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The effect of velocity slip at the walls on the linear stability characteristics of two-fluid

three-layer channel flow (the equivalent core-annular configuration in case of pipe)

is investigated in the presence of double diffusive (DD) phenomenon. The fluids are

miscible and consist of two solute species having different rates of diffusion. The

fluids are assumed to be of the same density, but varying viscosity, which depends

on the concentration of the solute species. It is found that the flow stabilizes when

the less viscous fluid is present in the region adjacent to the slippery channel walls

in the single-component (SC) system but becomes unstable at low Reynolds numbers

in the presence of DD effect. As the mixed region of the fluids moves towards the

channel walls, a new unstable mode (DD mode), distinct from the Tollman Schlichting

(TS) mode, arises at Reynolds numbers smaller than the critical Reynolds number

for the TS mode. We also found that this mode becomes more prominent when the

mixed layer overlaps with the critical layer. It is shown that the slip parameter has

nonmonotonic effect on the stability characteristics in this system. Through energy

budget analysis, the dual role of slip is explained. The effect of slip is influenced by the

location of mixed layer, the log-mobility ratio of the faster diffusing scalar, diffusivity,

and the ratio of diffusion coefficients of the two species. Increasing the value of the

slip parameter delays the first occurrence of the DD-mode. It is possible to achieve

stabilization or destabilization by controlling the various physical parameters in the

flow system. In the present study, we suggest an effective and realistic way to control

three-layer miscible channel flow with viscosity stratification. C 2014 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4902948]

I. INTRODUCTION

A linear stability analysis of pressure-driven flow of two miscible fluids having the same den-

sity and varying viscosity in a channel with velocity slip at the walls has been investigated by Ghosh

et al.1 This study has been motivated by its relevance in many industrial applications.2–10 Their

results provide an effective strategy of flow control in a channel with slippery walls or with walls

as hydrophobic surfaces. Their results are also relevant when the walls of the channel are porous

substrates, with a smaller superficial velocity in the porous medium as compared to the velocity

in the fluid layer. The message from their investigation is that wall slip has significant effects on

the stability of the flow and it plays a dual role of either stabilizing or destabilizing the flow in

a rigid channel.11 This has been shown to be achieved by appropriately choosing the viscosity

of the fluid layer adjacent to the wall and by placing the mixed layer in appropriate location in

the wall-normal direction of the slippery channel. The flow has a destabilising influence when a

highly viscous fluid is located adjacent to the wall with slip. In this configuration, a new mode

of instability (overlap or ‘O’-mode) occurs for high mass diffusivity of the two fluids. This mode

appears due to the overlap of the critical layer of dominant instability with the mixed layer of

a)Author to whom correspondence should be addressed. Email: ushar@iitm.ac.in
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varying viscosity (i.e., under overlap condition). Further, the stability characteristics of this system

has been observed to be different from both the limiting cases of interface dominated flows12 and

continuously stratified flows in a channel with slip.13 In addition, when compared with a single

fluid flow in a rigid/slippery channel, the two-fluid channel flow in a rigid11/slippery1 channel is

more stable (more unstable) with a higher viscous fluid near the wall and with the mixed layer

and the critical layer well separated (overlapping each other). Their investigations1,11 focused on

single component (SC) miscible system (finite diffusivity) in which the viscosity stratification has

been achieved by varying the concentration of single species in the fluids. A striking feature of the

instability is that for any Reynolds number, only a band of wave numbers are unstable; the flow

system is stable for shorter wavelengths and smaller wave numbers. An immediate curiosity is to

analyze a flow system with two diffusing species having different diffusivities, and in which the

inhomogeneities in solute concentration are accounted in terms of stratified viscosity, not in terms of

density as is done in the investigations by Turner,14 Huppert,15 May and Kelley,16 and Worster.17

The linear stability analysis of such a double-diffusive (DD) three-layer flow of two miscible

fluids with viscosity stratification has been considered by Sahu and Govindarajan18–20 in a rigid chan-

nel. Their results show the existence of an unstable DD mode in a classically stable system in the

context of SC flows, i.e., when the less viscous fluid is placed in the annular region and the highly

viscous fluid in the core region of the channel. The DD system is observed to exhibit stability charac-

teristics that are fundamentally different from the SC system, in the sense that the DD instability oc-

curs when the flow is inviscidly stable based on Rayleigh’s theorem21 or stably stratified with respect

to viscosity as described by Sahu and Govindarajan.18 Their investigation clearly demonstrates the

significance of viscosity stratification in a double-diffusive two-fluid flow system and is motivated by

the extensive studies (Turner,14 Huppert,15 and May and Kelley16) on the stability of miscible flows

where the viscosity is constant but density is dependent on the concentration of the species. Such a

configuration is fundamental to a variety of naturally occurring phenomena as well as in practical

applications, such as the transport of crude oil in pipelines (Joseph et al.22). Further, the mixing in

chemical processes can be better understood, if one knows to assess the influence of concentration

variation of the species on the fluid properties. As a consequence, there have been several recent

studies which have investigated this aspect in various systems, such as porous media,23 chemically

driven systems,24–29 and also in food processing industries and diary plants.30

The instabilities which arise due to viscosity stratification in different geometries, such as in

miscible channel flows and core-annular miscible flows are well documented in literature, and dis-

cussed in a recent review by Govindarajan and Sahu.31 The articles relevant to the present study

have examined flow system in a rigid channel (the linear stability analysis of SC systems;11,22,32–36

convective and absolute instabilities in SC systems37). They have shown that the flow has a stabilising

(destabilising) influence when the less (highly) viscous fluid occupies the near wall regions of the

channel for low to moderate Schmidt numbers. The presence of mixed layer destabilizes the flow at

higher Schmidt numbers, and the destabilisation is enhanced as the Schmidt number increases. Also,

increasing the viscosity of the annular fluid by keeping the viscosity of the core fluid the same has a

destabilising influence. Sahu et al.37 showed that the above system becomes absolutely unstable for

a certain range of parameters and have indicated the region of absolute and convective instabilities

in the Reynolds number and viscosity ratio space. There are also several investigations29,30,38–48 not

relevant to the present study (but worth mentioning in the present context) that deals with stability

characteristics of viscosity stratified flows in rigid channels/pipes, involving the displacement of one

fluid by another. The interesting features and the type of instabilities displayed by these flow systems

with boundaries as either rigid walls or rigid circular pipes suggest that it is worth analyzing the

analogous flow systems in configurations with velocity slip at the boundaries.

Pascal49 has demonstrated that a flow of a thin Newtonian film down a saturated porous inclined

substrate can be modelled by a solid substrate with a Navier-slip boundary condition u = l (∂u/∂ y)

under the assumption that the superficial velocity in the porous layer is much smaller than the

velocity in the fluid layer. Here, the effective length l = κ/α, where κ is the permeability of the

porous medium and α is a dimensionless parameter that depends on the structure of the porous

medium. In fact, in many situations, the solid substrate is permeable. Further, it is well known that

machine polished metal surfaces have surface irregularities of the order of 0.1 µm,50 and as the
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intermolecular forces are operative to at most 0.1 µm on most of the solid surfaces, the effects of

surface irregularities dominate the flow at small scales. In addition, there are a number of situations,

where it is necessary to provide an explanation for velocity slip on a rough surface.9,51,52 Also,

the results on microscale flows driven by pressure gradient showed an apparent break-down of the

no-slip condition when slip length is as large as micrometers.53–56 The study of Vinogradova’s57 on

pressure-driven flow in a channel exhibits results consistent with slip at the wall boundary.

The above mentioned theoretical and experimental investigations suggest that it is relevant to

analyze the effects of slip on the linear stability characteristics of wall bounded shear flow with

velocity slip at the walls of the channel. It is important to note that such an attempt has been carried

out by Gersting,58 Spille and Rauh,59 Gan and Wu,60 Lauga and Cossu,61 Ling et al.,62 and Ren and

Xia63 for Poiseuille flow of single fluid with both symmetric and asymmetric slip conditions at the

walls. They have observed that the slip plays a dual role by either stabilizing or destabilizing the

flow system considered in their study.

The results for a flow in a divergent slippery channel37 with Maxwell velocity slip boundary

condition at the walls reveal that velocity slip at the walls has a destabilizing influence even for

smaller Knudsen numbers (Kn), where Kn is the ratio of slip length to the local half-width of the

channel. It is to be noted that the Navier-Stokes equations are valid for slip length up to 0.1,64 if the

slip conditions are imposed at the walls.

The influence of velocity slip at the walls on the stability characteristics of viscosity-stratified

flow in a microchannel, wherein two immiscible fluids separated by a sharp interface has been

examined by You and Zheng.12 It is shown that velocity slip at the walls enhances the stability of

stratified microchannel flow. The effects of velocity slip are found to be prominent for smaller and

larger viscosity contrasts, while they are relatively weak when viscosity contrast is close to one.

The presence of temperature variation (analogous to that of Wall and Wilson65 in a rigid chan-

nel) on the pressure-driven flow in a slippery channel has been analyzed by Webber.13 He has shown

that boundary slip is stabilizing in the linear regime for a fixed value of slip parameter. The stability

properties are enhanced with increasing temperature, but the critical Reynolds number decreases

and then increases with temperature.

The present study aims to extend the investigations of Sahu and Govindarajan18 and considers

a linear stability of a symmetric three-layer pressure-driven flow of two miscible fluids in the

presence of DD effect in a two-dimensional channel with slippery walls. Two fluids of different

values of viscosity but same density occupy the core and the annular regions of the slippery channel.

There is a mixed layer between the two fluids in which viscosity varies smoothly and is assumed

to have an exponential dependence on the concentration of the solute species. The fluid in the core

of the channel may be taken to be a pure solvent. The annular fluid contains the same solvent as

that of the core fluid but has in it two solute species which are diffusing at different rates. The

present investigation is also an extension of the SC system considered by Ghosh et al.1 in a slippery

channel. By a SC system, we mean the configuration where the viscosity stratification is achieved

due to the presence of a single species or scalar either in one layer or in both the layers at different

concentrations. Two-layer systems, with a layer of cold water and a layer of hot water or one layer

of water and another layer of salty water or one layer at temperature T1 and the other layer at

temperature T2 are some examples of SC systems. The results are expected to provide insight into

the role of wall slip on the stability characteristics of the corresponding DD miscible two-fluid flow

in a rigid channel as well as the influence of the presence of inhomogeneities in solute concentration

of the two species with different diffusivities in a slippery channel. To the best of our knowledge,

this is first attempt to understand the above mentioned effects.

It is hoped that the result will be useful in different applications as mentioned earlier. For example,

if a PDMS (polydimethylsiloxane) channel is hosting a two-fluid flow of cold water and hot glycerol

solution (where Rs > 0 and Rf < 0; Rs and Rf are log-mobility ratios of two scalars, namely, temper-

ature and glycerol, defined later in Sec. II), then the present study provides details about the stability

characteristics for the following two configurations. In the first configuration with Rf + Rs < 0, the

flow system is inviscidly stable (Fig. 3; Rf = −3.1 and Rs = 3.0). But, according to the linear stability

analysis (Sec. III), a new unstable mode (namely, DD-mode) is operational for low Reynolds numbers

and this DD system is more unstable than the corresponding SC system (with cold and hot water).
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On the other hand, for the configuration with Rf + Rs > 0, the DD-mode is absent but there is a big

unstable region for a wide range of wave numbers due to the viscosity stratification.

The paper is organized as follows: The base state and the formulation of the linear stability

equations are presented in Sec. II. The stability characteristics are discussed in Sec. III. The energy

budget and the concluding remarks are given in Sec. IV and Sec. V, respectively.

II. MATHEMATICAL FORMULATION

A. Governing equations

We consider the two-dimensional pressure-driven laminar flow of two miscible, incompress-

ible, Newtonian fluids in a plane channel of height 2H , with velocity slip at the walls of the channel

(as shown in Fig. 1). The two fluids have the same density ρ but viscosities are different. The core

and annular regions of the channel are filled with fluids ‘1’ and ‘2’, respectively. Both the fluids

contain the same solvent but have two species (S,F) diffusing at different rates. We refer to the one

with higher diffusion rate (D f ) as F and the other as S with lesser diffusion rate (Ds). It is clear

that the ratio δ =
D f

Ds
≥ 1. The concentrations of S and F in fluids ‘1’ and ‘2’ are S1,F1 and S2,F2,

respectively. We use the Cartesian coordinate system (x, y) to model the flow dynamics, where x

and y represent the streamwise and wall-normal directions, respectively. The walls of the channel

with velocity slip are located at y = ±H , and the centerline of the channel is at y = 0. As the flow is

symmetric with respect to the centerline (y = 0) of the slippery channel, the problem is formulated

in the upper half of the channel for 0 ≤ y ≤ H (Fig. 1). There is a mixed layer of thickness ‘q’

between the two fluids occupying the region h ≤ y ≤ h + q.

The viscosity of the two fluids is assumed to depend exponentially on concentration of the

solute species and is taken as18

µ = µ1 exp


Rs



S − S1

S2 − S1



+ Rf



F − F1

F2 − F1


, (1)

where Rs = (S2 − S1)
∂
∂S

(ln µ) and Rf = (F2 − F1)
∂
∂F

(ln µ) are the log-mobility ratios of the scalars S

and F, respectively. We see from (1) that the basic viscosity is given by

µ =



µ1 if 0 ≤ y ≤ h,

µm(y) if h ≤ y ≤ h + q,

µ2 if h + q ≤ y ≤ H,

(2)

where µ2 = µ1exp
�
Rs + Rf

�
and µm(y) = µ1exp


Rs



S−S1

S2−S1



+ Rf



F−F1

F2−F1


. Here, µm(y) gives the

viscosity distribution in the mixed layer.

The flow dynamics is governed by the continuity, the Navier-Stokes, and the convection-

diffusion equations for the two solute species. The boundary conditions at the centerline and at the

FIG. 1. Schematic of the flow system considered. The core and annular regions of the slippery channel contain the fluids ‘1’

and ‘2’, respectively. Here, fluid ‘1’ occupies the region −h ≤ y ≤ h and both the fluids are separated by a mixed layer of

uniform thickness q. The slippery walls of the channel are located at y = ±H .
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slippery wall of the channel are

∂u

∂ y
= 0, v = 0 at y = 0, (3)

u = −β1

∂u

∂ y
, v = 0 at y = H, (4)

where β1 is the dimensional slip parameter and (u, v) is the velocity vector. The dimensionless

governing equations and the boundary conditions are obtained using the following scales:

x∗ =
x

H
, y∗ =

y

H
, t∗ =

Q

H2
t, (u∗, v∗) =

H

Q
(u, v), p∗ =

H2

ρQ2
p, µ∗ =

µ

µ1

,

h∗ =
h

H
, q∗ =

q

H
, m =

µ2

µ1

, β =
β1

H
, s∗ =

S − S1

S2 − S1

, f ∗ =
F − F1

F2 − F1

, µ∗m =
µm(y)

µ1

, (5)

where Q is the flow rate per unit distance in the spanwise direction, p is the pressure, and t is time.

The dimensionless governing equations and boundary conditions (after suppressing ∗) are

ux + vy = 0, (6)

ut + uux + vuy =
∂

∂x


−p +

2

Re
µux


+

∂

∂ y


1

Re
µ(uy + vx)


, (7)

vt + uvx + vvy =
∂

∂x


1

Re
µ(uy + vx)


+

∂

∂ y


−p +

2

Re
µuy


, (8)

st + usx + vsy =
1

Pe
[sxx + sy y], (9)

f t + u f x + v f y =
δ

Pe
[ f xx + f y y], (10)

where µ = exp
�
Rss + Rf f

�
, such that the values s and f are 0 and 1 for fluids ‘1’ and ‘2’, respec-

tively. The boundary conditions are

uy = 0, v = 0 at y = 0, (11)

u = −βuy, v = 0 at y = 1, (12)

The above system is governed by the dimensionless parameters: the Reynolds number Re = ρQ/µ1,

the Péclet number Pe = Q/Ds, the ratio of the diffusion coefficients of the species, δ = D f /Ds,

the Schmidt number Sc = Pe/Re, and the dimensionless slip parameter β = β1/H . For the faster

diffusing fluid, the effective Schmidt number is Sc/δ.

B. Base state

The base state is obtained by solving the Eqs. (6)−(10) along with the boundary conditions

(11) and (12) by assuming steady state and locally parallel flow

Re



dPB

dx



=
d

dy


µB(y)

dUB(y)

dy


. (13)

The solution of the above equation is given by

UB(y) =



G

2


y2 − h2 +

(h + q)2 − 1 − 2β

m
− 2

h+q

h

y

µm(y)
dy


if 0 ≤ y ≤ h,

G

2



(h + q)2 − 1 − 2β

m
− 2

h+q

y

y

µm(y)
dy


if h ≤ y ≤ h + q,

G

2m
(y2 − 1 − 2β) if h + q ≤ y ≤ 1,

(14)
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where G = RePBx and

µB(y) =



1 if 0 ≤ y ≤ h,

µm(y) = exp
�
Rs sB(y) + Rf fB(y)

�
if h ≤ y ≤ h + q,

m = exp
�
Rs + Rf

�
if h + q ≤ y ≤ 1.

(15)

Here, the subscript B designates the base state variables and sB and fB are taken to be a fifth

order polynomial in the mixed layer,18 such that the concentration profile is smooth up to the second

derivative at y = h and y = h + q

fB(y) = sB(y) =



0 if 0 ≤ y ≤ h,
6



i=1

ai y
i−1 if h ≤ y ≤ h + q,

1 if h + q ≤ y ≤ 1,

(16)

where ai, i = 1,2, . . . ,6 are given by

a1 = −
h3

q5
(6h2 + 15hq + 10q2), a2 =

30h2

q5
(h + q)2,

a3 = −
30h

q5
(h + q) (2h + q), a4 =

10

q5
(6h2 + 6hq + q2),

a5 = −
15

q5
(2h + q), a6 =

6

q5
.

(17)

The concentration profiles defined in Eq. (16) can only be found at x location shorter than the

solutal entry length. This implies that the analysis takes place at a point of the channel where the

thickness of the mixed layer q is expected to grow up when increasing x. Therefore, the analysis

that follows is based on a kind of “Frozen Time” approximation (see Appendix A for details).

The dimensionless pressure-gradient is determined by requiring that
1

0

UB(y)dy = 1. The base

state velocity profiles are presented in Figs. 2(a)–2(d) for Rs = 3.0. Note that when Rf + Rs > 0,

i.e., m > 1 (Rf + Rs < 0, i.e., m < 1) the highly (less) viscous fluid occupies the near wall (annular)

regions of the channel. Rf + Rs = 0 (m = 1) corresponds to a system without viscosity stratification

while when either Rf = 0 or Rs = 0, the system deals with continuously viscosity stratified SC

fluid system of two miscible fluids. The above cases can be analyzed by fixing Rs and varying Rf

or vice-versa. In this study, the thickness of the mixed layer is fixed as q = 0.1. As the Reynolds

numbers considered in the present work are large, the Péclet numbers (ScRe and ScRe/δ) for the

faster and slower diffusing species are also very large for Sc > 1. Thus, we assume to neglect the

difference between the mixed layer thicknesses of the slower and faster diffusing species. It is noted

that the aforementioned approximation may not be valid for Sc ≪ 1. We also like to mention that,

in reality, the thickness of the mixed layers for slower diffusing species (qs) is different from that

for the faster diffusing species (qf ). One can obtain qf and qs from direct numerical simulation

or experiment. The order of magnitude analysis for the variation of the mixed layer thickness

presented in Appendix A consider the diffusion of the individual species without incorporating the

interaction between the two species. This yields qf =
√
δqs. The results for this case (qf , qs) are

presented in Appendix B. The base state velocity UB(y) satisfies UB = −β(∂UB/∂ y) at y = 1 and

∂UB/∂ y = 0 at y = 0. Figs. 2(a) and 2(b) present the base state velocity for β = 0 and β = 0.1,

respectively, for h = 0.7 (i.e., the mixed layer located close to the channel wall). For the no-slip case

(β = 0, Fig. 2(a)), the centerline velocity of the system with a high/less viscous fluid close to the

wall (Rf = −2.9/Rf = −3.1) is more/less than that of the unstratified case (Rf = −3.0). The base

state velocity at the mixed region increases with a decrease in Rf .

The velocity slip at the walls decreases the centerline velocity and increases the wall velocity

for each value of Rf considered (Fig. 2(b), β = 0.1). The wall shear is less in case of slippery

channel as compared to that in channel with no-slip boundary condition for each value of Rf used in
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FIG. 2. Base state velocity and viscosity (with circle) profiles. Effects of R f on velocity for h = 0.7; (a) β = 0; (b) β = 0.1.

Effect of (c) the slip parameter β for R f = −3.1, h = 0.7 and (d) the position of mixed layer h for β = 0.1, R f = −3.1. In

all panels, Rs = 3.0 and q = 0.1.

this figure. Also, the wall shear is smaller when a less viscous fluid is located close to the wall than

that when a highly viscous fluid is adjacent to the wall.

Fig. 2(c) presents the base state velocity of the system with less viscous fluid close the wall

(Rf + Rs < 0) for different values of the slip parameter (β). It can be seen that the centerline veloc-

ity decreases with increasing the value of slip parameter, and the role of slip is to reduce the wall

shear. In the above system, the centerline velocity decreases slightly as the mixed layer of varying

viscosity approaches the slippery wall (Fig. 2(d)). The corresponding base state viscosity profiles

are plotted in Figs. 2(c) and 2(d). The location of the mixed layer (h) has no significant effect on the

FIG. 3. Influence of R f on UB
′′(y) when Rs = 3.0, h = 0.7, and q = 0.1; (a) the rigid channel case (β = 0) and (b) the

slippery channel case (β = 0.1).
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base state velocity for fixed values of other parameters (Fig. 2(d)), but it will be seen later that the

stability characteristics of the system are highly influenced by varying h.

As information on UB
′′(y) is important in deciding the parameter values to be considered for

the stability analysis in this study, Figs. 3(a) and (b) present the variation of UB
′′(y) for different

values of Rf (fixing Rs) with β = 0 and β = 0.1, respectively. Fig. 3 enables one to infer whether

the base state velocity profile has a point of inflection or not for the chosen values of other param-

eters. The point y = y at which UB
′′(y) = 0 gives the point of inflection for UB(y). The system

with less viscous fluid near to the wall (dashed curve in Fig. 3(a) for β = 0) is inviscidly stable

by Rayleigh’s theorem21 (Rf = −3.1, Rs = 3.0, Rf + Rs < 0), since the base velocity profile has no

point of inflection. Now, for a configuration with Rf + Rs > 0 (Rf = −2.9, Rs = 3.0), UB
′′(y) = 0

at two points (solid curve in Fig. 3(a) for β = 0). However, as the converse of Rayleigh’s theorem

is not true, no conclusion on the stability properties can be made for this configuration. As the slip

parameter increases, the same trend as above is observed (Fig. 3(b) for β = 0.1). Note that the point

of inflection lies in the mixed layer region (h = 0.7, q = 0.1). For the unstratified case (Rf = −3.0,

Rs = 3.0), the flow system is inviscidly stable as UB
′′(y) does not change sign in the entire domain

(0 ≤ y ≤ 1).

It is therefore of interest to see if the double-diffusive system with Rf + Rs < 0, which is

inviscidly stable in the equilibrium state, remains stable or moves to an unstable state when an

infinitesimal perturbation is imposed on it. In what follows, the governing Orr-Sommerfeld system

is analyzed in detail for the case when the less viscous fluid occupies the region close to the slippery

wall (Rf + Rs < 0, Rs = 3.0, Rf = −3.1). The effects of wall slip on the instabilities that occur for

the no-slip case due to a small viscosity variation are examined using the values of Rf and Rs

as mentioned above. Further, it is well known that when the less viscous fluid occupies the near

wall region of the channel in a core-annular configuration, flow is stable in the context of single

component flows.31 In this study, the effects of wall-slip on the double-diffusive unstable mode in

the configurations which are stable in the context of single component systems are investigated.

The slip parameter values used in the present study (β ranging from 0.01 to 0.1) are the same

as those in the previous investigations12,58–61,66 of a single fluid or immiscible two-fluid flow in a

channel with velocity slip at the wall. In these studies, the slip parameter values are based on the

review on the experimental investigations by Lauga et al.67 This range of β can be realized for

a flow in a hydrophobic channel of height ranging from 0.8 µm (40 µm) to 4 µm (200 µm) and

corresponds to a slip length of 20 nm (40 nm).1 The values in parentheses refer to the height of the

hydrophobic channel and the corresponding slip length to achieve the slip parameter value β = 0.1

in a flow system.

C. Linear stability analysis

The temporal stability characteristics of the base flow (UB(y), µB(y), PB(x)) described by

Eqs. (14)–(17) are examined using a linear stability analysis by introducing an infinitesimal pertur-

bation to the base flow. The flow variables are taken as the sum of the base state quantities and

two-dimensional perturbations (designated by a hat) as

(u, v,p, s, f ) = (UB(y),0,PB(x), sB(y), fB(y)) + (û, v̂ , p̂, ŝ, f̂ )(y) exp [i (αx − ωt)] , (18)

where i ≡
√
−1, α is the streamwise disturbance wave number, ω = αc is the frequency of the two-

dimensional disturbance, and c is the complex phase speed. In temporal stability analysis, α is real and

ω is complex. The flow is linearly unstable if the imaginary part ofω,ωi > 0, and stable ifωi < 0, and

neutrally stable if ωi = 0. The perturbation viscosity µ̂ is given by µ̂ = (
∂µB

∂sB
ŝ +

∂µB

∂ fB
f̂ ). The velocity

perturbations are expressed in terms of the stream function perturbation φ(= φ̂exp(i(αx − ωt))) such

that (û, v̂) = (φy ,−φx). Modified Orr-Sommerfeld system is then derived from the dimensionless gov-

erning equations and the boundary conditions (6)–(12) using the standard procedure (see, e.g., Drazin

and Reid68) and is given by (after suppressing hat (ˆ) symbols)

iα Re
�
φ′′(UB − c) − α2φ(UB − c) −UB

′′φ
�
= µBφ

′′′′ + 2µB
′φ′′′ + (µB

′′ − 2α2µB)φ
′′−

2α2µB
′φ′ + (α2µB

′′ + α4µB)φ +UB
′µ′′ + 2UB

′′µ′ + (UB
′′′ + α2UB

′)µ, (19)
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iα Pe [(UB − c)s − sB
′φ] = (s′′ − α2s), (20)

iα Pe [(UB − c) f − fB
′φ] = δ( f ′′ − α2 f ), (21)

φ′ = −βφ′′, φ = s = f = 0 at y = 1, (22)

φ′ = φ′′′ = s′ = f ′ = 0 at y = 0, (sinuous mode) (23)

where prime (′) denotes differentiation with respect to y . The above equations contain the terms

that arise due to the continuous variations of the base flow velocity and viscosity perturbations.

The system of Eqs. (19)–(23) constitutes an eigenvalue problem and determines the linear stability

characteristics of infinitesimal two-dimensional disturbance in double-diffusive miscible three-layer

pressure-driven flow in a channel with velocity slip at the walls. The classical Orr-Sommerfeld

equation68 can be recovered from the above equation by neglecting the terms due to viscosity

stratification. The modified Orr-Sommerfeld system is solved numerically by the public domain

software, LAPACK, after discretization of the domain using Chebyshev spectral collocation method

(Canuto et al.69). The results are presented for sinuous mode (described by Eq. (23) at the centerline

of the channel) as it was observed to be the dominant mode for the range of parameters considered.

A sufficiently large number of grid points are taken in the mixed layer since the gradients are large

in this layer. This is achieved by using the stretching function (Govindarajan11)

y j =
a

sinh(by0)
[sinh{(yc − y0)b} + sinh(by0)], (24)

where y j are the locations of the grid points, a is the midpoint of the mixed layer, and yc is a

Chebyshev collocation point, given by

yc = 0.5



cos


π
( j − 1)

(n − 1)


+ 1



(25)

and

y0 =
1

2b
ln


1 + (eb − 1)a

1 + (e−b − 1)a


, (26)

where n is the number of collocation points and b is the degree of clustering. In the present study,

we performed our computations by taking b = 8 and using 121 collocation points. This gives an

accuracy of at least five decimal places in the range of parameters considered.

III. RESULTS

The Orr-Sommerfeld system (19)–(23) shows that the stability properties of the flow system

are influenced by the location of mixed layer (h), the velocity slip at the wall (β), ratio of diffusion

coefficients of the species (δ), and the level of diffusivity (Sc). These effects are examined through

the numerical solution of the modified Orr-Sommerfeld system. The accuracy and the correctness

of the numerical code are assessed by first examining the critical Reynolds number (Recr) for the

unstratified flow (Rf = Rs = 0) in a rigid (β = 0) and slippery (β , 0) channels. In the present

analysis, the characteristic velocity scale corresponds to the average velocity in a channel, which is

2/3 times the maximum velocity in the channel. We observed that Recr for β = 0 is 3848.16 which

is 2/3 times of the critical Reynolds number (Recr = 5772.2) based on the maximum velocity as a

characteristic velocity.68 When β , 0 (in slippery channel), the velocity scale chosen in the present

study is 2
3
(1 + 3β) times the maximum velocity of the no-slip case (which is the velocity scale

chosen by Lauga and Cossu61). We observed that our result agrees well with the result of Lauga and

Cossu61 for β , 0 (same as Fig. 3 in Ghosh et al.1).

The computations are also performed for the SC case with velocity slip at the walls, in which

a highly viscous fluid is placed adjacent to the wall (m = 1.2). This corresponds to Rf = 0 and

Rs = 0.1823 in our computations. The results agree well with those obtained by Ghosh et al.1

Having gained confidence based on the agreement of the available results in literature using the

developed code, the computations are performed for the DD case for a range of parameter values

that govern this system.
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FIG. 4. Effects of R f and slip parameter β on the growth rate (ωi) as a function of wave number (α) for Re = 1000; (a)

Rs = 1.0 and (b) Rs = 3.0. The curves with cross for β = 0.01 and with circle for β = 0.05. The curves without symbols

represent no-slip case. Here, Sc = 30, δ = 10, h = 0.7, and q = 0.1.

The growth rate (ωi) for different values of Rf when Rs = 1 and Rs = 3 are plotted in Figs. 4(a)

and 4(b), respectively. The other parameters are fixed at Re = 1000,Sc = 30, δ = 10,h = 0.7, and

q = 0.1. The influence of β on the growth rate is also assessed. The configuration with Rf + Rs > 0

(Rs = 1,Rf = −0.9) has positive growth rate, while that with Rf + Rs ≤ 0 exhibits negative growth

rate (Fig. 4(a)). An increase in Rs (to Rs = 3) and decrease in Rf (Fig. 4(b)) display a positive

growth rate for the cases Rf + Rs ≷ 0 and a negative growth rate for Rf + Rf = 0. We observed

from Figs. 4(a) and 4(b) that the role of slip parameter (β) is to reduce the growth rate and the

range of unstable wave numbers (α). This suggests that we investigate in detail the neutral stability

boundaries and the critical Reynolds numbers for onset of instability for the case when Rs = 3 and

Rf takes values −2.9, −3.0, and −3.1. This would include the configurations for which Rf + Rs > 0

and Rf + Rs < 0.

Now, in the case of Rf + Rs > 0 (when Rs = 3 and Rf = −2.9), we study the effects of the

inertia as well as the slip parameter. Fig. 5(a) presents the neutral stability maps for different values

of β. The other parameters are same as those used in Fig. 4(b). We see that a large unstable region

appears for a wide range of wave numbers similar to that for a SC case due to viscosity stratification

under overlap condition (h = 0.7). The zoom of the region close to the onset of instability is pre-

sented in Fig. 5(b) and we found that β has a destabilizing effect. We infer from Figs. 4(b), 5(a), and

5(b) that the configuration with Rf + Rs > 0 (Rf = −2.9,Rs = 3.0) is destabilizing as β increases

but the range of unstable wave numbers (α) decreases with an increase in β at higher Reynolds

numbers.

The base state profiles for the configuration with Rf + Rs < 0, where Rs = 3 and Rf = −3.1 are

inviscidly stable for all values of slip parameter (β) considered in this investigation (Fig. 3). It is

FIG. 5. Neutral stability curves for Rs = 3, R f = −2.9, Sc = 30, δ = 10, h = 0.7, and q = 0.1; (a) effect of slip

parameter β; (b) zoom of the region 100 ≤ Re ≤ 600 in Fig. 5(a).
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FIG. 6. Influence of various flow parameters on the growth rate (ωi) in α −ωi plane for Re = 650, Rs = 3.0, R f = −3.1,

Sc = 30, δ = 10, and q = 0.1; (a) effect of h for β = 0.01 and (b) effect of β for h = 0.7.

of interest to see whether such a stable base state remains stable even after the perturbations are

introduced. In view of this, we pursue our computations in detail for the case Rf + Rs < 0.

The effects of the location of the mixed layer (h) and the slip parameter (β) on the growth rate

are examined in Figs. 6(a) and 6(b) for the configuration with Rf + Rs < 0 (Rs = 3.0,Rf = −3.1).

The rest of the parameters are Re = 650, Sc = 30, δ = 10, and q = 0.1 with β = 0.01 (for Fig.

6(a)) and h = 0.7 (for Fig. 6(b)) It is clear from Fig. 6(a) that when the mixed layer approaches

towards the slippery wall, the growth rate increases with an increase in h (up to h = 0.68) but with

further increase in h the growth rate decreases. Inspection of Fig. 6(b) reveals that under the overlap

condition (for h = 0.7), the growth rate exhibits a nonmonotonic behaviour with respect to the slip

parameter β.

The neutral stability maps are presented in Figs. 7(a)–7(f) for Rf + Rs < 0,Sc = 30, δ = 10,

and q = 0.1. The Tollman Schlichting (TS) mode instability occurs at large Reynolds numbers and

small wave numbers. It is the only mode of instability for h = 0.60 and h = 0.62 (Fig. 7(a); Rs

= 3,Rf = −3.1, β = 0.01). The critical Reynolds number (Recr) exhibits a nonmonotonic behavior

with respect to h. As the location of the mixed layer approaches the slippery wall, we see that apart

from the TS-mode of instability, a new mode of instability also occurs (referred to as the DD mode)

similar to that observed by Sahu and Govindarajan18 for flow in a rigid channel. This mode occurs

at low Reynolds numbers and for a wide range of wave numbers. This new mode of instability (DD)

is absent for h < 0.65 when β = 0.01 while for β = 0, it occurs for h = 0.62.18 This shows that for

the occurrence of the DD mode instability, the mixed layer has to be placed closer to the wall in the

case of a slippery channel than in the case of a channel with rigid walls. As h increases to h = 0.7,

it can be seen in Fig. 7(a) that the critical Reynolds number for DD mode increases. Increasing h

delays, the onset of instability of the DD mode but increases the range of unstable wave numbers

and the region of instability. The effects of wall slip on the DD mode are examined in Fig. 7(b) when

h = 0.7. We see that although the critical Reynolds number (Recr) decreases up to β = 0.02, the

unstable region shrinks and the range of unstable wave numbers decreases. Beyond β = 0.03, Recr
value increases and the role of slip at the walls is to stabilize the flow system.

It is interesting to see that although the above configuration (h = 0.7) in the SC system in a

slippery channel with less viscous fluid close to the wall (m < 1) is stable for all wave numbers

and small Reynolds numbers, it becomes unstable in the presence of two species (DD system with

Rf + Rs < 0). This is due to the occurrence of the DD mode. It is also evident from the results

presented in Fig. 7(c) (for h = 0.60) that the slip parameter, β stabilizes the TS mode.

If we choose Rf = 3.0 and Rs = −3.1 (still Rf + Rs < 0), the stability characteristics are the same

as described above, but the DD mode occurs when the mixed layer is more closer to the slippery walls

(see Fig. 7(d) for h = 0.7, β = 0.01). A smaller unstable region appears at lower Reynolds numbers

as compared to that observed for Rf = −3.1 and Rs = 3.0 (Fig. 7(a)). In this case (for Rf = 3.0 and

Rs = −3.1) also the DD and TS modes are stabilized by the presence of slip at the walls (see Fig. 7(e)

for h = 0.7 and Fig. 7(f) for h = 0.60; Rf = 3.0,Rs = −3.1,Sc = 30, and δ = 10).
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FIG. 7. The neutral stability boundaries for Rs = 3.0, R f = −3.1 in (a)–(c) and for Rs = −3.1, R f = 3.0 in (d)− (f). All

other parameters are as Sc = 30, δ = 10, and q = 0.1. Panels (a) and (d) contain effects of h for β = 0.01. Panels (b) and

(e) show effect of β on the DD-mode for h = 0.7. At last, panels (c) and (f) represent the effect of β on the TS-mode for

h = 0.6.

The effects of variations in the thickness of the mixed layer (q) on the stability characteristics

is displayed in Fig. 8 for Rs = 3.0,Rf = −3.1,h = 0.7,Sc = 30, δ = 10, and β = 0.01. We see that

increasing q does not alter the stability characteristics qualitatively, namely, the occurrence of the

unstable DD and TS modes. Further, an increase in q stabilizes the DD as well as the TS mode

by increasing the critical Re and decreasing the bandwidth of unstable wave numbers. For the DD

mode, unstable region shrinks and extends to higher Reynolds numbers.

The effects of the location of the mixed layer on the critical Reynolds number (Recr) for the

TS mode and the DD mode are presented in Figs. 9(a) and 9(b), respectively. The effect of the

slip parameter on Recr for each of these modes is also assessed. The other parameters are fixed

as Rf = −3.1,Rs = 3.0,Sc = 30, δ = 10, and q = 0.1. Fig. 9(a) shows that, in the case of a rigid

channel, the TS mode is stabilized as the mixed layer approaches the wall as indicated by increase in

critical values of Re as h increases. On the other hand, for a flow in a slippery channel, the critical

Reynolds number decreases up to some value of h and beyond this, it increases. The decrease is
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FIG. 8. Effects of mixed layer thickness (q) on the stability boundaries for Rs = 3.0, R f = −3.1, h = 0.7, Sc = 30,

δ = 10, and β = 0.01.

significant for higher values of β. For any h < 0.7, the critical Re increases with increase in β

thereby indicating the stabilizing role of β on TS mode, for these locations of the mixed layer.

For h > 0.7, when β = 0.01, the TS mode is slightly destabilized. For a fixed β, critical Reynolds

number for the DD mode (Fig. 9(b)) increases as the mixed layer approaches the rigid/slippery wall

(β = 0/β , 0). For smaller values of h, the DD mode for flow in a slippery channel is more stable

than that in a rigid channel. The appearance of the DD mode is delayed with an increase in β, as

observed in Fig. 7(a), is also confirmed in Fig. 9(b). The location of the mixed layer where the

flow in a slippery channel becomes more unstable than that in a rigid channel, moves closer to the

slippery wall as β increases.

The effects of δ, the ratio of diffusion rates are examined in Fig. 10 when Sc = 30,Rs = 3,

Rf = −3.1,h = 0.7, and q = 0.1. We see that the DD mode is absent for δ = 1 (D f = Ds), which

corresponds to a SC two fluid miscible case in a slippery channel (Fig. 10(a); β = 0.01). In this

case, the only mode of instability is the TS-mode, appearing at higher Reynolds numbers and O(1)

wave numbers. With an increase in δ, there occurs two distinct modes of instability occupying

distinct regions in the α − Re plane, namely, the DD mode and the TS mode. The DD mode ap-

pears at moderate Reynolds numbers and moderate wave numbers. As δ increases, the TS mode is

stabilized as but the DD mode is destabilized as is evident from the reduction in critical Reynolds

number values. The unstable region enlarges with increase in δ for the DD mode. The range of

unstable wave numbers also increases with an increase in δ. Figs. 10(b) and 10(c) depict the critical

Reynolds number (Recr) as a function of δ for different values of slip parameters, for the TS and

the DD mode, respectively. The other parameters are the same as in Fig. 10(a). In the region below

any curve in the δ − Recr plane (Figs. 10(b) and 10(c)), the amplitude of the perturbations decays

FIG. 9. The critical Reynolds number (Recr) as a function of h for Rs = 3.0, R f = −3.1, Sc = 30, δ = 10, and q = 0.1;

(a) β effect on Recr for TS-mode and (b) β effect on Recr for DD-mode.
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FIG. 10. Influence of the ratio of diffusion rates δ on the neutral stability boundaries and the critical Re values (Recr) for

Rs = 3.0, R f = −3.1, Sc = 30, h = 0.7, and q = 0.1; (a) stability curves for different δ with β = 0.01; effects of β on

critical Re as a function of δ (b) for TS-mode and (c) for DD-mode.

and therefore is a stable region. For a fixed β, the critical Reynolds number decreases initially for

small values of δ. Beyond some value of δ, it increases monotonically, which reveals the stabilizing

role exhibited by δ on the TS mode (Fig. 10(b)). As β increases, at a fixed δ, the critical Re (Recr)

for the TS mode increases indicating the stabilizing effect of the slip parameter β. For a fixed β, the

Recr for the DD mode, however, decreases with increase in δ (Fig. 10(c)) showing the destabilizing

effect of δ on the DD mode of instability. But, the slip parameter β has a dual role on the DD mode

instability. For small values of β (say β = 0.01), the critical Re, at any fixed δ is less than that for

β = 0, suggesting that the slip has a destabilizing effect. However, as β increases to β = 0.05, the

critical Reynolds number increases up to a certain value of δ and after that it decreases with increase

in δ. There is a critical value of δ, for β , 0 beyond which the DD mode is more unstable than that

for a flow system in a rigid channel (β = 0). Also, as the slip parameter increases, the occurrence of

the DD mode begins to appear at a higher δ.

It is interesting to see that as Schmidt number (Sc, the diffusivity parameter) increases, the

critical Reynolds number decreases for the DD mode but the unstable region shrinks with increase

in Sc (Fig. 11(a); β = 0.01,Rf = −3.1,Rs = 3.0, δ = 10,h = 0.7, and q = 0.1). Also, for the TS

mode, the critical Re decreases with an increase in Sc but the range of wave numbers increases.

From Fig. 11(b) (all parameters are the same as in Fig. 11(a)), we see that the above scenario for

the TS mode is observed for a wide range of Sc for a flow in a rigid/slippery channel. The slip

parameter β has a stabilizing effect on the TS mode for the range of Sc considered in Fig. 11(b).

The critical Re value (Recr) as a function of Sc for the DD mode is presented in Fig. 11(c)

(with set of parameters are the same as in Fig. 11(a)) for different values of β. As Sc increases,

the critical Reynolds number (Recr) decreases with an increase in β. Further, for all values of β

considered, the critical Re decreases with increase in Sc indicating the destabilizing effect of Sc.

The critical Reynolds number as a function of Rf for the TS mode is presented in Fig. 12(a)

(Rs = 3.0,Sc = 30,h = 0.7,q = 0.1) for both the cases Rf + Rs > 0 and Rf + Rs < 0 (when δ = 1

and 10). We see that at Rf = −3.0, the critical Reynolds number value of 3848.16 is recovered
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FIG. 11. Influence of diffusivity parameter Sc on the neutral stability boundaries and the critical Re values (Recr) for

Rs = 3.0, R f = −3.1, δ = 10, h = 0.7, and q = 0.1; (a) stability curves for different Sc with β = 0.01; β effects on

critical Re in the Sc − Recr plane (b) for TS-mode and (c) for DD-mode.

for δ = 1 and β = 0 (single fluid flow in a rigid channel with constant viscosity) agrees with 2
3

times the critical Reynolds number obtained by Drazin and Reid68 using maximum velocity in the

channel as the velocity scale. The corresponding result in a slippery channel (for δ = 1, β = 0.01)

also agrees with the result presented by Lauga & Cossu61 and it is 2
3
(1 + 3β) times the critical

Reynolds number obtained by Lauga & Cossu.61 The stability characteristics of the TS mode for

δ = 1 and δ = 10 are qualitatively similar with respect to Rf . However, when δ = 10, the TS mode

is more stable till Rf = −3.0 and less stable beyond Rf = −3.0 for flow in both rigid and slippery

channels. This exchange of stability occurs at the critical Reynolds number for the flow of a single

fluid with constant viscosity in a rigid/slippery channel, respectively. The role of β is to promote

FIG. 12. Effects of slip parameter, β on the critical Reynolds number (Recr) as a function of R f for Rs = 3.0, h

= 0.7, Sc = 30, and q = 0.1; (a) for TS-mode, with symbols (δ = 1) and without symbols (δ = 10), (b) for DD-mode

(δ = 10).
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the stabilizing effect on the TS mode for δ = 1, whereas for δ = 10, β (β = 0.01) has a dual role

depending on Rf .

The details about the behaviour of the DD mode instability is presented in Fig. 12(b) (the

critical Re as a function of Rf for the DD mode with different β, other parameters are the same as in

Fig. 12(a)). The unstable region for the DD mode is a closed region (as seen in Figs. 7, 10(a), and

11(a)). As a result, the bounds on the Reynolds number (minimum and maximum Re) within which

the unstable region for the DD mode lies are presented in this figure. The results reveal that at the

lower branch (for minimum Re), the DD mode is destabilized as β increases (up to β = 0.02), while

the reverse trend is noted in the upper branch (for maximum Re). From Fig. 12(b), we also infer

that as Rf decreases from Rf = −3.0, the occurrence of the DD mode is delayed by the presence of

velocity slip at the wall. When Rf = −2.9, we have seen in Fig. 5(a), an unstable region extending

from low Reynolds number to high values for a wide range of wave numbers. If now Rf is varied

so that Rf + Rs > 0 and observe the corresponding critical Reynolds numbers, we see that there is

an unstable region for Rf > −3.0 in Fig. 12(b). This may be attributed to overall effects of viscosity

stratification in the flow system in a channel. It is interesting to see that, in this case, the effects of

slip parameter are similar to that for the DD mode (Fig. 12(b)).

The above results show that the effects of wall-slip on the DD mode is remarkable and unex-

pected. Sec. IV provides an explanation of both the stabilizing and destabilizing effects of slip on

the double-diffusive instability through an energy budget analysis.

IV. ENERGY BUDGET ANALYSIS

The Reynolds-Orr energy equation21,68 explains the key mechanism, where the interaction of

the perturbations with the base flow and viscous dissipation of kinetic energy is responsible for

the change of disturbance energy for Poiseuille flow in a channel with no-slip at the walls. For

Poiseuille flow in a channel with velocity slip at the channel walls, Ren and Xia63 have derived the

generalized Reynolds-Orr energy equation incorporating the effects of wall slip. The results show

that for very weak slip effects, the disturbance energy transferred from the base flow to perturbation

overcomes the viscous dissipation. As a result, the disturbance energy grows indicating the desta-

bilizing effects of wall slip. For higher values of slip parameter, wall slip shows stabilizing effects

since there is a decay of disturbance energy due to viscous dissipation overcoming the energy

production. It is important to note that viscosity of the fluid is a constant in this case.

The present study deals with stability of a double-diffusive two fluid flow in a slippery channel

across which viscosity varies smoothly (as given by Eqs. (15)–(17) in the manuscript) and the anal-

ysis accounts for viscosity perturbations. In what follows, the modified-generalized Reynolds-Orr

energy equation is derived and the energy budget in the perturbed slip flow is examined. The phys-

ical mechanism of the dual role of the velocity slip at the wall (as stabilizing or destabilizing) on

the double-diffusive instability is then explained by considering an energy budget analysis. We take

the inner product of the x and y momentum equations for the perturbations with the perturbation

velocity components in the x and y directions, respectively. The resulting equations are then added,

and the final equation is integrated over the control volume. The volume integrals are converted to

surface integrals using divergence theorem and simplified. Considering the x-direction integration

over a unit wavelength and y-direction integration between the centerline and the slippery wall, the

following modified-generalized Reynolds-Orr energy equation is obtained (after using normal mode

for perturbations):

E∗t = RES∗ + DIS∗ + A∗ + B∗ + B∗x + B∗y, (27)

where

E∗t =
ωi

2


0

1

(|φ′|2 + α2|φ|2)dy,

RES∗ = −
iα

4


0

1

UB
′(φ̄φ′ − φφ̄′)dy,
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DIS∗ = −
1

2Re


0

1

µB

�
|φ′′|2 + 2α2|φ′|2 + α4|φ|2

�
dy −

β

2Re

�
µB|φ

′′|2
� ���at y=1


,

A∗ =
α2

2Re


0

1

µB
′ �φφ̄′ + C.C.

�
dy, B∗ =

1

4Re


0

1

UB
′′ �µφ̄′ + C.C.

�
dy,

B∗x = −
α2

4Re


0

1

UB
′ �µφ̄ + C.C.

�
dy, B∗y =

1

4Re


0

1

UB
′ �µ′φ̄′ + C.C.

�
dy.

In the above equations (Eq. (27)), an over-bar (¯) represents the complex conjugate (C.C.), and

E∗t is the time rate of change of the total disturbance energy; RES∗ is the rate of energy transfer

between the base flow and the disturbance (commonly known as “Reynolds stress” term); DIS∗ is

the energy due to viscous dissipation; A∗ corresponds to contribution to energy of the disturbance

from the y-gradient of base viscosity; B∗, B∗x, and B∗y are related to contributions arising from the

perturbation viscosity, gradients of viscosity perturbation in the x and y directions, respectively.

It is to be noted that Eq. (27) contains not only the terms RES∗ and DIS∗ (that appear in the

classical Reynolds-Orr energy equation21,68 for Poiseuille flow in a rigid channel and in the general-

ized Reynolds-Orr energy equation presented by Ren and Xia63 for the same flow in a channel with

wall slip) but also the other terms A∗, B∗, B∗x, and B∗y. Each term in Eq. (27) is influenced by the wall

slip either due to the dependence of the base velocity on the slip parameter or due to the influence of

velocity slip on the velocity perturbations.

Normalising Eq. (27) with 1
2


0

1
(|φ′|2 + α2|φ|2)dy yields

Et = RES + DIS + A + B + Bx + By, (28)

where Et is nothing but the growth rate (ωi). This choice of normalising simplifies the interpretation

of the variations of the different terms in the energy balance Eq. (27) and makes the relative contri-

butions comparable. Attention is focused on the range of unstable wave numbers for the DD-mode

instability for different values of slip parameter. As discussed previously, the flow system is stable

or unstable if Et < 0 or Et > 0, respectively. We have ensured the accuracy of our computations by

considering each term in Eq. (28) independently and it is found that the left and the right hand sides

of Eq. (28) are equal up to five decimal places.

Fig. 7(b) in the paper shows that the critical Reynolds number for the DD-mode for β = 0.01(β

= 0.07) is less (more) than that for β = 0 indicating the destabilizing (stabilizing) role of slip. This

can be explained by the energy budget Eq. (28) as follows. As our interest is in the threshold for

instability, the terms that appears in Eq. (28) corresponding to the present problem with slip effects

incorporated must be compared with the corresponding terms for the no-slip stable state. The crit-

ical Reynolds number for the no-slip case with Rs = 3.0, Rf = −3.1, Sc = 30, δ = 10,h = 0.7, and

q = 0.1 is Re ≃ 623 and it occurs at α ≃ 1.41. In view of this, Fig. 13 presents the different terms in

Eq. (28) as a function of wave number (α) for Re = 623 with the rest of the parameters the same as

those mentioned above.

Fig. 13(a) shows that Et or ωi is positive for a range of α values for β = 0.01 (dashed line).

However, Et is negative for all α values when β = 0.07 (dashed-dotted line). So, Et exhibits a

non-monotonic behaviour with an increase in β. DIS term is always negative (Fig. 13(b)) and is

a decreasing function of α for all values of β considered. So, there is a damping of disturbance

kinetic energy induced by DIS. An increase in β causes an increase in DIS. The disturbance energy

production term RES is always positive for all β values considered (Fig. 13(g)) and therefore

contributes to destabilization of the flow system. The terms B and Bx are negative always (Figs.

13(d) and 13(e)) and they also decrease as α increases; however they are small as compared to

other terms. The terms A and By are both positive (Figs. 13(c) and 13(f)) and increase with an

increase in α (note that A attains a maximum and then decreases beyond a certain wave number).

The contribution from the term A is very small for any value of β considered. By, being positive,

contributes to destabilization of the flow system. It is important to note that all components (terms

in Eq. (28)) that contribute to energy transfer are affected by the wall slip (β), and therefore they are

responsible for the stabilizing or destabilizing effects of wall slip β.

A close inspection of RES (Figs. 13(g) and 13(h)) reveals that there is a nonmonotonic behav-

iour of RES with respect to slip β. For smaller values of α, RES is more for β = 0.01 than that for
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FIG. 13. Variation of Et , DIS, A, B, Bx, By, and RES with α for Re = 623 are shown in panels (a)-(g), respectively.

The other parameters are Rs = 3.0, R f = −3.1, Sc = 30, δ = 10, h = 0.7, and q = 0.1. Panel (h) shows the zoomed

picture of panel (g).

β = 0 (see Fig. 13(h)). Beyond α(≃ 1.41), RES for β = 0.01 is less than that for β = 0. However,

for β = 0.07, RES is always less than that obtained β = 0.

The disturbance energy that arises due to RES, A, and By (which are positive and hence have a

destabilizing effect) for β = 0.01 overcomes the disturbance energy that arises due to DIS, B, and
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Bx (which are negative and hence have a damping effect), which causes positive growth rate in Et

(Fig. 13(a)). On the other hand, for β = 0.07, the damping effect due to DIS, B, and Bx overcomes

the destabilizing contributions from RES, A, and By and this is responsible for the negative growth

rate in Et (Fig. 13(a)). This clearly explains the dual role of wall slip at the onset of instability of the

DD mode.

V. CONCLUSIONS

A linear stability analysis of a DD two-fluid flow in a slippery channel has been considered. It

exhibits strikingly different stability characteristics as compared to the corresponding SC miscible

two-fluid flow in a slippery channel. While a configuration with less viscous fluid close to the slip-

pery wall (m < 1) is more stable in the SC system, in the DD system with Rf + Rs < 0 (m < 1), it

is unstable. This is due to the occurrence of a new unstable mode (the DD-mode) at low Reynolds

numbers and a wide range of wave numbers (due to DD effects). Such a mode exists under overlap

conditions (i.e., mixed layer overlapping the critical layer of dominant disturbance) due to different

diffusion rates of the two species in the miscible two-fluid flow. The slip parameter has both stabilizing

as well as destabilizing effects on the stability of the DD system. In fact, the results reveal that for

higher values of β, the critical Reynolds number increases and the range of unstable wave numbers

decreases thereby shrinking the unstable region for the dominant DD mode. This shows that a DD

system in a slippery channel is more stable than the corresponding DD system in a rigid channel.

Also, it is possible to find a region in the α − Re space (for small values of slip parameter β), in which

the DD system in a slippery channel is more unstable than that in a rigid channel (due to lowering

of critical Reynolds numbers). This result can be appropriately used in the design of channel walls

with appropriate velocity slip depending on the relevant applications. For all β values considered in

this study, the Schmidt number (Sc) has a destabilizing effect on both the TS and the DD modes of

instability. On the other hand, the ratio of the rate of diffusion (δ) has a stabilizing effect on the TS

mode but destabilizing effect on the DD mode, for the above configuration.

The configuration with a higher viscous fluid adjacent to the slippery channel wall (Rf + Rs > 0)

is unstable due to total viscosity stratification (similar to the SC system) and velocity slip at the wall

destabilizes the DD system. The physical mechanism of stabilizing or destabilizing role of velocity

slip at the walls of the channel on the DD-mode instability is explained through energy budget anal-

ysis. This theoretical investigation lends itself to verification by experiments and direct numerical

simulations.
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APPENDIX A: JUSTIFICATION OF PARALLEL FLOW ASSUMPTION

In general, the concentration profiles of the slower and faster diffusing species should depend

upon x. The parallel flow approximation is valid at large Reynolds and Péclet numbers, and we

restrict ourselves to presenting results in this regime. It was discussed in Sahu and Govindarajan18

that this mixed layer diffuses at a rate proportional to the inverse of Péclet number (ReSc). Thus, the

downstream growth of the interface is very small at high Reynolds number. For Reynolds number

of the order of 100, the parallel flow approximation is justified unless Sc << 1. As our Reynolds

numbers considered are always greater than 100, we are in a safer side.

The present study is based on the parallel flow assumption in the mixed layer. This is equivalent

to considering that the variations of the gradients in flow variables at the steady state and the

thickness q of the mixed region have a much larger length scale than the disturbance wavelength.
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The following discussion shows that the above assumption is justified for slow diffusion (higher

values of Péclet number).

Let a splitter plate be located at x < x0, at a constant y and let the parallel streams of two

miscible fluids flow on both sides of this plate. The streams come into contact with each other

at x = x0. The two fluids begin to mix with each other for x > x0, thus producing a stratified

layer. The thickness ‘q’ of this layer grows as the fluids move downstream, and therefore q is a

function of x. In what follows, it is shown that the thickness of the mixed layer varies slowly in

x, i.e., ∂q/∂x << 1.

We know at any location, the steady mean concentrations f and s corresponding to two spices

F and S satisfy the equations

U
∂ f

∂x
+ V

∂ f

∂ y
=

δ

Pe


∂2 f

∂x2
+

∂2 f

∂ y2


, (A1)

U
∂s

∂x
+ V

∂s

∂ y
=

1

Pe


∂2s

∂x2
+

∂2s

∂ y2


, (A2)

respectively. Now, under the boundary layer approximation (V ≪ U and ∂2

∂x2 ≪ ∂2

∂y2 ), we will get

from Eq. (A1)

U
∂ f

∂x
≃

δ

Pe

∂2 f

∂ y2
. (A3)

Also, using the same approximation, we know that U ∼ O(1), y ∼
√
ν, where ν is the kinematic

viscosity. Note that the viscosity is directly proportional to the concentration of each fluid in the

mixed layer. Therefore, q f ∼ O(y2) since f is the mean concentration over the mixed layer of

thickness q. This implies that ∂ f /∂x ≃ 1
q

O(δ/Pe) (from Eq. (A3)). Similarly, from Eq. (A2), we

can get ∂s/∂x ≃ 1
q

O(1/Pe). So, for large values of Pe, ∂ f /∂x, ∂s/∂x are very small showing that

the downstream variation of f and s are very small which in turn implies that the changes in the

thickness q of the mixed layer along the x-direction is very small.

Again, taking a similarity solution f (y/q(x)) ≃ f (ξ) (where ξ = (y/q(x))) for Eq. (A3), we

will get

U
df

dξ



−
ξ

q

dq

dx



≃
δ

Pe



d2 f

dξ2

1

q2



. (A4)

As a consequence,

1

q

dq

dx
∼

δ

q2Pe
⇒

dq

dx
∼

1

q
O



δ

Pe



. (A5)

Thus, the downstream growth of mixed layer is inversely proportional to the Péclet number as U and

ξ are of O(1) and O


ds
dξ



≃ O



d2s

dξ2



, which confirms that for the Reynolds and Schmidt numbers

considered in the present study, the assumption of uniform thickness of viscosity stratified layer

(mixed layer) is justified.

APPENDIX B: DIFFERENT MIXED LAYER THICKNESS FOR FASTER AND SLOWER
DIFFUSING SPECIES

The assumption of same mixed layer thickness q for the two species is valid only for δ ≃ 1

where δ is the ratio of the rate of diffusions of the species. For δ ≫ 1, in reality, the mixed layer

thickness of the faster diffusive species is expected to be larger than that of the slower diffusing

species. In view of this, we have performed the computations with qf =
√
δqs = 0.1 (obtained from

Appendix A) for δ = 6 where qf and qs are the layer thicknesses corresponding to faster and

slower diffusing species. The other parameters are Rs = 2.0, Rf = −3.1, Sc = 30, and h = 0.6. Fig.

14(a) shows the base velocity profiles for the cases qf = qs = q = 0.1 and qf =
√
δqs = 0.1 when

δ = 6, β = 0.01. Fig. 14(b) is the zoom of Fig. 14(a) near the mixed layer. Fig. 14(c) shows the
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FIG. 14. (a) Base state velocity profiles for β = 0.01; (b) zoom of Fig. 14(a); (c) base state viscosity profiles for β = 0.01;

(d)U ′′
B

as a function of y for β = 0.01; (e) neutral stability maps for q f =
√
δqs = 0.1 (without symbols) and q f = qs = 0.1

(with symbols); (f) growth rate (ωi) versus wave number (α) for Re = 600, β = 0.01. The rest of the parameter values are

Rs = 2, R f = −3.1, Sc = 30, δ = 6, and h = 0.6.

variation of base viscosity across the channel for δ = 6 with qf =
√
δqs = 0.1 and qf = qs = 0.1. We

observe that viscosity is a non-monotonic function of y within the mixed layer for qf , qs. As the

log-mobility ratio Rf and Rs corresponding to the faster and slower diffusing species are of opposite

signs, the variation in concentration is monotonically decreasing (monotonically increasing) for the

faster (slower) diffusing species. Further, when qf , qs, fB(y) and sB(y) (given by Eqs. (16) and

(17)) are different due to their dependence on qf and qs, respectively. Note that in the mixed layer,

the base viscosity profile is µm(y) = exp
�
Rs sB(y) + Rf fB(y)

�
. As a result, the base viscosity pro-

file for the case qf , qs is non-monotonic in the mixed layer. Fig. 14(d) shows U ′′
B

as a function of

y and we see that there is an inflectional point in the mixed layer for qf , qs. The neutral stability

curves presented in Fig. 14(e) show that the above configuration (with qf , qs) is unstable for a

wide range of wave numbers and that slip shrinks the unstable region as well as reduces the range

of unstable wave numbers. However, the system with qf = qs = q = 0.1 is more unstable than the

above case for each β considered. This may be attributed to the increase in base velocity in the
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mixed region for the case qf = qs = 0.1 as compared to that for qf , qs (Fig. 14(b)). Fig. 14(f)

presents the growth rate curve corresponding to qf , qs and qf = qs for Re = 600 and β = 0.01.

We note from Figs. 14(c) and 14(d) that the base viscosity profile is monotonic, smooth

(Fig. 14(c)) and the flow is inviscidly stable by Rayleigh’s theorem21 (Fig. 14(d); solid line with no

point of inflection) for the case qf = qs = q = 0.1. As we want to examine the slip effects on the

stability of the inviscidly stable “DD” system by taking mixed layer between two fluids having very

small difference in viscosities so that the base viscosity variation within the mixed layer of small

thickness is very smooth, continuous, and monotonic; in this study, the computations are performed

by considering qf = qs = q.
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