Header menu link for other important links
Direct Chemical Dynamics Simulations of H 3 + + CO Bimolecular Reaction
E.G. Naz, S. Godara,
Published in American Chemical Society
PMID: 30350635
Volume: 122
Issue: 43
Pages: 8497 - 8504
The proton transfer reaction H3+ + CO → HCO+/HOC+ + H2 has gained considerable attention in the literature due to its importance in interstellar chemistry. The reaction products - formyl cation (HCO+) and isoformyl cation (HOC+) - are known to initiate multiple chemical reaction networks, resulting in complex molecules found in space. Several experimental and theoretical studies probing the structure and energetics of the [H3CO]+ system, HCO+/HOC+ product branching ratios, reaction mechanisms, etc., have been reported in the literature. In the present work, we investigated the H3+ + CO bimolecular reaction in the gas phase using direct dynamics methodology. The simulation conditions were chosen to mimic recently reported velocity map imaging experiments on the same reaction. The calculations were performed using the density functional PBE0/aug-cc-pVDZ level of electronic structure theory. Internal energy and scattering angle distributions of reaction products found from the simulations are in qualitative agreement with the experiment. However, the product branching ratios at low collision energies were in contrast with the experimental predictions. Interesting dynamical features were observed in the simulations, and detailed atomic level mechanisms are presented. Copyright © 2018 American Chemical Society.
About the journal
JournalData powered by TypesetJournal of Physical Chemistry A
PublisherData powered by TypesetAmerican Chemical Society