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Abstract  16 

Computational modeling of the spontaneous dynamics over the whole brain provides critical 17 

insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their 18 

alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent 19 

experimental evidence further suggests that the adverse effect of lesions are visible on 20 

spontaneous dynamics characterized by changes in resting state functional connectivity and its 21 

graph theoretical properties (e.g. modularity). These changes originate from altered neural 22 

dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium 23 



 

to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic 24 

inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire 25 

cortex under neurological impairments like lesions to understand global functional recovery 26 

(across brain networks and individuals). Previous computational and empirical studies have 27 

demonstrated that the resting state functional connectivity varies primarily due to the location 28 

and specific topological characteristics of the lesion. We show that local homeostatic balance 29 

provides a functional recovery by re-establishing excitation-inhibition balance in all areas that 30 

are affected by lesion. We systematically compare the extent of recovery in the primary hub 31 

areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as 32 

well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal 33 

and temporo-parietal networks. Our findings suggest that stability and richness similar to the 34 

normal brain dynamics at rest is achievable by re-establishment of balance. 35 

 36 

1. Introduction  37 

Whole brain resting state dynamics at macroscopic scale provides a powerful approach to 38 

understanding key determinants of normal versus abnormal brain functions. Abnormal resting 39 

state brain dynamics characterized by changes in resting state functional connectivity (rs-FC) 40 

are observed in neurological disorders like epilepsy (Centeno and Carmichael, 2014; Holmes et 41 

al., 2013), Alzheimer’s disease (Damoiseaux, 2012), Stroke (Park et al., 2011, Gratton et al., 42 

2012), Schizophrenia (Yang et al., 2014) etc. Several theoretical models have been developed to 43 

understand the underlying mechanisms that allow such rich spontaneous dynamics to emerge 44 

(Deco et al., 2009, 2014, Hellyer et al., 2016). Local excitation and inhibition (E-I) balance or 45 

homeostasis is shown to play a key role in maintaining such rich dynamics. In this study we 46 



 

investigate how local E-I balance is affected by structural perturbations and whether the same 47 

mechanism can aid in functional recovery to normal rs-FC after a focal lesion is introduced in 48 

the underlying structure. Previous work in this direction has sought out for computational tools 49 

and graph theoretical techniques to investigate the precise impact on rs-FC under virtual lesions 50 

in specific brain areas (both interhemispheric and intrahemispheric) (Alstottet al. (2009); Cabral 51 

et al. (2012); Arsiwala et al. (2015)). Alstott et al. (2009) and subsequently, Cabral et al. (2012) 52 

have independently investigated using computational models the nature of impact on rs-FC due 53 

to perturbation in the structural connectivity (SC) similar to what is observed in brain lesions. 54 

Further, Cabral et al. (2012) theoretical results suggest that most disconnection-related 55 

neuropathology should induce the same qualitative changes in resting-state brain activity and 56 

hence, finding common functional network alteration in the resting dynamics under a variety of 57 

clinical conditions. These studies are the first ones to highlight the importance of lesion foci; for 58 

example, hubs have a potentially damaging impact on the rs-FC to the point of a minimal 59 

chance of recovery after lesion (Alstott et al., 2009; Arsiwalla et al., 2015). However, none of 60 

the above studies account for fundamental processes like local homeostatic regulation of 61 

inhibition providing right E-I balance to adapt to a target excitatory firing rate as a mechanism 62 

for functional recovery. For the first time, we demonstrate systematically how this inhibitory 63 

homeostasis aid in recovery across lesion foci (whether hub or not) using a variety of cortical 64 

parcellations. Recently, Vogels et al., (2011) and Hellyer et al. (2016) have demonstrated in a 65 

computational setup that inhibitory synaptic plasticity (a type of homeostatic plasticity) may 66 

appropriately balance the excitatory and inhibitory currents of a cortical neuron, thereby 67 

rendering it to produce a stable cortical output rather than runaway excitation. In Deco et al. 68 

(2014), a feedback inhibition control (FIC) algorithm was proposed to adjust the strength of 69 

inhibitory weights recursively and adapt to a target excitatory firing rate of 3 – 4 Hz. In this 70 



 

study, we investigate how such local E-I balance is disturbed across multiple brain areas 71 

including hubs. What is the exact relationship between structural graph properties and the 72 

disturbed E-I balance? How widespread is the disturbed E-I balance depending on the lesion 73 

foci? We find that restoring the local E-I balance by using recursive adaptation of inhibitory 74 

weights in individual brain areas brings the local excitability to a stable firing range without 75 

compromising the richness of resting state dynamics and, as a result, reduces the damaging 76 

impact on rs-FC over the whole brain. Moreover, resting state networks are implicated in core 77 

process of human cognition like integration of cognitive and emotional processing (Greicius et 78 

al., 2003), monitoring the world around us (Gusnard et al., 2001) and mind-wandering (Mason 79 

et al., 2007). Hence we hypothesize that restoring rs-FC close to normality should aid in 80 

recovery from lesion. 81 

 82 

 2  Materials and Methods 83 

 2.1  Empirical Structural Connectivity 84 

The empirical SC matrix used in this paper is generated by using an automated pipeline 85 

(Schirner et al., 2015) for reconstruction of fiber tracks from T1 structural MR images and 86 

diffusion-weighted images (DWI) acquired from 49 healthy subjects (30 females, 19 males) at 87 

Berlin Center for Advanced Imaging, Charité University Medicine, Berlin, Germany. The 88 

subjects’ age ranged from 18 to 80 years with a mean age of 41.55 ± 18.44. The images 89 

obtained from these scans are used as input to the reconstruction pipeline to generate the SC 90 

matrix for each subject (Please refer to Schirner et al. (2015) for a detailed outline of the 91 

pipeline for generating SC matrix). In this pipeline, high resolution T1 anatomical images are 92 

used to create segmentation and parcellation of cortical and subcortical gray matter, white 93 



 

matter segments and diffusion weighted imaging (DWI) for generating tractography masks. The 94 

major pre-processing steps on T1 anatomical images are skull stripping, removal of non-brain 95 

tissue, brain mask generation, cortical reconstruction, motion correction, intensity 96 

normalization, WM and subcortical segmentation, cortical tessellation generating GM–WM and 97 

GM-pia interface surface-triangulations and probabilistic atlas-based cortical and subcortical 98 

parcellation. These parcellations, segmentations and masks are then used to guide the 99 

probabilistic tractography algorithm to estimate connection strengths (a value in the range 0 to 100 

1) between each pair of areas in the cortical gray matter parcellation. The parcellation used in 101 

this study is Desikan-Killiany parcellation (Desikan et al., 2006) which consists of 68 cortical 102 

regions of interest (ROI). SC matrices generated from each subject’s MRI data are averaged 103 

element-wise to obtain an averaged SC matrix. The connectivity strength between each pair of 104 

68 areas represents how one area can influence other areas in the context of a specific model 105 

(refer to section 2.4). To make sure results reported are robust to resolution of the parcellation 106 

and size of lesioned nodes, a SC matrix of 998 ROIs of approximately uniform size (Hagmann 107 

et al., 2008) generated from diffusion spectrum imaging of 5 healthy subjects is also used. 108 

 2.2  Empirical Resting State Functional Connectivity 109 

Empirical rs-FC matrix is also generated using the same pipeline from the fMRI scans of the 49 110 

subjects used for generating SC. The major steps involved in generating rs-FC matrix are brain 111 

extraction, motion correction, six-degrees of freedom (DOF) linear registration to the MNI 112 

space and high pass temporal filtering. The BOLD volumes are registered with subject’s T1 113 

weighted anatomical images and parcellated according to Desikan-Killiany atlas (Desikan et al., 114 

2006). BOLD signals from each of the 68 ROIs are computed by taking the mean of BOLD 115 

signals of all voxels in that area. Aggregated BOLD time-series of each region is z-transformed 116 

and pairwise Pearson correlation coefficient is computed to obtain the rs-FC matrix of each 117 



 

subject. The FC matrix used in this study is the average of rs-FC matrices of all 49 subjects. 118 

Also since we only use resting state functional data in this study, we use the words functional 119 

connectivity (FC) and resting state functional connectivity (rs-FC) synonymously. 120 

 2.3  Simulating virtual focal Lesions 121 

Focal lesions damage the anatomical structural connectivity of the brain in a specific area or in 122 

and around a specific area. In order to simulate a focal lesion in area i (lesion center), all the 123 

connections to and from that area are set to zero in the SC matrix, i.e., all the entries in row i 124 

and column i of SC matrix are set to zero. An example of virtually lesioned SC matrix with left 125 

Precuneus as the lesion center is shown in Fig. 1. To understand the characteristics of lesion 126 

location that critically impact rs-FC, 68 virtually lesioned SC matrices are generated with focal 127 

virtual lesions at each one of the 68 ROIs. For the SC matrix of 998 ROIs a focal lesion in area i   128 

is simulated by disconnecting (set to zero) all connections to and from 50 nearest neighbours 129 

(5% of total) in addition to connections of lesion center. Lesions centered at 40 different 130 

locations (20 in each hemisphere) covering 80 – 90 % of the cerebral cortex are simulated 131 

resulting in 40 lesioned SC matrices at a resolution of 998 ROIs. These matrices are then 132 

downsampled to 66 areas by averaging across ROIs (For details on downsampling refer to 133 

Hagmann et al., 2008 , Honey et al., 2008). 134 

 2.4  Computational Model simulating whole brain resting state dynamics 135 

Mean field models (Wilson and Cowan, 1972, Wong and Wang, 2006, Deco et al., 2009, 136 

Hellyer et al, 2016) allow simulation of whole brain dynamics and are analytically tractable 137 

unlike models for networks of spiking neurons. Using mean filed models earlier research have 138 

shown that rs-FC can be estimated from the SC matrix using a large scale cortical dynamic 139 

mean field (DMF) model (Deco et al., 2014) and a hemodynamic model (Friston et al., 2000; 140 

Friston et al., 2003). The DMF model is a set of coupled stochastic differential equations which 141 



 

govern the evolution of synaptic gating variables with time (Deco et al., 2014). The 142 

hemodynamic model is a set of coupled differential equations which can predict the BOLD 143 

responses of a neural population given the synaptic activity of that population. Using the 144 

generated BOLD responses from each area, FC can be estimated by computing Pearson 145 

correlation coefficient between BOLD responses of each pair of areas. The pipeline used to 146 

compute FC using anatomical SC matrix and computational modeling is shown in Fig. 2. 147 

Dynamic Mean Field Model: In DMF model, each brain area is modeled as a population of 148 

excitatory and inhibitory neurons with excitatory NMDA synapses and inhibitory GABA 149 

synapses. The computational model for simulating the synaptic activity is given by the set of 150 

coupled stochastic nonlinear differential equations given below (Deco et al., 2014). 151 
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Here Ii
(E or I), is the input current to area i and superscripts E and I represent excitatory and 158 

inhibitory populations in that area. ri
E or I is the population firing rate of excitatory or inhibitory 159 

populations of area i, Si
E or I is the average synaptic gating variable of area i. I0 is the effective 160 

external input scaled by WE and WI for excitatory and inhibitory populations. JNMDA is the 161 



 

excitatory synaptic coupling and Ji is the local feedback inhibitory synaptic coupling. vi in Eq. 162 

5,6 is uncorrelated standard Gaussian noise with noise amplitude σ = 0.001 nA. The input 163 

currents to an excitatory population in an area are: recurrent excitatory currents, recurrent 164 

inhibitory currents, long range excitatory currents from excitatory populations in all other areas, 165 

and external currents. Long range excitatory currents from other areas to an excitatory 166 

population in area i are constrained by the connectivity strength from those areas given by Cij, 167 

where Cij is the ijth entry in the SC matrix. Since recurrent excitatory currents are already taken 168 

into account while computing the input current to an excitatory population all the diagonal 169 

elements, Cii, are set to zero in the SC matrix. The connectivity strengths Cij are scaled by a 170 

global coupling parameter G. A parameter sweep for various values of G is performed to 171 

compute the optimal value of G for which the simulated FC-estimate best correlates with that 172 

computed from the empirical resting-state fMRI data of healthy controls. The input currents to 173 

an inhibitory population in area i are: recurrent excitatory currents, recurrent inhibitory currents, 174 

external currents. All the parameters of the model are set to same values as in Deco et al. (2014) 175 

and summarized in Table 2. Furthermore, in order to maintain a steady state firing rate of 2 – 5 176 

Hz,  the input current to excitatory population is maintained such that Ii
E – bE/aE = -0.026 nA(see 177 

Eq. 3) by the Feedback Inhibition Control (FIC) algorithm, as proposed in Deco et al. (2014). 178 

The FIC algorithm iteratively adjusts Ji values representing synaptic coupling from inhibitory 179 

neurons to excitatory neurons, to maintain the input current at an excitatory population equal to 180 

bE/aE – 0.026 nA, with a tolerance of ± 0.005 nA. Hence we consider local excitation-inhibition 181 

balance to be established in an area when the input current to an excitatory pool is in the above 182 

range. By numerically solving the differential equations in this model using Euler’s method 183 

with a step size of 0.1 ms for 8 minutes we generated the synaptic activity of each area and used 184 



 

this activity as input to the hemodynamic model (Friston et al., 2000, Friston et al., 2003) to 185 

generate the resting-state BOLD responses of each brain area. Although we used a time step of 186 

0.1 milliseconds in Euler’s method, we sampled the synaptic activity from each area every 1 187 

millisecond. First 500 ms of BOLD responses are truncated to allow for initial transients and the 188 

rest is downsampled every 2 s to get a resolution similar to empirical BOLD time series. All 189 

simulations are performed using MATLAB. 190 

DMF model parameter space identification and calibration 191 

Global coupling strength G is a free parameter of DMF model that scales long range excitatory 192 

input. In order to estimate the optimal value of G that best predicts resting dynamics, DMF 193 

model is simulated with increasing values of G starting from 0 and at increments of 0.025. The 194 

model generated FC is compared against empirical FC by calculating the fit between them as 195 

Pearson correlation coefficient between the z-transformed upper diagonal elements. The 196 

correlation fit between simulated FC and empirical FC as a function of the free parameter G is 197 

shown in Fig. 3A. The optimal value of G is that which gives best correlation fit between 198 

empirical and simulated FC while maintaining the firing rate in the range of 3 - 5 Hz in all brain 199 

regions. For the SC of 68 areas best correlation fit of 0.6 between simulated and empirical FC 200 

while maintaining a low firing rate is observed when G = 0.6. The firing rate of all regions at 201 

this optimal value of G is shown in Fig. 3B. As can be seen in this figure, a low firing rate of 202 

about 4 Hz is maintained in all areas in the balanced excitation-inhibition condition. Empirical 203 

FC and model-generated FC obtained by simulating DMF model with G set to  0.6 are shown in 204 

Fig. 3C and D respectively. G is set to 0.6 in all the simulations performed in further analysis 205 

throughout the entire paper unless otherwise specified. For values of G > 0.6 firing rate of many 206 

areas exceed 20 Hz and hence the model is not bio-physically realistic. 207 

 208 



 

 2.5  Measures for characterizing lesioned nodes and for effects of lesion on FC 209 

To characterize areas into hubs or connector nodes, graph theoretical measures, namely, 210 

participation coefficient and node strength are used. Brain Connectivity Toolbox (Rubinov and 211 

Sporns, 2010) is used to compute both these measures. Frobenius norm of the difference 212 

between model predicted FC matrix and empirical FC matrix is used to measure the dynamic 213 

effects of a lesion on FC  214 

 215 

Participation Coefficient: Given the modular organization of a graph participation coefficient of 216 

each node in that graph can be computed (Guimera and Amaral, 2005). Participation coefficient 217 

measures how well distributed the links of a node are to other modules. If the links of a node are 218 

uniformly distributed to all modules then its participation coefficient is 1, whereas if all its links 219 

are within its own module then participation coefficient is 0. So nodes with participation 220 

coefficient close to 1 are considered as connector nodes. Eq. 7 describes how to compute the 221 

participation coefficient of ith node, where NM is the number of modules, kis is the number of 222 

links of node i to module s and ki is the total number of links of node i. 223 
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Node Strength is the sum of connection strengths of all connections to that area. Nodes with 225 

high node strength are shown to have relatively large effect on FC when lesioned compared 226 

with nodes with low node strength (Alstott et al., 2009). Eq. 8 describes how to compute node 227 

strength of ith area, where N is the number of ROIs. 228 
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Note that for higher resolution SC, participation coefficient and node strength are computed as 230 

summation of participation coefficient and node strength respectively of all 50 disconnected 231 

ROIs for each lesion. 232 

 233 

FC Distance (FCD): In order to measure the similarity or distance between the model predicted 234 

FC and the empirical FC, we have used the Frobenius norm of the difference between the two 235 

FC matrices.  236 
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Higher the FC Distance, higher the damaging impact of lesion on FC. Similarly, lower the FC 238 

Distance, lower is the impact. Eq. 9 describes how FC distance between these two matrices is 239 

computed. 240 

 241 

Z-score: We used Z-scores to test the hypothesis that whether the functional correlations of any 242 

pair of ROI before and after lesion are from different distributions. Before computing the Z-243 

scores we have converted both FC matrices, predicted by DMF model using healthy controls SC 244 

and lesioned SC, to normal distribution by using Fisher's z-transform. Z-score between 245 

functional correlation of area i and j is computed as 246 
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Where, df is the effective degrees of freedom and it is equal to 230 (length of simulated BOLD 248 

time series) for all the simulations in this study. To find a threshold for Z-score above which 249 

correlations are considered to have come from different distributions, we have computed Z-250 



 

scores between correlations of two FC matrices generated by averaging FC from two sets of 5 251 

independent runs of model using healthy controls SC. For |Z| > 2 the error rate is zero, hence Z-252 

scores (|Z|) greater than 2 are considered to have significantly changed. 253 

 2.6  Measuring immediate effects of lesion on FC 254 

We define immediate effects as those effects on FC that are caused by a lesion, before processes 255 

like plasticity set in to recover the damage caused by lesion. We are not directly modeling 256 

plasticity but rather the E-I balance that maintains local homeostasis. In fact, E-I balance has 257 

been shown to be related to inhibitory synaptic plasticity (Vogels et al., 2011). Hence, we 258 

consider the effects due to a lesion in SC matrix on the FC before re-establishing E-I balance as 259 

immediate effects. We start with an E-I balanced network of healthy subjects and study the 260 

effect of acute brain injury or lesion on these networks. In order to measure the immediate 261 

effects on FC arising from a lesion in one of the 68 ROIs, we have used the following procedure 262 

(refer to the model described by Eq. 1-6): 1) We have computed the Ji values, i.e., local 263 

feedback inhibitory synaptic coupling, of each brain area by running the DMF model with FIC 264 

algorithm using the averaged SC of healthy controls. These are the values that maintain E-I 265 

balance before lesion. 2) Using these Ji values and a virtually lesioned SC in DMF model we 266 

generated the FC as described above in the model section. 3) Finally, we compute FC Distance 267 

between empirical FC and model generated FC to quantify the effects of a particular lesion on 268 

FC. Note that step 1 is a one-time process, as the SC of healthy controls does not change, 269 

however steps 2 and 3 must be run for each lesioned SC.  270 

 2.7  Re-establishing Excitation-Inhibition balance after a lesion 271 

In this study we show that the impact of cortical lesions on functional connectivity can be 272 

reduced by re-establishing E-I balance. Recall that E-I balance would be perturbed by such 273 

lesions. After virtually lesioning an ROI we observe that many other ROIs lose E-I balance 274 



 

causing immediate effect on FC. We hypothesize that if E-I balance is re-established after lesion 275 

then the impact of lesion on FC would be reduced. In order to investigate this we use the 276 

following procedure: 1) We have initialized the Ji values i.e., local feedback synaptic coupling 277 

weights with the values obtained by running DMF model with FIC on the averaged SC of 278 

healthy controls. 2) Using the lesioned SC we run the DMF model with FIC to re-establish E-I 279 

balance in all the areas. 3) To measure the similarity between model-generated FC and 280 

empirical FC, we compute the FC distance between these two matrices. Again step 1 is a one-281 

time process whereas steps 2 and 3 are repeated for each virtually lesioned SC matrix. 282 

 283 

 3  RESULTS 284 

 3.1  Effects of lesion on E-I balance 285 

An area, say i, is considered to have E-I balance if 0.026E E
i

E

b
I

a
− = −  nA with a tolerance of 286 

±0.005 nA(see Materials and Methods), where E
iI   is excitatory input current to area i, Eb  and 287 

Ea  are intrinsic parameters used in estimating average firing rate of an excitatory population 288 

(Deco et al., 2014). Hence we consider an area to have lost E-I balance if 289 

| 0.026 | 0.005E E
i

E

b
I

a
− + > , where |x| is the absolute value of x. Fig. 4A shows that local E-I 290 

balance is perturbed in many areas when SC, obtained with left Precuneus (lPCUN) as the 291 

lesion center, is used in the DMF model.  Fig. 4B shows the number of areas that have lost E-I 292 

balance for each of the 68 brain areas as lesion centers in the virtually lesioned SC matrix. We 293 

then investigated the relationship between lesioned area’s participation coefficient and the effect 294 

on E-I balance. Fig. 4C exhibits, lesions in areas with high participation coefficient perturb 295 



 

balance in a wider number of areas. Participation Coefficient and number of areas that have lost 296 

E-I balance have shown a strong correlation of 0.61 (p < 0.001) (see Fig. 4C). To make sure 297 

that the results observed are not due to non-uniform lesion sizes, correlation between 298 

participation coefficient and number of areas that lost E-I balance is investigated on a SC of 299 

higher resolution with 40 lesions of uniform size (see Materials and Methods). Similar results 300 

are observed (Fig. S1 A) with a correlation of 0.56 (p < 0.001) 301 

 3.2  Immediate effects of lesion on functional connectivity 302 

Next we investigated the immediate effects on FC for each lesion center. In order to predict the 303 

immediate effects on FC we have initialized the inhibitory synaptic weights (Ji) with the values 304 

corresponding to E-I balanced condition. Then a specific focal lesion is incorporated in the SC 305 

matrix and the resulting FC is generated using the DMF model (see Materials & Methods). We 306 

then computed the FC distance between the model-predicted FC and empirical FC. The FC 307 

distance is found to be strongly correlated to the participation coefficient and node strength of 308 

the lesion center. Node strength and FC Distance showed a correlation of 0.87 (p < 0.001) and 309 

participation coefficient and FC Distance showed a correlation of 0.62 (p < 0.001) (see Fig. 6A 310 

and B (black)). Same relationship is observed even when the lesions are of uniform size (Fig. 311 

S1 B). This finding is consistent with previous studies (Alstott et al., 2009) i.e., if the lesioned 312 

area is a hub or connector node (that has high participation coefficient or node strength) then the 313 

effects due to a lesion on FC are generally large. Although in the main text we highlight the 314 

recovery process based on lesion center in lPCUN, several experiments with lesion centers in 315 

other areas were conducted and the results are similar (See Supplementary Material and Table 316 

3) 317 

 3.3  Functional recovery after re-establishing E-I balance 318 



 

After re-establishing local E-I balance in all areas, by simulating the DMF model with FIC and 319 

initializing Ji with those generated by simulating DMF model with FIC on SC of healthy 320 

controls (see Materials & Methods), we found that the impact of lesion on FC is significantly 321 

reduced compared to the immediate impact of lesion (shown in previous section) on FC. For 322 

example, FC predicted by the DMF model using a virtually lesioned SC with lesion center as 323 

lPCUN before and after re-establishing E-I balance are shown in Fig. 5. The FC predicted by 324 

model after re-establishing E-I balance is similar to the empirical FC than the FC predicted by 325 

the model before re-establishing E-I balance. Unlike in the case of immediate impact of lesion 326 

on FC, we found that by re-establishing E-I balance in all areas FC Distance is not so strongly 327 

correlated with participation coefficient and node strength of lesioned area. This is illustrated by 328 

reduced correlations between node strength, participation coefficient and FC Distance to 0.25 (p 329 

= 0.04) and 0.03 (p = 0.82), respectively as shown in Fig. 6A, B (blue). The results are again 330 

validated using a SC with lesions of uniform size (Fig. S1 B). Previous studies (Alstott et al., 331 

2009) have shown that lesion impact is higher when the lesioned area is near cortical midline. 332 

We found that even when areas near the cortical midline (PCUN, CAC) are lesioned, by re-333 

establishing E-I balance the effects of lesion on FC have been largely reduced. Table 3 gives a 334 

summary of effects of lesions in cortical midline, parietal and temporal cortex, frontal cortex, 335 

sensory, motor cortex. Fig. 7 (top) shows the functional connections that have significantly 336 

changed (|z| > 2) immediately after a lesion in cortical midline (lCAC). By re-establishing E-I 337 

balance the number of connections that have significantly changed have been largely reduced as 338 

shown in Fig. 7 (bottom). One important observation to be noted is that the impact of lesion on 339 

intra-hemispheric connections is reduced drastically after re-establishing E-I balance. Similar 340 

results are observed for lesions in frontal cortex (CMF) and parietal cortex (IP) as shown in 341 

supplementary material (see Fig. S2, S3). It can be clearly seen that the number of connections 342 



 

that have significantly changed are drastically reduced after re-establishing E-I balance. This 343 

shows that compared to the FC predicted by DMF model immediately after lesion, there is a 344 

significant FC recovery after E-I balance is re-established. 345 

 346 

FC Recovery across subjects: 347 

FC recovery across subjects is compared by using SC of 5 different subjects. First, optimal 348 

value of G is computed for each subject's SC. Optimal value of G varied across subjects in the 349 

range 0.5 to 0.8. For all 5 subjects, FC recovery results are qualitatively similar to the average 350 

SC case i.e. even when hubs are lesioned, after re-establishing E-I balance the effects of lesion 351 

on FC are largely reduced. Fig. 8 shows how FC distance varies across subjects before and after 352 

re-establishing E-I balance when regions which are more likely to be hubs (participation 353 

coefficient > 0.5) are lesioned. Finally, we looked at how local inhibitory weights of each area 354 

(Ji values) changed across lesion location after re-establishment of E-I balance. To investigate 355 

this relationship, correlation between updated Ji value of an area for each lesion and particpation 356 

coefficient of the lesion center is computed. For all areas, the updated Ji values showed strong 357 

correlation (r > 0.35, p < 0.001) with participation coefficient of lesioned location. Hence we 358 

posit that when hubs are lesioned there is an increased excitatory activity in all areas driving the 359 

dynamics towards a high excitatory regime. 360 

 361 

 4  Discussion 362 

Whole brain computational modeling is becoming increasingly popular for gaining a deeper 363 

neurophysiological understanding of complex brain functions. In particular, assessing the effect 364 

of short-range (recurrent connectivity) and long-range (inter/intra-hemispheric) input during 365 



 

resting and task conditions may provide valuable insight into resources allocated to processing 366 

noisy as well as structured information (Deco, G. et al., 2014; Deco, G. & Kringelbach, M. L et 367 

al., 2014; Roy et al., 2014). The brain regulates such information flow from region to region 368 

based on principles of integration as well as segregation (Deco et al., 2015). We argue that 369 

whole-brain computational modeling based on underlying anatomical connectivity obtained 370 

from neuroimaging data can be used to gain new insights into such segregation and integration 371 

processes. The motivation for our present study stems from the need for understanding whether 372 

recurrent inhibitory weight up-and-down regulation meaning homeostasis can indeed aid in 373 

functional recovery to normalcy under a variety cortical lesions spread over multiple lesion 374 

centers. However there are several limitation to this study. Firstly unlike recently implemented 375 

by Hellyer et al. (2016) inhibitory plasticity is not directly modeled however all the ingredients 376 

are present and the underlying homeostatic mechanisms are qualitatively very similar to qualify 377 

this as a good candidate for inhibitory plasticity. While their whole purpose of introducing 378 

inhibitory plasticity is to predict accurately empirical FC our's is not. We are carefully looking 379 

at the departure from E-I balanced regime due to change in excitation resulted from a lesion. 380 

This may vary across subjects and lesion centers. Hence, we make a comparison between how 381 

the recurrent inhibitory weights change based on location of lesion foci and across participants. 382 

We do find variability in the adaptation time to the appropriate Ji values based on the size or 383 

location of the lesion but not significant variability across participants. For the overall 384 

mathematical tractability which was established in our earlier work with this model (Deco et al. 385 

(2014); Roy et al. (2014)) DMF model is chosen in the current work.  386 

One of the major advantages of using DMF model is that it allows for tracking mathematically 387 

long-range excitatory inputs to relevant brain areas either due to variation in the global coupling 388 

strength or by the perturbation introduced by the lesioned SC. In a recent study (Yang et al., 389 



 

2014), such a large-scale mathematical model has been used to show key model parameters 390 

global coupling strength, recurrent self-excitatory weights might be responsible for the 391 

empirically observed high power of the total signal in schizophrenia patients. In this work, we 392 

regulate the recurrent inhibitory weights in individual brain areas for the maintenance of 393 

regional E-I balance under focal lesion. We quantify the lesion impact on E-I balance area wise 394 

using the correlation between participation coefficient of lesioned area and the degree of 395 

perturbation in the E-I balance. Our investigation is carried out over the entire Cerebral Cortex 396 

much like in the spirit of previous lesion modeling attempts made by Alstott et al. (2009); 397 

Cabral et al. (2012), Arshiwala et al. (2015), Adhikari et al. (2015). For the first time, our study 398 

systematically characterizes departure from healthy E-I balance (Fig. 4 A,B,C) due to focal 399 

lesions in brain modules (hub areas like DMN, FPN and sensory areas like Visual, Motor, etc. ). 400 

Further, it is computationally demonstrated how cortical recovery to normalcy is possible using 401 

a simple local inhibitory homeostasis mechanism (similar to inhibitory plasticity as proposed by 402 

Helleyer et al. (2016)) with lesion centers covering over 80% of the cerebral cortex (Table 2). 403 

We have shown that upon lesioning a node which acts as a hub or connector node there is a 404 

widespread disruption in the regional E-I balance (see Table 1; rPCUN, rPC, rISTH, rCAC, 405 

lPCUN, lPC, lISTH, lCAC prefixes r,l stand for right and left hemisphere respectively). 406 

Interestingly, these areas are located in the vicinity of Supplementary motor area (SMA), 407 

Primary motor cortex (M1) which are directly affected following focal lesions in stroke 408 

patients. We have shown that immediate effects of an injury on FC are significant when the 409 

lesioned node is a hub using a similarity measure such as FC distance (see Material and 410 

Methods). This finding is consistent with the previous computational studies (Alstott et al., 411 

2009; Arsiwalla et al., 2015). We have also shown that upon re-establishing E-I balance in all 412 

areas excluding lesioned area the effects of an injury on FC are dramatically reduced even when 413 



 

the lesioned area is a hub. We believe this finding is of importance in designing strategies for 414 

brain network recovery. Virtual lesions generated in this study are focal (composed of default 415 

mode brain areas, frontoparietal, temporoparietal junctions) that are commonly found in 416 

structural aberrations present in the stroke (Awad et al., 1986). Previously lesions of posterior 417 

medial cortex (PMC) were described as rare, but resulting in profound disorders of 418 

consciousness (Damasio et al., (1999)), while lesions of the dorsal anterior cingulate cortex 419 

(dACC) resulted in severe disruptions of personality and even emotional processing, resulting in 420 

apathy and inattention (Bush et al., (2000)). Lesions in the vicinity of temporoparietal junctions 421 

have been found to be affecting language-related disorders, in particular, the left angular gyrus 422 

has been implicated in dyslexia (Horwitz et al. (2002)), while lesions centered on the posterior 423 

position of right superior temporal cortex  (rSTC) often result in spatial hemineglect (Karnath et 424 

al., (2001)). Our modeling approach in the present article indeed demonstrates computationally 425 

to recover from the widespread spatial disruption induced by lesioned brain areas. Moreover, 426 

our model suggests that the pattern of endogenous neural activity, in particular, the default 427 

mode network activity (DMN) can be restored to a significant extent (see Table 2). DMN has 428 

been implicated as a common brain network involved in the pathophysiology of aging and 429 

neurodegenerative disorders such as schizophrenia, Alzheimers, autism spectrum disorders 430 

(Douaud, G. et al., (2014)).  An eventual restoration of the topology of resting-state FC may aid 431 

in cognitive repair and recovery. 432 

One more limiting fact of our study is that, although, we have theortically shown that recovery 433 

is possible by re-establishing E-I balance, the biological time scale of such process is an open 434 

question. Biologically how long would it take (meaning time scale) for recurrent inhibitory 435 

weights  to adapt to a value such that input to the excitatory pool equal to / 0.026E
i E EI b a− = −  436 



 

nA i.e., slightly inhibitory dominated, leading to a target firing rate equal to 3.0631 Hz is 437 

difficult to answer? We have checked the variability of Ji values as a function of the lesion 438 

center and subject wise to get an idea of the numerical time scale of adaptation. Finally, it is 439 

also important to consider the differences in the recovery processes across lesion locations as 440 

well as the difference in simulated FC following re-establishment of E-I balance and healthy 441 

control FC. E-I balance plays a key role in maintaining stable neuronal activity and proper 442 

cortical function. Dynamic interaction between excitatory and inhibitory inputs was shown to 443 

maintain neural networks in a balanced state that favors neural computations (McCormick, 444 

2002; Haider and McCormick, 2009). We have shown that stable neuronal activity after a lesion 445 

is attained by re-establishing E-I balance, through appropriate regulation of the strength of local 446 

inhibition in individual brain areas. However, even after re-establishing E-I balance the FC is 447 

not completely similar to healthy controls FC, as evident from Fig. 7, Fig. S2 and Fig. S3, 448 

suggesting that there might be some irrecoverable components, which may result in subtle 449 

differences in a given task performance. Also, the degree of FC recovery as measured by FCD 450 

in Fig. 8A, B is not exactly uniform across lesion locations implying that different lesions may 451 

still cause different subtle behavioural deficits based on lesion location. Apart from maintaining 452 

E-I balance, inhibition in local cortical circuits is also shown to play a key role in gain 453 

modulation (Mitchell and Silver, 2003), improving the dynamic range of input representation 454 

(Liu et al., 2011) in cortex, tuning of cortical neurons to sensory stimuli (Wilent and Contreras, 455 

2005; Wang et al., 2000) and pacing oscillations that allow propagation of neuronal signals 456 

(Atallah and Scanziani, 2009; Hasenstaub et al., 2005). Hence changes in the strength of local 457 

inhibition, while maintaining E-I balance, may have an effect on information representation and 458 

transmission in cortex and discrimination performance of the incoming stimuli. One way to 459 

quantify the differences after recovery that potentially impacts information transmission 460 



 

efficacy and stimulus discrimination ability is to measure multi-scale entropy, mutual 461 

information or Fisher information. Further, network measures based on graph theory such as 462 

local efficiency, global efficiency may provide valuable insights into how information routing 463 

changes after reestablishing E-I balance. Existing studies using empirical neuroimaging data 464 

from stroke patients have already shown that there is a change in the modular organization of 465 

resting state functional networks post-stroke (Gratton et al., 2012). Hence a systematic 466 

investigation of graph theoretic properties of FC after re-establishing balance might be a fruitful 467 

avenue for a future study. Another intriguing possibility is to look at the fitting of optimal 468 

underlying structural connectivity (SC) based on recovered functional connectivity (FC) using 469 

an optimization algorithm proposed in Deco et al. (2014b). Compared to normal FC re-470 

established FC may be working at a different working point of the global workspace. In this 471 

study the long-range coupling strength (G) is kept fixed at 0.6 for all simulations; however, 472 

post-stroke SC determines how the global coupling value G is shifted in the parameter space. In 473 

Deco et al. (2014b), a dramatic improvement of the fitting of the matrices was obtained with the 474 

addition of a small number of anatomical links, particularly cross-hemispheric connections, and 475 

reweighting of existing connections. Like previous study, we suggest that the notion of a critical 476 

working point ‘G’, where the structure-function interplay is maximal, may provide a new way 477 

to link behaviour and cognition, and a new perspective to understand recovery of function under 478 

variety of  clinical conditions. 479 

Currently, longitudinal data acquisition from stroke patients is underway, and it may be possible 480 

to find out how long it would take for meaningful biological recovery. As a future application 481 

we would like to integrate our study into the Virtual Brain Neuroinformatics Platform (Leon et 482 

al., 2013; Ritter et al., 2013; Roy et al., 2014) and would be made available to the clinicians. 483 

Recovery from a variety of lesion locations may allow clinicians to introduce virtual surgery 484 



 

and simulate the resulting brain dynamics before actually taking any relevant decisions.  To 485 

match the real-time clinical settings the size of the simulation will have to be significantly 486 

scaled, and complexity of the model needs to take into account more brain regions, different 487 

neurotransmitters, inhibitory subtypes. Here, the replicability of our finding is checked with 488 

multiple levels of granularity of the connectivity data (coarser to finest resolution).  If methods 489 

to directly measure the target excitation value in a population are available, it might be possible 490 

to use techniques such as Transcranial Magnetic Stimulation (TMS), Transcranial Direct 491 

Current Stimulation (tDCS) to look at the variability of the excitatory population firing rate with 492 

the size and location of the inhibited brain hot spots.  In conclusion, in this paper we provide a 493 

direct functional benefit of inhibitory homeostatic regulation to bring back the functional 494 

connectivity to normalcy and provide stability without compromising the richness and 495 

complexity of spatiotemporal dynamics in the brain. 496 
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Figures and Tables Captions: 662 

 663 

Figure 1: Simulating focal lesions. In order to simulate lesion in an area all the connections to 664 

and from that area are set to zero. A, Averaged structural connectivity matrix of healthy subjects 665 

and the B, Lesioned structural connectivity with lesion center as left Precuneus(PCUN) C, All 666 

the 68 brain areas plotted as spheres according to their Talairach coordinates on the brain 667 

surface with all their connections, size of spheres represent the participation coefficient of that 668 

area with larger size representing larger participation coefficient. D, The connections in C that 669 

are removed or set to zero when lesioned area is left Precuneus are shown in red. 670 

 671 

Figure 2: General Pipeline to elucidate estimation of functional connectivity from anatomical 672 

structural connectivity. Using the anatomical structural connectivity (SC) obtained from DTI 673 

scans, the Dynamic Mean Field (DMF) model generates the synaptic activity for each ROI. 674 

These activities are fed as input to Balloon-Windkessel hemodynamic model to generate BOLD 675 

time series for each area and finally pairwise Pearson correlation coefficient is calculated to 676 

obtain the resting state functional connectivity (FC).  677 

 678 



 

Figure 3:  Parameter space exploration for optimal value of global coupling strength (G) and 679 

network dynamics generated by simulating dynamic mean field model with feedback inhibition 680 

control using the averaged structural connectivity of 49 healthy subjects: A, Correlation fit 681 

between simulated functional connectivity and empirical functional connectivity for average SC 682 

of healthy controls for various values of global coupling strength. G=0.6 (green cross) produced 683 

the best correlation fit of 0.6 while maintaining a low firing rate in all areas. B, Firing rate of all 684 

regions is maintained below 5 Hz by recursively adjusting the local feedback inhibition weights. 685 

C, Averaged empirical functional connectivity of 49 healthy subjects. D, Model predicted 686 

resting state functional connectivity using optimal value of G and averaged SC of healthy 687 

controls. 688 

 689 

Figure 4: Effects of lesion on E-I balance: Immediately after lesioning, many areas lost their 690 

local E-I balance. A-left, E-I balance test condition* value for each of the 68 brain regions 691 

immediately after lesioning left Precuneus. A-right, E-I balance test condition* values of each 692 

area after re-establishing E-I balance. The red line indicates the value below which E-I balance 693 

is maintained. B, Number of areas that lost local E-I balance with each of the 68 brain regions 694 

as lesion center. The number of areas that lost local E-I balance is strongly correlated with the 695 

participation coefficient of the lesion center. C, Correlation between participation coefficient of 696 

each lesion center and the number of areas that lost local E-I balance. 697 
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Figure 5: Functional connectivity predicted by DMF model using a virtually lesioned structural 700 

connectivity matrix with lesion center as left Precuneus A, immediately after lesion i.e without 701 

re-establishing E-I balance. B, after re-establishing E-I balance 702 

 703 

Figure 6: Immediate lesion effects and recovery of functional connectivity after cortical lesion. 704 

The immediate effects of lesion are strongly correlated with lesion measures: lesioned Node 705 

Strength and Participation Coefficient. A (black), B (black), Correlation between FC Distance 706 

and Lesioned Node Strength, FC Distance and Participation Coefficient. FC Distances are 707 

computed between model predicted functional connectivity immediately after lesioning each of 708 

the 68 brain regions and empirical functional connectivity. A (blue), B (blue), Correlation 709 

between FC Distance and Lesioned Node Strength, FC Distance and Participation Coefficient. 710 

FC Distances are computed between model predicted functional connectivity after re-711 

establishing E-I balance in all areas and empirical functional connectivity. 712 

 713 

Figure 7: Number of connections that significantly changed (|Z| > 2), see Materials and 714 

Methods, due to lesion in right CAC. The top 3 figures display connections that have 715 

significantly changed before re-establishing local E-I balance. The bottom 3 figures represent 716 

the connections that have significantly changed after re-establishing local E-I balance. In the 717 

lateral view of left and right hemispheres only intra-hemispheric connections are shown while 718 

in the dorsal view of the whole brain (middle panel) inter hemispheric connections are also 719 

shown. The effects of lesion on both hemispheres have been drastically reduced by re-720 

establishing E-I balance. The number of connections that significantly changed within ipsi-721 

lateral hemisphere is reduced by 97% and within contra-lateral hemisphere by 100%. 722 

 723 



 

Figure 8: FC recovery to normalcy across subjects and lesion location. FC Distance across 724 

subjects is plotted for lesions at nodes with participation coefficient > 0.5. A, FC Distance 725 

across subjects and lesion location immediately after lesion. B, FC Distance across subjects and 726 

lesion location after re-establishing E-I balance. 727 

 728 

Table 1: List of all 34 ROIs in each hemisphere. AreaID represents the order of ROIs in the 729 

structural and functional connectivity matrices for each hemisphere. 730 

 731 

Table 2: DMF model parameters and their values used in simulations. 732 

 733 

Table 3: FC Distance (FCD) before and after re-establishing local E-I balance with lesion 734 

centers in cortical midline, parietal and temporal cotrex, frontal cortex, sensory and motor 735 

cortex. For areas highlighted in bold (lIP, lCMF, rCAC. Here prefixes r, l stand for right and left 736 

hemisphere respectively) the functional connections that have significantly changed from 737 

healthy controls functional connections are shown in supplementary figures. 738 
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Figure 5: 844 
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