many models such as VEEGAN [28], BiGAN

[7], ALI [8], CATGAN [27] etc. While all of these have

latent inverter with different objectives, they lack multimodal

latent space (C1) and prior-matching (C3). InfoGAN [5] and

ClusterGAN [24] have both multimodal latent space and latent

inverter (with a mutual information maximization cost for d)

but not the mode-matching (C3).

In the subsequent sections, we consider a representative

model from all categories to demonstrate the role of all

the conditions via ablations. In a model, a satisfied and an

unsatisfied condition is respectively denoted with Ci and Ĉi.

For this study, we consider WGAN for Ĉ1Ĉ2Ĉ3, DeliGAN for

C1Ĉ2Ĉ3, ALI/BiGAN for Ĉ1C2Ĉ3, InfoGAN/ClusterGAN

for C1C2Ĉ3, and finally build a model (with WGAN as

the base) with the described multimodal latent space, latent

inverter (with KL-divergence for h) and matched prior for

C1C2C3. For all the experiments, the class prior is fixed

either to uniform (for Ĉ3) or matched to the appropriate

mode/cluster prior (for C3), which provides the required

inductive bias. The underlying architecture and the training

procedures are kept the same across all models. All GANs are

trained using the architectures and procedures described in the

respective papers.

V. EXPERIMENTS AND RESULTS

A. Datasets and metrics

We consider four image datasets namely, MNIST [19],

FMNIST, CelebA [20], and CIFAR-10 [18] for experiments

(qualitative illustration on a synthetic dataset is provided in the

supplementary material, Fig. 1). Since the objective of all the

experiments is to obtain a well-clustered generation with class

imbalance, we create imbalanced datasets from the standard

datasets by either sub-sampling or merging multiple classes.

Specifically, we consider the following data - (i) take two sets

of two distinct MNIST classes, 0 Vs 4 (minimal overlap under

t-SNE) and 3 Vs 5 (maximum overlap under t-SNE), with

two different skews of 70:30 and 90:10, (ii) merge together

‘similar’ clusters {{3,5,8}, {2}, {1,4,7,9}, {6}, {0}} to form a

5-class MNIST dataset (MNIST-5). Similarly, we also grouped

FMNIST classes to create the FMNIST-5 dataset as {{Sandal,

Sneaker, Ankle Boot}, {Bag}, {Tshirt/Top, Dress}, {Pullover,

Coat, Shirt}, {Trouser}}, (iii) we consider CelebA dataset to

distinguish celebrities with black hair from the rest. (iv) two
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TABLE I: Quantitative evaluation on imbalanced data for

generation with clustering. Lower performances are observed

with GANs where one of three conditions is violated.

Dataset Model ACC NMI ARI FID

Ĉ1Ĉ2Ĉ3 0.64 0.06 0.08 19.76

C1Ĉ2Ĉ3 0.66 0.13 0.11 10.14

MNIST-2 Ĉ1C2Ĉ3 0.75 0.20 0.25 15.11

(70:30) C1C2Ĉ3 0.81 0.40 0.38 4.63
C1C2C3 0.98 0.89 0.93 1.33

Ĉ1Ĉ2Ĉ3 0.64 0.09 0.07 20.32

C1Ĉ2Ĉ3 0.59 0.15 0.13 11.45

MNIST-2 Ĉ1C2Ĉ3 0.61 0.24 0.25 10.84

(90:10) C1C2Ĉ3 0.77 0.33 0.54 6.08
C1C2C3 0.98 0.86 0.91 1.66

Ĉ1Ĉ2Ĉ3 0.51 0.21 0.19 20.64

C1Ĉ2Ĉ3 0.71 0.55 0.52 12.07

MNIST-5 Ĉ1C2Ĉ3 0.76 0.59 0.64 15.31

C1C2Ĉ3 0.74 0.65 0.71 4.92
C1C2C3 0.96 0.89 0.89 1.13

Ĉ1Ĉ2Ĉ3 0.62 0.30 0.30 10.46

C1Ĉ2Ĉ3 0.77 0.66 0.61 5.41

FMNIST-5 Ĉ1C2Ĉ3 0.75 0.68 0.65 9.20

C1C2Ĉ3 0.81 0.72 0.74 4.42
C1C2C3 0.92 0.81 0.81 0.69

classes of CIFAR (Frog Vs Planes, selected arbitrarily) with

two synthetic imbalances of 70:30 and 90:10.

We use Accuracy (ACC), Adjusted Rand Index (ARI)

and Normalized Mutual Information (NMI) [9] as metrics

to measure the clustering performance and Frechet Inception

Distance (FID) [23] to measure the quality of the generated

images. While the first three have to be higher, FID that

quantifies the relative image quality of different models, have

to be lower.

B. Results and Discussions

Results on MNIST-2 (3 Vs 5), MNIST-5 and FMNIST-5

are shown in Table I. It is observed that the GAN with all

conditions satisfied (proposed) consistently outperforms the

models that only satisfy the conditions partially, both in terms

of cluster-purity and generation-quality. Similar observations

are made on the colour datsets, CIFAR and CelebA as sum-

merized in Table II. It is also seen that, the presence of the

multimodal latent space (C1) and a latent inverter (C2) seem to

affect the performance the most when there is class imbalance.

This is corroborated by the fact that the performance of the

C1C2Ĉ3 model (ClusterGAN) is consistently best amongst all

the models that partially satisfy the conditions. This implies

that knowing the class-priors is an important pre-requisite to

obtain a faithful clustered generation in GANs.

Another important observation in CelebA experiment is that,

different attributes e.g. eyeglasses, mustache etc., can divide

the data into two clusters of different sizes. However, only

black hair attribute divides the data into clusters of sizes 23.9%

and 76.1% and by fixing the latent mode priors to 0.239

and 0.761, our model automatically discovers the black hair

attribute and generates data accordingly. Finally, it is observed

that the performance of the C1C2Ĉ3 and C1C2C3 are almost

the same when the dataset is balanced (quantitative results in

the supplementary material, Table IV). This is expected since

TABLE II: Evaluation of the proposed method on colour

datasets, CIFAR (Frogs Vs. Planes), CelebA (black hair Vs.

non-black hair). It is seen that GANs that violate any of three

required conditions offer lower performance.

Dataset Model ACC NMI ARI FID

Ĉ1Ĉ2Ĉ3 0.66 0.41 0.46 55.54

C1Ĉ2Ĉ3 0.70 0.51 0.54 42.87

CIFAR-2 Ĉ1C2Ĉ3 0.75 0.60 0.63 47.35

(70:30) C1C2Ĉ3 0.72 0.68 0.65 44.38
C1C2C3 0.88 0.70 0.75 31.15

Ĉ1Ĉ2Ĉ3 0.50 0.19 0.17 58.45

C1Ĉ2Ĉ3 0.54 0.18 0.29 43.87

CIFAR-2 Ĉ1C2Ĉ3 0.63 0.26 0.39 48.16

(90:10) C1C2Ĉ3 0.67 0.22 0.21 42.01
C1C2C3 0.83 0.26 0.28 32.86

Ĉ1Ĉ2Ĉ3 0.55 0.02 0.01 150.2

C1Ĉ2Ĉ3 0.58 0.15 0.14 110.9

CelebA Ĉ1C2Ĉ3 0.57 0.14 0.23 83.56

C1C2Ĉ3 0.64 0.18 0.26 67.1
C1C2C3 0.81 0.30 0.38 62.9

the mode priors are matched by default in both the cases and

the dataset has uniform priors. All these experiments suggests

for a GAN model to generated well-clustered data, it should

be equipped with all the stated conditions.

C. Results for Prior learning

As mentioned in Section III.A, the proposed method of

latent construction with latent inverter could be used to learn

the class-priors (if unknown) with sparse supervision (note

that the clustering experiments are completely independent

of prior-learning where the priors were assumed to be either

uniform or known a-priori). To evaluate the performance of

the proposed prior learning method, we consider the same

setup as in the previous section, with imbalanced class priors.

We initialize α uniformly with same value for each of its

element. Priors are learned with the technique described in

Section III.B.2 using 1% of the labelled data. The learned

priors are compared with real data priors in Table III. It is

seen that the proposed technique learns class priors accurately

for all the cases considered.

TABLE III: Evaluation of the proposed prior learning method.

Dataset Real data priors Learned priors

MNIST-2 [0.7, 0.3] [0.709, 0.291]
MNIST-2 [0.9, 0.1] [0.891, 0.109]
MNIST-5 [0.3, 0.1, 0.4, [0.291, 0.095, 0.419,

0.1, 0.1] 0.095, 0.099]
FMNIST-5 [0.3, 0.1, 0.3, [0.304, 0.096, 0.284,

0.2, 0.1] 0.220, 0.096]
CIFAR-2 [0.7, 0.3] [0.679, 0.321]
CIFAR-2 [0.9, 0.1] [0.876, 0.124]
CelebA-2 [0.239, 0.761] [0.272, 0.727]

VI. CONCLUSION

In this work, we described the problem of clustering in the

generated space of GANs and investigated the role of latent

space characteristics in obtaining the desired clustering. We

showed, this can be achieved by having a multimodal latent

space along with a latent space inversion network and matched

priors of latent and real data distribution. We also proposed to
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parameterize the latent space such that its characteristics can

be learned. It also leads to the development of a technique

for learning the unknown real data class-priors using sparse

supervision. Our analysis results in a GAN model which

offers the advantages of robust generation under the setting of

skewed data distributions and clustering, where the existing

methods showed sub-optimal performances. To the best of

our knowledge, this is the first work that demonstrates the

importance of latent structure on the ability of GANs to

generate well-clustered data.
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(a) Real data (b) WGAN (c) DeliGAN (d) InfoGAN (e) ClusterGAN (f) Ours

Fig. 1: Clustering in the generated spaces produced by different GANs for two-class Moon-data with cluster size ratio of

80:20. In absence of multimodal latent space, latent inverter and prior matching (WGAN), entire data is confined to a single

cluster (Impossible conditional generation). Fulfilment of only one of the three requirements, e.g. only multimodal latent space

(DeliGAN) can generate two classes but misses one of the clusters completely. Similarly the presence of multimodal latent

space and latent space inverter (InfoGAN and ClusterGAN) are also unable to provide desired clustering in absence of matched

priors. Our method satisfies all three conditions and thus can faithfully cluster.

Fig. 2: Illustration of the proposed pipeline for clustering. Gen-

erator g(z) tries to mimic the real data distribution PX with the

help of discriminator d. The inversion network h(g(z)) inverts

the generation process to ensure the matching of clustering

properties of generating and latent distributions. Mode priors

of the latent space is encoded in y by reparameterizing a

known distribution PN1
(ν1) using a learnable vector α.

VII. ADDITIONAL PROOFS

Proof for Corollary 1.2: Since both g and h are continuous

mappings (neural networks) and supports of all the distribu-

tions are disjoint,

∫

Zi

PZ dz =

∫

Xi

PX dx =

∫

Ŷi

P
Ŷ

dŷ (6)

and,

∫

Wi

PW dw 6=

∫

Zi

PZ dz =⇒

∫

Wi

PW dw 6=

∫

Xi

PX dx

(7)

Proof for Lemma 2: Since σh is a unit step function, f

is the first order difference or discrete Dirac delta function

positioned at ai. Now by definition,

PY (y = i) = P (fi 6= 0) (8)

From equation 1, we can see that fi becomes non-zero only

for ai−1 ≤ ν1 ≤ ai, therefore,

PY (y = i) = PN1
(ai−1 ≤ ν1 ≤ ai) (9)

=

∫ ai

ai−1

PN1
(ν)dν = ai − ai−1 =

eαi

∑

k e
αk

(10)

Proof for Lemma 3:

DKL(PŶ
||PY ) =

∑

ŷ=i

P
Ŷ
log

P
Ŷ

PY

s.t. i ∈ {0, 1} (11)

=
∑

ŷ=i

(

P
Ŷ
logP

Ŷ
− P

Ŷ
logPY

)

(12)

=
∑

ŷ=i

(

P
Ŷ
logP

Ŷ
− P

Ŷ
log

∫

Zi

PZ dz

)

(13)

Since
∫

Zi

PZ dz =
∫

Xi

PX dx, equation 12 can be written as

DKL(PŶ
||PY ) =

∑

ŷ=i

(

P
Ŷ
logP

Ŷ
− P

Ŷ
log

∫

Xi

PX dx

)

(14)

Since
∫

Xi

PX dx = P
X̂
(x̂ = i), by definition, equation 14 can

be written as

DKL(PŶ
||PY ) =

∑

ŷ=i

(

P
Ŷ
logP

Ŷ
− P

Ŷ
logP

X̂

)

(15)

= DKL(PŶ
||P

X̂
) (16)

VIII. ADDITIONAL EXPERIMENTS

A. D. Mode Separation

In this work, semantics of the data refer to the modes in data

distribution. These semantics represent different attributes of

the samples and are separated out by the proposed method.

For a better understanding, experiments are conducted with

samples of only a single digit type from the MNIST dataset.

Samples of digit 7 and 4 are considered for this purpose.

The proposed GAN (C1C2C3) is trained with a discrete

uniform latent space with 10 modes and the generated images

are shown in Fig. 3. Each row in Fig. 3 corresponds on

one latent space mode and shows different attributes of the

considered digits. For example, the fifth row in left pane

contains generated images of digit 7 with slits. Similarly in

right pane, the third row contains images of digit 4 with a

closed notch. Note that, even with images of a single digit, no

mode collapse is observed with the proposed method.
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TABLE IV: Quantitative evaluation on balanced data for

generation with clustering. Multimodal latent space with latent

inverter offers similar performance as model with all three

conditions satisfied when the data is balanced.

Dataset Model ACC NMI ARI FID

Ĉ1Ĉ2Ĉ3 0.64 0.61 0.49 10.83

C1Ĉ2Ĉ3 0.89 0.86 0.82 8.74

MNIST Ĉ1C2Ĉ3 0.89 0.90 0.84 7.34

C1C2Ĉ3 0.95 0.89 0.89 1.84
C1C2C3 0.96 0.91 0.92 1.82

Ĉ1Ĉ2Ĉ3 0.34 0.27 0.20 19.80

C1Ĉ2Ĉ3 0.61 0.59 0.44 12.44

FMNIST Ĉ1C2Ĉ3 0.55 0.60 0.44 6.95

C1C2Ĉ3 0.63 0.64 0.50 0.56
C1C2C3 0.65 0.70 0.63 0.55

Ĉ1Ĉ2Ĉ3 0.24 0.36 0.26 46.80

C1Ĉ2Ĉ3 0.43 0.39 0.46 40.44

CIFAR Ĉ1C2Ĉ3 0.52 0.42 0.48 36.95

C1C2Ĉ3 0.60 0.68 0.69 29.66
C1C2C3 0.67 0.76 0.72 26.35

Fig. 3: Demonstration of mode separation using the proposed

method. Every row in each figure depicts sample from a mode

when the the proposed method is trained only with a single

digit type with a latent space with ten modes.

B. E. Attribute discovery

In a few real-life scenarios, the class imbalance ratio is

unknown. In such cases, an unsupervised technique should

discover semantically plausible regions in the data space. To

evaluate the proposed method’s ability to perform such a

task, we perform experiments where sample from PY are

drawn with an assumed class ratio rather than a known ratio.

Two experiments are performed on CelebA, first with the

assumption of 2 classes having a ratio of 70:30 and the second

with the assumption of 3 classes having a ratio of 10:30:60. In

the first experiment, the network discovers visibility of teeth

as an attribute to the faces whereas in the second it learns

to differentiate between the facial pose angles. Conditional

generation from both the experiments are shown in figure 4

and 5, respectively. Note that these attributes are not labelled

in the dataset but are discovered by our model.

C. F. Mode counting using proposed method

We trained the proposed method for mode counting ex-

periment on stacked MNIST dataset. It is able to generate

993 modes. Some of the generated images are shown in

Fig. 6. Similar performance is observed in 8 component GMM

experiment, as shown in Fig. 7.

Fig. 4: Discovery of the facial attribute smile with teeth visible.

Sample images generated in the experiments with class ratio

of 70:30 for faces from the CelebA dataset.

Fig. 5: Discovery of the attribute facial pose-angle. Sample im-

ages generated in the experiments with class ratio of 10:30:60

for from the CelebA dataset.

Fig. 6: Mode counting experiment result for stacked MNIST

dataset. The proposed method is able to produce variety of

modes after training.

(a) Real data (a) Generated data

Fig. 7: Density plots of true data and the proposed method’s

generator output for 8 component GMM arranged over a circle
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