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ABSTRACT In this paper, we present an eight round distinguisher for four-branch type-2 generalized Feistel

network (GFN) with double-SP (DSP) functions and two distinguishers for eight-branch type-2 GFN with

single-SP (SSP) functions in a known key attack (KKA) model. We improved the result presented by Sasaki

in Indocrypt 2012 by extending the number of rounds attacked from seven to eight for four-branch GFN.

Furthermore, for eight-branch type-2 GFNwith SSP functions, we present the first known key distinguishers.

Our attack works up to 15 rounds of this GFN for all practical parameters. Subsequently, we extend the attack

to 17 rounds for the same GFN, which works for most practical parameters. On the basis of our second result

and the number of rounds attacked, we conclude that eight-branch type-2 GFN with SSP functions is weaker

than four-branch type-two GFN with DSP functions in the KKA model. We apply rebound attack technique

to mount all three distinguishers. However, a limitation of all the distinguishers presented in this paper is

that they are useful only if the input size of S-boxes in bits is greater than or equal to the number of S-boxes

in one S-box layer.

INDEX TERMS Rebound attack, block cipher, SP-functions, known-key distinguisher, generalized feistel

network, active S-box.

I. INTRODUCTION

Design and analysis of block ciphers has been a challeng-

ing and interesting area for cryptographers. Feistel network

and Generalized Fesitel Network (GFN) have been popular

choices for designing block ciphers since the seminal work of

Luby and Rackoff [1]. GFN are widely used for lightweight

designs due to their compactness as well as other desirable

implementation properties like smaller round functions in

comparison to the standard Fesitel structure. Some notewor-

thy block ciphers based on GFN are CLEFIA [2], RC6 [3]

and HIGHT [4].

Traditionally, block ciphers are used as the basic building

blocks of many cryptographic primitives, e.g., signencryption

schemes, compression functions and authenticated encryp-

tion schemes. The security of a block cipher depends on the

round function as well as the secret key. Recently, researchers

proposed many attacks in the context of known-key

setting [5]–[12], where the secret key is already known to the

attacker. In this case only the randomness of the key and the

round function provides the security.

Generally, the round function of block ciphers use a non-

linear mapping termed as substitution transformation (S-box

transformation) to create confusion followed by a linear layer

termed as permutation transformation (P-box transformation)

and subkey XOR-ing. Popularly termed as the SP-layer.

An S-box S is called differentially ‘active’, if the input differ-

ence to S is non zero. Since, only the active S-boxes created

confusion, in general more active S-boxes provide a more

secure design against traditional differential [13] and linear

attacks [14].

GFN with more branches is a matter of great interest for

the design of lightweight cryptographic algorithms which

are more suitable for ubiquitous computing system. Security

analysis of GFN has been an interesting area for cryptogra-

phers. In 2011, Bogdanov and Shibutani [15] analyzed the

security of GFNs in terms of repetition of SP-layer for two

different 4-branch GFN, type-1 and type-2. They compared

their findings with other known results [16], [17] for same

GFN with SSP function and proved that DSP function has

more active S-boxes than SSP function for the same number

of S-boxes used in the designs. This is shown in Table 1.

On the basis of this fact they concluded that DSP function

is more secure than SSP functions against linear and differ-

ential cryptanalysis. In 2011, Sasaki and Yasuda [18]applied

rebound attack [19] on 2-branch SSP functions GFN and suc-

cessfully mounted known key distinguisher up to 11 rounds.
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TABLE 1. Results from [15]. Comparison of number of active S-boxes for
DSP function GFN and SSP function GFN.

In Indocrypt 2012, Sasaki [20] presented a 7 round known key

distinguisher for 4-branch type-2 GFN with DSP functions.

On the basis of number of rounds attacked, he concluded that

the DSP is weaker than SSP for finite number of rounds.

Our Contribution: In this work, we present a distinguisher

for 4-branch type-2 GFN with DSP functions and two distin-

guishers for 8-branch type-2 GFN with SSP functions. One

round of 4-branch type-2 GFN with DSP functions contains

4 SP-layers. In our first work, we extend the number of rounds

attacked from 7 to 8, i.e., 32 SP-layers for 4-branch type-2

GFNwithDSP functions. This analysis is the first analysis for

8 rounds of the above mentioned GFN. Our result strengthens

the belief of [20] that DSP function is indeedweaker than SSP

function.

Further, we present two different distinguishers for

8-branch type-2 GFN with SSP functions. The number of

rounds attacked using the first distinguisher is 15 and the

number of rounds attacked by the second distinguisher is 17.

On the basis of number of rounds attacked and the number of

S-boxes used, proposed distinguiers can be used to compare

security of different GFNs. In general, r rounds of a SSPGFN

can be compared to r/2 rounds of a DSP function. Therefore,

on the basis of [18] and our results, we conclude that 8-branch

type-2 GFN is weaker than 4-branch type-2 GFN with DSP

functions as well as 2-branch GFN with SSP function.

The rest of the paper is organized as follows. In § II, the

notation used and related prior work is described. Our attack

on 4-branch type-2 GFN with DSP functions is presented

in § III. In § IV, we present an attack on 8-branch type-2

GFN with SSP functions which extends up to 15 rounds.

This attack is valid for all practical parameters of this design.

We then extend the attack further up to 17 rounds in § V,

which is valid for most practical parameters of the design.

Finally, we conclude the work in § VI with some open

problems.

II. PRELIMINARIES

A. THE GENERALIZED FEISTEL NETWORK (GFN)

Generalized Feistel Networks (GFN) are variants of Feistel

networks with more than two branches, i.e., a m-branch GFN

partitions theN -bit blocks intom sub-blocks. The size of each

sub-blocks is n bits, i.e., N = n× m.

As defined above, an m-branch GFN divides an

N -bit blocks equally in m sub-blocks such that N =

(n1, n2, n3, · · · , nm) and a round of type-2GFNoutputs [nm⊕

fm
2
(nm−1), n1, n2⊕f1(n1), n3, · · · , nm−2⊕fm

2 −1(nm−3), nm−1]

for keyed nonlinear functions f1, f2,.... , fm
2
[22]. Schematic

diagrams of 4-line type-2 GFN and 8-line type-2 GFN are

shown in Figure 1 and Figure 2 respectively.

FIGURE 1. 4-branch type-2 GFN.

FIGURE 2. 8-branch type-2 GFN.

B. NOTATIONS

1) N : Block length in bits.

2) n: Input/output size of the sub-blocks and round func-

tions.

3) c: Size of an S-box in bits.

4) r : Number of S-boxes in an S-box layer.

5) (binn(0): Representation of value zero using n-bit.

6) ?: Any unknown n-bit value out of the possible 2n.

7) bin
j
c(a): Represents a value a (using c bit) which is the

j-th byte of the word.

8) 1a: Represents is the n-bit constant where only one

predetermined (j-th) byte is active.

FIGURE 3. SSP round function. The numbers on the crossed branches
represent the bit length of that branch.

C. SP ROUND FUNCTION

The round function of a GFN consists of these elementary

operations:

1) Subkey XOR

2) Substitution Layer (S-box)

3) Permutation Layer (P-layer)

1) Single-SP Round Function: A SSP round function of

a GFN consist these operations: subkey xoring, S-box

layer followed by a permutation layer. The design of

single-SP round function is described in Figure 3.

2) Double-SP Round Function: DSP round function is

applying the single-SP round function twice one after

another [15]. Figure 4 describes a double SP-round

function.

III. 8-ROUND DISTINGUISHING ATTACK ON TYPE-2

4-BRANCH GFN WITH DSP FUNCTIONS

Here, we present a known-key distinguishing attack on a

block cipher EK (·) which is instantiated with 8-round type-2

4-branch DSP GFN.
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TABLE 2. Comparison between general attack and presented distinguishers.

FIGURE 4. DSP round function. The numbers on the crossed branches
represent the bit length of that branch.

Theorem 1 (Our Result): Let EK (·) be a block cipher,

which is 8-round type-2 4-branch DSP GFN, with block size

N (= 4n), where K is a randomly chosen and public N -bit

key. For any given c-bit constant a, we show that we can find

a message pair (M ,M ′) and the corresponding ciphertext pair

(C,C ′) with complexity 22c(same S-box) or r×22c (different

S-box) such that

• M ⊕M ′ = (binn(0),X , ?, ?), and

• C ⊕ C ′ = (?, ?,P[1a], ?),

where C = EK (M ), C ′ = EK (M
′), P is the underlying r × r

MDS matrix of the block cipher E ,1 and X is any full-active

difference.2

For general attack, over N bits, we show that it requires an

effort of 32 × r × 2n/2 to find such plaintext and ciphertext

pairs where the effort is measured in terms of the number of

S-box operations.

Proof 1:

a: In the Case of General Attack

For general attack, given any twomessages (M ,M ′) such that

M ⊕ M ′ = (binn(0),X , ?, ?), the probability that the corre-

sponding ciphertext (C,C ′) satisfiesC⊕C ′ = (?, ?,P[1a], ?)

is 2−n where n is the size of a word in bits. Therefore, we need

2n/2 message-ciphertext pairs to get one such message pair.

Since each round is using four S-box layers and each layer

contains r S-boxes, the total number of S-boxes used are

32 × r . Therefore the effort of calculating 2n/2 message-

ciphertext pairs can be described as 32 × r × 2n/2 S-box

operations.

1the branch number of P is (r + 1)
2j is a predetermined byte, i.e., any specific byte out of r bytes.

b: In the Case of EK (·)

The aim of our attack is to produce a pair of messages having

differences of the form (0,X , ?, ?) such that they produce an

output difference of the form (?, ?,P[1a], ?) for all known

keys.

The truncated differential characteristic followed by our

8-round attack is as follows.

(0,X , ?, ?)
1stR
−−→ (0, 0,X , ?)

2ndR
−−→ (0, 0, 0,X )

3rdR
−−→

(X , 0, 0, 0)
4thR
−−→ (0,X ,P[1α], 0)

5thR
−−→ (P[1a], 0,X ,P[1α])

6thR
−−→ (0,P[1a], ?,X )

7thR
−−→ (?, 0,P[1a], ?)

8thR
−−→ (?, ?,P[1a], ?).

The complexity of the proposed attack is only in finding

a pair of values satisfying truncated differential path of the

three rounds inbound phase. Backward outbound phase of

first three rounds and forward outbound phase of the last

two rounds propagate with probability one after getting any

suitable pair by inbound phase.

Our differential trail starts from three round inbound phase

from the 4th round to the 6th round, and message pairs with

zero differences in the last three word and we get a difference

in the first word in the middle of inbound phase. The com-

plexity of getting a starting point (a pair of value following

the inbound phase) is 22c (same S-box) or r × 22c (different

S-box) both time and memory.

Given such a starting point, we get a plaintext-ciphertext

pair after applying three round backward outbound phase

(from 1st round to the 3rd round) and two round forward

outbound phase (7th round to the 8th round). The differences

in the first two words of the plaintexts are 0 and X , while

the differences in the next two words could be any value.

Corresponding to this pair of plaintexts, the third word of the

ciphertexts will have a specific difference out of the possible

2n − 1 non-zero values. Note that the differences in the other

three word of the ciphertext can be any possible n-bit values.
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That is, we show that we can get any 2c specific differences

out of the possible 2n differences. Our work shows that we

can create such a differential trail with lower complexity in

comparison to a general attack. This can be used as a valid

distinguisher against the cipher.

c: Three-Round Inbound Phase

The truncated differential trail for inbound phase propagates

as:

(X , 0, 0, 0)
4thR
−−→ (0,X ,P[1α], 0)

5thR
−−→ (P[1a], 0,X ,P[1α])

6thR
−−→ (0,P[1a], ?,X ).

The complexity of inbound phase is the cost of finding a

pair of values which follows the truncated differential path as

shown in Figure 5.

FIGURE 5. The inbound phase of our 8-round distinguisher on 4-branch
type-2 GFN with double-SP functions.

FIGURE 6. The inbound phase of 8-round distinguisher. Red colored path
represents first matching of the Inbound phase.

To get inbound phase with desired differential characteris-

tics these steps are followed.

1) Make difference distribution table (DDT) for all

S-boxes.

2) a) See Figure 6. Fix the difference at position (5)

as 1a, where a is an already provided value at

the beginning of the attack process as mentioned

in our result (Theorem 1). Using DDT, choose

any matched β such that differences 1β and 1a at

positions (4) and (5) are matched.

b) Since P is linear, the difference at position (3) will

be P−1[1β ].

c) For every α such that 1 ≤ α ≤2c − 1, we define

the difference at position (1) as 1α , and repeat the

following procedure.

i) Since the difference at position (1) is 1α , the

difference at the position (2) will be P[1α].

FIGURE 7. The inbound phase of 8-round distinguisher. Blue colored path
represents second matching of the Inbound phase.

ii) If the differences at positions (2) and (3)

are matched, for each matched difference we

can generate 2r possible matching massage

pairs at position (2) from the DDT, where the

difference of each matching pair (M ,M ′) is

P[1α] and the difference of (S[M ], S[M ′]) is

P−1[1β ].

iii) For each matching pair (M ,M ′) of 2r pairs,

repeat the following procedure.

A) If the difference of S[P[S[M ]] ⊕ K ′

9] and

S[P[S[M ′]] ⊕ K ′

9] at position (5) is 1a,

then fix it and fix any value for second

word at position (14) with the knowl-

edge of difference. All the corresponding

values in between position (1) and (12) can

be fixed from the knowledge of (M ,M ′).

Find difference X at position (12) from

the knowledge of (M ,M ′), and go to

Step 2-(d).

B) Else if there remainmatched pairs we have

not considered, go to Step 2-(c)-iii, other-

wise go to Step 2-(c).

d) Figure 7. Fix the difference at position (10) as 1α ,

where α is already fixed in Step 2-(c).

e) For every λ such that 1 ≤ λ ≤ 2c − 1, repeat the

following procedure.

i) Calculate the difference P−1[1λ] at posi-

tion (8). Note that we already know that the

difference at position (7) should be X .

ii) If the differences at positions (7) and (8) are

matched, we generate 2r possible matching

pairs at position (7) from the DDT, where

the difference of each matching pair (W ,W ′)

is X and the difference of (S[W ], S[W ′]) is

P−1[1λ].

iii) For each matching pair (W ,W ′) of 2r pairs,

repeat the following procedure.

A) If the difference of S[P[S[W ]]⊕K ′

11 ] and

S[P[S[W ′]] ⊕ K ′

9] at position (10) is 1α ,

then fix it and calculate the value at posi-

tion (6) from the knowledge of (M ,M ′)

and (W ,W ′), fix the value at position (13)

and stop the inbound phase and exit.
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B) Else if there remainmatched pairs we have

not considered, go to Step 2-(e)-iii, other-

wise go to Step 2-(e).

d: Complexity Calculations for the Inbound Phase

Next, we provide the time and memory complexity for the

procedure described above in a step by step fashion.

1) a). If the S-box layer has same S-boxes, Step 1 requires

22c time and 22c memory.

b). If the S-box layer has all different S-boxes, Step 1

requires r × 22c time as well as memory.

2) Step 2-(a) requires constant complexity by DDT

look up.

3) Step 2-(b) requires only one operation, so the complex-

ity is constant.

4) Step 2-(c)-i again requires constant complexity.

5) Step 2-(c)-ii Since we are using r S-boxes in the S-box

layer, the matching probability is 2−r . And after getting

one matched difference we have 2r matching pair, so

the complexity of Step 2-(c)-ii is 2r .

6) Step 2-(c)-iii requires 2c complexity, since after com-

pletion of this step we found all 2c−r matched differ-

ences and used all 2c matching pairs.

7) Step 2-(d) requires constant complexity.

8) Step 2-(e)-i again requires constant complexity.

9) Step 2-(e)-ii Since we are using r S-boxes in the S-box

layer the matching probability is 2−r . After getting one

matched difference, we have 2r matching pairs, so the

complexity of Step 2-(e)-ii is 2r .

10) Step 2-(e)-iii requires 2c complexity. After completion

of this step we found all 2c−r matched differences and

used all 2c matching pairs.

11) Overall complicity of finding one starting point, i.e.,

one message pair, which may follow entire differential

characteristic of inbound phase is 22c S-box opera-

tions (same S-box) r × 22c S-box operations (different

S-box), both in terms of time and memory.

FIGURE 8. 3-round backward outbound phase.

e: Three-Round Backward Outbound Phase

The truncated differential path of backward outbound phase

is as follows, (Figure 8).

(0,X , ?, ?)
1st

−→ (0, 0,X , ?)
2nd

−−→ (0, 0, 0,X )
3rd

−→ (X , 0, 0, 0).

FIGURE 9. 2-round forward outbound phase.

After getting one starting point for inbound phase, the trun-

cated differential path for backward outbound phase propa-

gates with probability 1.

f: Two-Round Forward Outbound Phase

The truncated differential path of forward outbound phase is

as follows (Figure 9).

(0,P[1a], ?,X )
7th

−→ (?, 0,P[1a], ?)
8th

−→ (?, ?,P[1a], ?).

Similar to the backward outbound phase, after getting any

paired values which satisfies the inbound phase, the truncated

differential path follows the forward outbound phase with

probability 1.

TABLE 3. Comparison of complexities between general attack and
proposed distinguisher.

A. SUMMARY OF THE ATTACK

As shown in Table 3, the complexity of the proposed distin-

guisher is much lower than a general attack. The proposed

distinguisher is valid only if the input size of S-boxes is

greater than or equal to the number of S-boxes used.

IV. 15-ROUND DISTINGUISHING ATTACK ON 8-BRANCH

GFN WITH SINGLE-SP FUNCTIONS

Here, we present a new known-key distinguishing attack on

a block cipher EK (·) which is instantiated with 15-round

8-branch SSP GFN. Note that this is the first known attack

on this GFN.

Theorem 2 (Our Result): Let EK (·) be a block cipher,

which is 15-round 8-branch single-SP GFN with block size

N (= 8n), where K is a randomly chosen and public N -bit

key. We show that we can find a message pair (M ,M ′) and

the corresponding ciphertext pair (C,C ′) and c-bit constants

a, b and d , with complexity 22c (same S-box) or r × 22c

(different S-box) such that

• M ⊕M ′ = (1a,P[1b], ?, ?, ?, ?, ?, ?), and

• C ⊕ C ′ = (?, ?, ?, ?, ?, ?, 1a,P[1d ]),

where C = EK (M ), C ′ = EK (M
′), P is the underlying r × r

MDS matrix of the block cipher E .3

3j is a predetermined byte.
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On the other hand, in case of a general attack over N bits,

we show that it requires a complexity of 60 × r × 2(n−
c
2 )

to find such plaintext and ciphertext pairs where the com-

plexity is measured in terms of the number of S-box opera-

tions. Therefore, our construction works as a distinguisher for

15 round 8-branch GFN.

Proof 2:

g: In the Case of General Attack

For a general attack, given any two messages (M ,M ′) such

thatM ⊕M ′ = (1a,P[1b], ?, ?, ?, ?, ?, ?), for all a and b, the

probability that there exists a d such that the correspond-

ing ciphertext (C,C ′) satisfies C ⊕ C ′ = (?, ?, ?, ?, ?, ?,

1a,P[1d ]) is 2
(2n−c), where n is the size of a word in bits.

Therefore, we need 2(n−
c
2 ) plaintext-ciphertext pairs to get

one conforming message pair.

Since, each round of 8-branch type-2 GFN contains four

S-box layers and each layer contains r S-boxes, the total num-

ber of S-boxes used are 60× r . Therefore, the complexity of

processing 2(n−
c
2 ) plaintext-ciphertext pairs can be described

as the time complexity of 60 × r × 2(n−
c
2 ) S-box operations.

h: In Case of EK (·)

The aim of the this attack is to produce a pair of messages

having differences of the form (P[1a],P[1b], ?, ?, ?, ?, ?, ?),

such that they produce an output difference of the form

(?, ?, ?, ?, ?, ?, 1a,P[1d ]) for all known keys.

The truncated differential characteristic followed by our

15-round attack is as follows.

(1a,P[1b], ?, ?, ?, ?, ?, ?)

1stR
−−→ (0, 1a,P[1δ], ?, ?, ?, ?)

2ndR
−−→

(0, 0, 1a,P[1δ], ?, ?, ?, ?)

3rdR
−−→ (0, 0, 0, 1a,P[1η], ?, ?, ?)

4thR
−−→ (0, 0, 0, 0, 1a,P[1η], ?, ?)

5thR
−−→ (0, 0, 0, 0, 0, 1a,P[1α], ?)

6thR
−−→ (0, 0, 0, 0, 0, 0, 1a,P[1α])

7thR
−−→ (0, 0, 0, 0, 0, 0, 0, 1a)

8thR
−−→ (1a, 0, 0, 0, 0, 0, 0, 0)

9thR
−−→ (0, 1a,P[1β ], 0, 0, 0, 0, 0)

10thR
−−−→ (0, 0, 1a,P[1β ], 1γ , 0, 0, 0)

11thR
−−−→

(0, 0, 0, 1a, 0, 1γ ,P[1φ], 0)

12thR
−−−→ (?, 0, 0, 0, 1a, 0, 1γ ,P[1φ])

13thR
−−−→ (P[1θ ], ?, ?, ?, 0, 1a,P[1λ], 1γ )

14thR
−−−→

(?,P[1θ ], ?, ?, ?, 0, 1a,P[1λ])

15thR
−−−→ (?, ?, ?, ?, ?, ?, 1a,P[1d ]).

The complexity of the proposed attack is only in finding

a pair of values satisfying truncated differential path of the

four rounds inbound phase. Backward outbound phase of first

seven rounds and forward outbound phase of the last four

rounds satisfy with probability one after getting any suitable

pair by inbound phase.

FIGURE 10. Four round inbound phase of our 15-round distinguisher on
8-branch type-2 single-SP GFN.

Our differential trail starts from four round inbound phase

(8th round to the 11th round), with a specific difference in

the last word and any arbitrary differences in the remaining

seven words. The complexity of getting a starting point (a pair

of values following inbound phase) is 22c (same S-box) or

r × 22c (different S-box) both time and memory.

Given such a starting point, we get a plaintext-ciphertext

pair after applying seven round backward outbound phase

(1st round to the 7th round) and four round forward outbound

phase (12th round to the 15th round). The difference in the

1st and 2nd word of plaintexts and 7th and 8th word of

the ciphertexts can be any fixed values out of the possible

2c values.

Our work shows that we can create such a differential trail

with lower complexity in comparison to a general attack. This

can be used as a valid distinguisher against the cipher.

i: Four-Round Inbound Phase

The truncated differential trail for inbound phase is propa-

gated as:

(0, 0, 0, 0, 0, 0, 0, 1a)
8thR
−−→ (1a, 0, 0, 0, 0, 0, 0, 0)

9thR
−−→

(0, 1a,P[1β ], 0, 0, 0, 0, 0)
10thR
−−−→ (0, 0, 1a,P[1β ], 1γ , 0, 0, 0)

11thR
−−−→ (0, 0, 0, 1a, 0, 1γ ,P[1φ], 0).

The complexity of inbound phase is the cost of finding

a pair of values which follows truncated differential path as

shown in Figure 10.

To get inbound phase with the desired differential charac-

teristics, these steps are followed.

1) Make difference distribution table (DDT) for all

S-boxes.

2) Fix a byte position j in a word to be activated, where

1 ≤ j ≤ r .

3) See Figure 10. Fix the difference at position (3) as 1γ ,

where γ is any nonzero c-bit value.

4) Compute the corresponding difference at position (4).

Since P is linear, the difference at position (4) will be

P−1[1γ ].

5) For every β such that 1 ≤ β ≤ 2c − 1, fix the

difference at position (1) as 1β , and repeat the following

procedure.

a) Since P is linear and difference at position (8)

is 0, the difference at position (2) comes out to

be P[1β ].
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b) i) If the differences at positions (2) and (4)

are matched, for each matched difference we

can generate 2r possible matching massage

pairs at position (2) from the DDT, where the

difference of each matching pair (M ,M ′) is

P[1β ] and the difference of (S[M ],S[M ′]) is

P−1[1γ ], and go to Step 2-(c).

ii) Else if there are remaining β at position (1),

go to Step 5.

c) Fix the constant values at position (5) and for

each matching pair (M , M ′) of 2r pairs, repeat

the following procedure.

i) Fix the constant value for entire word except

j-byte at position (8), for every 2c different

values for j-th byte, repeat the following pro-

cedure.

A) Calculate the corresponding values

(W ,W ′) at the position (6) and if the dif-

ference at position (7) is 1β , i.e., (S[W ]⊕

S[W ′]) = 1β , then fix it. Using the knowl-

edge of (M ,M ′) and (W ,W ′), fix all the

corresponding values at position (1), (2),

(3), (4), (6) and (7), and go to Step 6.

B) Else if there are remaining values we have

not considered, go to Step 2-(c)-i.

6) Fix the constant values at positions (9), (10), (11), (12)

and (13) with the knowledge of known differences.

j: Complexity Calculation for the Inbound Phase

Next, we provide the time and memory complexity for the

procedure described above in a step by step fashion.

1) a). If the S-box layer has identical S-boxes, Step 1

requires 22c time and 22c memory.

b). If the S-box layer has all different S-boxes, Step 1

requires r × 22c time as well as memory.

2) Step 2 requires only one operation, so the complexity

is constant.

3) Step 3 requires only one operation, so the complexity

is constant.

4) Step 4 again requires constant complexity.

5) Step 5-(a) again requires constant complexity.

6) Step 2-(b) Since we are using r S-boxes in the S-box

layer, the matching probability is 2−r . After getting one

matched difference we have 2r matching pair, so the

complexity of Step 2-(b) is 2r .

7) Step 2-(c) Since we are looking for a fixed difference

at position (7) and we have 2c different possible differ-

ences, the complexity of Step 2-(c) is 2c.

8) Step 2-(6) requires constant complexity.

9) Overall complexity of finding one starting point,

i.e., one message pair, which follows the complete

differential characteristics of inbound phase is 22c

S-box operations (same S-box) or r × 22c S-box oper-

ations (different S-box), both in terms of time and

memory.

FIGURE 11. Seven round backward outbound phase of 15-round
distinguisher.

k: Seven-Round Backward Outbound Phase

The truncated differential path of backward outbound phase

is as follows (Figure 11).

(1a,P[1b], ?, ?, ?, ?, ?, ?)
1stR
−−→ (0, 1a,P[1δ], ?, ?, ?, ?)

2ndR
−−→

(0, 0, 1a,P[1δ], ?, ?, ?, ?)
3rdR
−−→ (0, 0, 0, 1a,P[1η], ?, ?, ?)

4thR
−−→ (0, 0, 0, 0, 1a,P[1η], ?, ?)

5thR
−−→ (0, 0, 0, 0, 0, 1a,P[1α], ?)

6thR
−−→ (0, 0, 0, 0, 0, 0, 1a,P[1α])

7thR
−−→ (0, 0, 0, 0, 0, 0, 0, 1a).

After getting one starting point for inbound phase, the trun-

cated differential path for backward outbound phase propa-

gates with probability 1.

FIGURE 12. Four round forward outbound phase of 15-round
distinguisher.

l: Four-Round Forward Outbound Phase

The truncated differential path of forward outbound phase is

as follows, (Figure 12).

(0, 0, 0, 1a, 0, 1γ ,P[1φ], 0)

12thR
−−−→ (?, 0, 0, 0, 1a, 0, 1γ ,P[1φ])

13thR
−−−→ (P[1θ ], ?, ?, ?, 0, 1a,P[1λ], 1γ )

14thR
−−−→

(?,P[1θ ], ?, ?, ?, 0, 1a,P[1λ])

15thR
−−−→ (?, ?, ?, ?, ?, ?, 1a,P[1d ]).

Similar to the backward outbound phase, after getting any

paired values which satisfies the inbound phase, the truncated

differential path follows the forward outbound phase with

probability 1.
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TABLE 4. Comparison of complexities of general attack and our
distinguisher.

A. SUMMARY OF THE ATTACK

As shown in Table 4, the complexity of the proposed

distinguisher is much lower than a general attack.

Similar to the previous case, we have presented the com-

plexity of our attack in terms of the number of S-box

operations. The complexity of our proposed distinguisher is

22c (same S-box) r × 22c (different S-box) in time and

memory. For general attack, the required complexity is 60 ×

r × 2(n−
c
2 ) S-box operations. Therefore the proposed distin-

guisher has lower complexity than general attack.

V. 17-ROUND DISTINGUISHING ATTACK ON 8-BRANCH

GFN WITH SINGLE-SP FUNCTIONS

In this section, we present a new known-key distinguishing

attack on a block cipher EK (·) which is instantiated with

17-round 8-branch single-SP GFN.

Theorem 3 (Our Result): Let EK (·) be a block cipher,

which is 17-round 8-branch single-SP GFN with block

size N (= 8n), where K is a randomly chosen and public

N -bit key. We show that we can find a message pair (M ,M ′)

corresponding ciphertext pair (C,C ′) and c-bit constants

b and d , with complexity 22c (same S-box) or r×22c (different

S-box) such that

• M ⊕M ′ = (P[1b], ?, ?, ?, ?, ?, ?, ?), and

• C ⊕ C ′ = (P[1d ], ?, ?, ?, ?, ?, ?, ?),

where, C = EK (M ), C ′ = EK (M
′), P is the underlying r × r

MDS matrix of the block cipher E .4

On the other hand, in case of a General Attack over N bits,

we show that it requires an effort of 68 × r × 2
n−c
2 S-box

operations to find such plaintext and ciphertext pairs.

Proof 3:

m: In Case of General Attack

For a general attack, given any two messages (M ,M ′) such

that M ⊕M ′ = (P[1b], ?, ?, ?, ?, ?, ?, ?), for all y the proba-

bility that there exists a z, such that the corresponding cipher-

text (C,C ′) satisfies C ⊕ C ′ = (P[1d ], ?, ?, ?, ?, ?, ?, ?) is

2(n−c), where n is the size of a word in bits. Therefore, we

need 2
n−c
2 plaintext-ciphertext pairs to get one conforming

message pair. The complexity of processing 2(n−
c
2 ) plaintext-

ciphertext pairs can be described as the time complexity of

68 × r × 2
n−c
2 S-box operations.

4j is a predetermined byte, i.e. any specific byte out of r bytes.

n: In Case of EK (·)

The aim of the our attack is to produce a pair of mes-

sages having differences of the form (P[1b], ?, ?, ?, ?, ?, ?, ?),

such that they produce an output difference of the form

(P[1d ], ?, ?, ?, ?, ?, ?, ?) for all known keys.

The truncated differential characteristic followed by our

17-round attack is as follows.

(P[1b], ?, ?, ?, ?, ?, ?, ?)

1stR
−−→ (1a,P[1b], ?, ?, ?, ?, ?, ?)

2ndR
−−→

(0, 1a,P[1δ], ?, ?, ?, ?)

3rdR
−−→ (0, 0, 1a,P[1δ], ?, ?, ?, ?)

4thR
−−→

(0, 0, 0, 1a,P[1η], ?, ?, ?)

5thR
−−→ (0, 0, 0, 0, 1a,P[1η], ?, ?)

6thR
−−→ (0, 0, 0, 0, 0, 1a,P[1α], ?)

7thR
−−→ (0, 0, 0, 0, 0, 0, 1a,P[1α])

8thR
−−→ (0, 0, 0, 0, 0, 0, 0, 1a)

9thR
−−→

(1a, 0, 0, 0, 0, 0, 0, 0)

10thR
−−−→ (0, 1a,P[1β ], 0, 0, 0, 0, 0)

11thR
−−−→

(0, 0, 1a,P[1β ], 1γ , 0, 0, 0)

12thR
−−−→ (0, 0, 0, 1a, 0, 1γ ,P[1φ], 0)

13thR
−−−→ (?, 0, 0, 0, 1a, 0, 1γ ,P[1φ])

14thR
−−−→

(P[1θ ], ?, ?, ?, 0, 1a,P[1λ], 1γ )
15thR
−−−→

(?,P[1θ ], ?, ?, ?, 0, 1a,P[1λ])
16thR
−−−→

(?, ?, ?, ?, ?, ?, 1a,P[1d ])

17thR
−−−→ (P[1d ], ?, ?, ?, ?, ?, ?, ?).

Our differential trail starts from four round inbound phase

(9th round to the 12th round), with a specific difference in

the last word and any arbitrary differences in the remaining

seven words. The complexity of getting a starting point (a pair

of value following inbound phase) is 2[2c] (same S-box) or

r × 22c (different S-box) time and memory both.

Given such a starting point, we can get a plaintext-

ciphertext pair after applying eight round backward outbound

phase (1st round to 8th round) and five round forward out-

bound phase (13th round to 17th round). The difference in the

first word of plaintext and ciphertext can be any fixed value

out of the possible 2c − 1 values. That is, we show that we

can get any 2c − 1 specific differences out of the possible 2n

differences.

Our work shows that we can create such a differential trail

with lower complexity in comparison to a general attack. This

can be used as a valid distinguisher against the cipher.
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FIGURE 13. Four round inbound phase of our 17-round distinguisher on
8-branch type-2 single-SP GFN.

FIGURE 14. Eight round backward outbound phase of our 17-round
distinguisher on 8-branch type-2 single-SP GFN.

FIGURE 15. Five round forward outbound phase of our 17-round
distinguisher on 8-branch type-2 single-SP GFN.

o: Four-Round Inbound Phase

The truncated differential trail for inbound phase propagates

as:

(0, 0, 0, 0, 0, 0, 0, 1a)
9thR
−−→ (1a, 0, 0, 0, 0, 0, 0, 0)

10thR
−−−→

(0, 1a,P[1β ], 0, 0, 0, 0, 0)
11thR
−−−→ (0, 0, 1a,P[1β ], 1γ , 0, 0, 0)

12thR
−−−→ (0, 0,0, 1a, 0, 1γ ,P[1φ], 0).

The complexity of inbound phase is the cost of finding a

pair of values which follows the truncated differential path as

shown in Figure 13.

Since the same four round inbound phase used in

section IV is being used, the overall complexity of finding

one starting point, i.e. one message pair, which follows the

complete differential characteristics of the inbound phase is

22c (same S-box) or r × 22c (different S-box) both in terms

of time and memory.

FIGURE 16. Differential path of eight round distinguisher.

p: Eight-Round Backward Outbound Phase

The truncated differential path of backward outbound phase

is as follows, (Figure 14).

(P[1b], ?, ?, ?, ?, ?, ?, ?)

1stR
−−→ (1a,P[1b], ?, ?, ?, ?, ?, ?)

2ndR
−−→

(0, 1a,P[1δ], ?, ?, ?, ?)

3rdR
−−→ (0, 0, 1a,P[1δ], ?, ?, ?, ?)

4thR
−−→

(0, 0, 0, 1a,P[1η], ?, ?, ?)

5thR
−−→ (0, 0, 0, 0, 1a,P[1η], ?, ?)

6thR
−−→ (0, 0, 0, 0, 0, 1a,P[1α], ?)

7thR
−−→

(0, 0, 0, 0, 0, 0, 1a,P[1α])

8thR
−−→ (0, 0, 0, 0, 0, 0, 0, 1a).

After getting one starting point for the inbound phase, the

truncated differential path for the backward outbound phase

propagates with probability 1.

q: Five-Round Forward Outbound Phase

The truncated differential path of forward outbound phase is

as follows, (Figure 15).

(0, 0, 0, 1a, 0, 1γ ,P[1φ], 0)

13thR
−−−→ (?, 0, 0, 0, 1a, 0, 1γ ,P[1φ])

14thR
−−−→ (P[1θ ], ?, ?, ?, 0, 1a,P[1λ], 1γ )

15thR
−−−→

(?,P[1θ ], ?, ?, ?, 0, 1a,P[1λ])

16thR
−−−→ (?, ?, ?, ?, ?, ?, 1a,P[1d ])

17thR
−−−→ (P[1d ], ?, ?, ?, ?, ?, ?, ?).
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FIGURE 17. Differential path of fifteen round distinguisher.

FIGURE 18. Differential path of seventeen round distinguisher.

Similar to the backward outbound phase, after getting any

such message pair which satisfies the inbound phase, i.e.,

one starting point, the truncated differential path follows the

forward outbound phase with probability 1.

TABLE 5. Complexity comparison between general attack and proposed
distinguisher.

A. SUMMARY OF THE ATTACK

As shown in Table 5, the complexity of the proposed distin-

guisher is lower than a general attack.

We have presented the complexity of our attack in terms

of the number of S-box look ups, as was done in the previ-

ous cases. The complexity of our proposed 17-round distin-

guisher for 8-branch single-SP function is r × 22c in time

and memory. For a general attack, the required complexity

is 68 × r × 2(
n−c
2 ) S-box look ups. Hence the proposed

distinguisher has lower complexity than general attack.

VI. CONCLUSIONS

In this work, we have presented 3 distinguishers for two

different types of GFN. Our first distinguisher improves the

results of Sasaki [20] by extending the attack by one more

round.

In our second work we presented two distinguisher for

8-branch type-2 GFN with single-SP function. Our first dis-

tinguisher is a 15-round distinguisher for 8-branch type-2

GFN with single-SP functions. The complexity of our pro-

posed distinguisher is much lower than the general attack and

it can be used for all the practical design parameters. The

complexity of our 17-round distinguisher is the same as the

15-round distinguisher, but the advantage of the distinguisher

against a random function is smaller. Further, our 17-round

distinguisher works for most practical design parameters for

such GFN’s.

However, a limitation of all the distinguishers presented

in this work is that they are useful only if the input size of

S-boxes is greater than or equal to the number of S-boxes

used. Removing this limitation and increasing the numbers

of rounds attacked for different types of GFN’s are interesting

open problems.
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