Header menu link for other important links
Effect of surface treatment of nanoclay on the mechanical properties of epoxy/glass fiber/clay nanocomposites
B. Sharma, , R. Mehta
Published in Taylor and Francis Ltd.
Volume: 23
Issue: 7
Pages: 623 - 640
A new method of silane treatment of nanoclays is reported where in the clay is nanodispersed in hydrolyzed silanes. The surface functionalization of Cloisite® 15A nanoclay has been carried out using two different silane coupling agents: 3-aminopropyltriethoxy silane and 3-glycidyloxypropyltrimethoxy silane using varied amounts of silane coupling agents, e.g. 10, 50, 200, and 400 wt% of clay. The surface modification of Cloisite® 15A has been confirmed by Fourier transform infrared spectroscopy. The modified clays were then dispersed in epoxy resin, and glass fiber-reinforced epoxy clay laminates were manufactured using vacuum bagging technique. The fiber-reinforced epoxy clay nanocomposites containing silane modified clays have been characterized using small angle X-ray scattering, transmission electron spectroscopy and differential scanning calorimetry. The results indicate that the silane treatment of nanoclay aided the exfoliation of nanoclay and also led to an increase in mechanical properties. The optimized amount of silane coupling agents was 200 wt%. The nanocomposites containing clay modified in 200 wt% of silanes exhibited an exfoliated morphology, improved tensile strength, flexural modulus, and flexural strength. The improved interfacial bonding between silane modified nanoclays and epoxy matrix was also evident from significant increase in elongation at break. © 2016 Informa UK Limited, trading as Taylor & Francis Group.
About the journal
JournalData powered by TypesetComposite Interfaces
PublisherData powered by TypesetTaylor and Francis Ltd.
Open AccessNo