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A B S T R A C T

A novel adaptive high dimensional model representation (HDMR) is developed for stochastic finite element
analysis of composite plate. Uncertainty propagating through the physical system is quantified using this tech-
nique where only the significant dimensions are retained. Influence of these dimensions is modeled by different
orders which are preferred to be low for computational tractability. These dimensions are identified by a sen-
sitivity analysis using support points in the sparse grid which are generated using multiple levels of hierarchy,
joint or marginal probability distributions and dimension adaptiveness. This multi level hierarchical generation
of support points fill the domain of the input variables with major emphasis on the regions of interest which
may be the entire space, limit state, maxima/minima or tail ends of the probability distribution function for
rare events depending upon the nature of the problem. The hybrid characteristics of the proposed dimension
decomposition is introduced in this paper where the component functions are expressed using orthogonal bases
and the error term which is further modeled using Gaussian random process (i.e. Kriging). The performance of
the proposed Hybrid dimension adaptive HDMR (hdA‐HDMR) is illustrated using stochastic finite element anal-
ysis of laminated composite plate whose material properties are considered as homogeneous non‐normal ran-
dom fields.

1. Introduction

Non‐intrusive formulation is a substitution paradigm to quantify
the input–output relationship between the variables of a physical sys-
tem. Different modeling techniques for this purpose are available in
the literatures [1–4] e.g. response surface method (RSM), polynomial
chaos expansion (PCE), radial basis functions (RBF), neural networks,
support vector regression (SVR), Kriging, high dimensional model rep-
resentation (HDMR) etc. Their performances are usually influenced by
the basis functions, support point generation scheme and discretiza-
tion of the domain to develop the model. Here, the term support points

refer to the locations where the original system are evaluated to train
the artificial model. In stochastic computations, these methods aid in
executing time consuming random realizations from population based
methods such as Monte Carlo simulation (MCS), Latin hypercube sam-
ples (LHS) and so on. One of the popular methods for this purpose is
PCE which uses orthogonal bases like Hermite, Laguerre, Jacobi and
Legendre under the Askey scheme [5,6]. The unknown coefficients
in this technique are evaluated using different fitting tools e.g. colloca-

tion [7,8], projection [9], least square regression (ordinary, weighted
and moving) [10–14], least angle regression (LARS) [15] etc.

Different adaptive versions are proposed in the literatures to
enhance their performance for stochastic computations using hyper-
bolic expansion and adaptive generation of basis terms [15,16]. Fur-
ther improvement of its performance was proposed by Schobi et al.
[17] using PCE coupled with Kriging. In their proposal, the original
function was replicated by sparse PCE with truncation error modeled
using Kriging. They incorporated hyperbolic expansion in order to
limit the number of cross terms. Also, the adaptive generation of the
bases were conducted by LARS to eliminate the ineffective bases in
PCE. LHS was used to generate the support points to train the model
in two different ways – considering LARS directly or screening one‐
by‐one to get an optimal expansion. Application of this PCE‐Kriging
technique was limited to performance functions with low to moderate
number of random variables (i.e. < 20) [18]. Using this technique,
Dutta et al. [19] performed reliability based design optimization
(RBDO) of thin tensile membrane structures exposed to uncertain wind
loading. The dimension of the problem considered in their study was
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also low (i.e. 3). Zhang et al. [20] applied a sequential generation of
the support points to improve the performance of Kriging based model.
Support points were populated in the region of interest (e.g. near limit
state for reliability analysis) using the probability of prediction from
the model to identify the failure region. Haeri and Fadaee [21]
extended the application of this scheme for reliability analysis of lam-
inated composite plates. However, their study was limited to a high

probability of failure (i.e. > 10�2) with a moderate number of random
variables (< 15). This emphasizes that non‐intrusive models in the tail
end region (i.e. low failure probability) for large dimensional problems
remain an open area of future research.

Besides the development of PCE and Kriging, dimension decompo-
sition (e.g. HDMR) [22] has also gained popularity in the recent past.
It was developed using analysis of variance (ANOVA) for efficient rep-
resentation of the performance function with the help of orthogonal
subfunctions of lower dimensions [23–26]. It can accurately decouple
a performance function to form the response surface. The support
points in this technique are often generated using either random sam-
pling (e.g. Sobol’ sequence, LHS) [27,28] or deterministic points (e.g.
mesh grids) [29]. The choice of the support point generation scheme
leads to different formulation as the subfunctions change. Ziehn and
Tomlin [27] proposed Sobol’ sequence based HDMR formulation with
modified Legendre polynomials as the bases to model the subfunc-
tions. The bases were selected using sensitivity analysis with respect
to output. This formulation was later adopted by Dey et al. [28,30]
for uncertainty quantification of composite plates. Chakraborty and
Chowdhury [31] proposed hp adaptive generalized ANOVA expansion
based on optimal polynomial degree, number of support points and
significant component functions. Chen et al. [32] used HDMR for
Sobol sensitivity analysis of the stresses induced at the bolted joints
in a composite plate. Ma and Zabaras [33] proposed adaptive finite dif-
ference HDMR using the sparse grid collocation to interpolate the com-
ponent functions. Their numbers were restricted using significant
dimensions based on sensitivity which resulted in limited sparse grid
generation using Smolyak’s algorithm. Using mesh grid points, Chowd-
hury et al. [22,34,35] proposed finite difference HDMR for efficient
reliability analysis using moving least square (MLS) technique with
regular polynomial bases. This new interpolation scheme proved to
be efficient than the conventional Lagrange interpolation which was
further improved by Rathi and Chakraborty [36] using PCE to model
the subfunctions. They proposed multi HDMR formulation to enhance
the quality of decomposition for reliability analysis. A dimension adap-
tive formulation was also suggested by Rathi and Chakraborty [36] for
large problems using Pearson correlation coefficients. In addition to
the advanced versions of HDMR, hybrid versions are also developed
in the recent past. Yadav and Rahman [37] proposed a hybrid formu-
lation using summand and multiplicative polynomial bases to repre-
sent the subfunctions of HDMR. They used it for uncertainty
quantification of acoustics in a vehicle cabin with first order HDMR.
Macías et al. [38] applied Kriging and HDMR to estimate the uncer-
tainty in natural frequencies of the carbon nanotube composite plates.
Recently, another hybrid formulation was suggested by Chakraborty
and Chowdhury [39–42] using Kriging with randomly generated sup-
port points. They termed their dimension decomposition formulation
as hybrid polynomial correlated function evaluation (H‐PCFE). In this
proposal, Kriging was applied on ad hoc basis for the global error
approximation. Chatterjee and Chowdhury [43,44] extended this for-
mulation for uncertainty quantification of offshore structures. The
unknown coefficients were determined using SVR while Bayesian
learning was adapted for better training of the meta‐model. Contrary
to this global error modeling, Ulaganathan et al. [45] applied gradient
enhanced Kriging to model the errors in the subfunctions of HDMR.
They demonstrated the performance of their hybrid technique using
different support point generation schemes involving LHS, Voronoi
partition and maximin sampling. However, the examples illustrated

by them were corresponding to the fitting error of the proposed
meta‐model technique which requires further investigation with
respect to its application in stochastic computations.

1.1. Objectives of this study and problem formulation

Aforementioned literature review shows the chronological devel-
opment of dimension decomposition with major emphasis on HDMR
and its advanced versions for the solution of large dimensional prob-
lems (e.g. composite plates with spatial variability). These research
works are mainly focused on various modifications in terms of bases,
component functions and unknown coefficients in the formulation.
These modifications include MLS [22,34–36] which employs evolving
coefficients to minimize the error at individual locations with respect
to the assumed weight function. Hence, making the proposed formula-
tion scalar in the sense that each realization needs to be solved inde-
pendently, eventually results in multiple matrix inversions for
uncertainty quantification and reliability analysis. This issue exponen-
tially escalates the computational cost when the dimension of the
problem is high. Also, inversion of large matrices cause ill‐
conditioning which result in erroneous modeling. Based on this discus-
sion, following are the objectives set for the present study.

• Develop a hybrid dimension adaptive decomposition of the perfor-
mance function with multiple generation of HDMRs for uncertainty
quantification of composite structures.

• Estimate the probability of failure by accurate and efficient repre-
sentation of the limit state, especially near the region of interests.

• Improve the computational cost to solve the reliability based design
problem involving large number of random variables for optimal
solution.

These objectives are addressed in this paper where a new formulation
of hybrid dimension adaptive (d‐Adaptive) HDMR is proposed. Besides
matrix inversion, the error term in this proposal is modeled as a ran-
dom process. This adaptive sparse formulation of HDMR is based on
the significance of the dimension. Thus, the model presented in this
paper uses the apt combination of d‐Adaptive formulation with multi-
ple generations of the HDMR. Here, the error is also modeled as a
Gaussian random process along with the adaptive sparse formulation
of HDMR for more accurate local approximation. This coupling of
the multiple dimension decompositions and the error modeling using
random process (i.e. Kriging) leads to a formulation with polynomial
bases and weigh functions. These terms can be referred a parametric
and nonparametric based on their nature of the application, respec-
tively. Hence, it makes the proposal hybrid for dimension decomposi-
tion. It is applied to solve different problems in stochastic computation
which includes accurate estimation of the probability of failure by a
near exact representation of the limit state, especially near the most
probable failure point (MPP). It also improves the computational cost
of a reliability based design problem with large number of random
variables for optimal solution. In this paper, the application of the pro-
posed method is demonstrated for stochastic finite element analysis of
composite plate with different support conditions when exposed to
spatial randomness in material properties. The mathematical frame-
work of the proposed hybrid HDMR is discussed in the following
section.

2. Development of hybrid d-Adaptive HDMR

In this section, formulation of the proposed d‐Adaptive HDMR is
presented to model the input–output relation of large dimensional
problems. An example with a few random variables is added in the
Appendix A for further clarity. In general, this relation involves lower
order influences of the input variables for a well‐defined physical sys-
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tem [46]. The proposal uses this characteristic for hierarchical decom-
position of the original function, thus making it robust for reliability
analysis and uncertainty quantification.

Let a physical system or model which yields an output g xð Þ is sub-
jected to a n‐dimensional vector of input variables represented by x

where the performance function can be expressed in the following
form

g x1; x2; . . . ; xnð Þ ¼ g0 þ ∑
1⩽i1⩽n

g i1 xi1ð Þ þ ∑
1⩽i1<i2⩽n

gi1 i2 xi1 ; xi2ð Þ þ � � �

þ ∑
1⩽i1<i2<���<ij⩽n

gi1 i2 ...ij xi1 ; xi2 ; . . . ; xij

� �

þ � � �

þg12...n x1; x2; . . . ; xnð Þ ð1Þ

The above expression gives a hierarchical expansion of g xð Þ in terms of
sub‐functions which are based on their association with the number of
random variables as shown in Fig. 1a. The notations

g0; gi1 xi1ð Þ; g i1 i2 xi1 ; xi2ð Þ; g i1 i2 ...ij xi1 ; xi2 ; . . . ; xij

� �

and g12...n x1; x2; . . . ; xnð Þ
represent mean component, influence due to xi1 , (xi1 ; xi2 ),
(xi1 ; xi2 ; . . . ; xij ), (xi1 ; xi2 ; . . . ; xin ), respectively. Symbolically, the num-

ber of component functions in the jth order is given by
n
j

� �

. Here, it

may be noted that the higher order components in Eq. (1) can be
insignificant and hence, they are neglected for computational effi-
ciency. Thus, only limited lower order terms are considered for accu-
rate and efficient determination of the output. This truncation
typically proves to be adequate for practical problems, however, it does
not undermines the significance of any higher order term in Eq. (1). The
importance of a particular order is specific to the problem which can be
determined based on the sensitivity analysis (e.g. Sobol’ sensitivity
indices). This, in turn, makes the formulation adaptive where only
important terms are retained for further analysis. This procedure (i.e.
sensitivity analysis) demand significant computational cost which in
this paper is alleviated by an efficient hybrid d‐Adaptive approach as
explained below.

Suppose, a few input variables in x are significant (viz.
xi1 ; xi2 ; . . . ; xinr

) to the output whose indices i1; i2; . . . ; inrf g∈Nnr form
a subset of Nn ¼ 1; 2; . . . ; nf g. The component functions associated
with the insignificant variables (i.e. xi; 8 i∈Nn n Nnr ) constitute a resid-

ual term R̂nr . This residual is neglected in the HDMR formulation with-
out loss of accuracy for all practical purpose. It leads to the curtailment
of the expansion in Eq. (1) as shown in Fig. 1b where the insignificant
variables are removed to save the computational cost. Hence, the basic
dimension curtailed formulation of the HDMR is given by

g xð Þ ¼ g0 þ ∑
i1 ∈Nnr

g i1 xi1ð Þ þ ∑
i1; i2 ∈Nnr

i1 < i2

g i1 i2 xi1 ; xi2ð Þ þ � � �

þ ∑
i1; i2; . . . ; ij ∈Nnr

i1 < i2 < � � � < ij

g i1 i2 ...ij xi1 ; xi2 ; . . . ; xij

� �

þ � � �

þ g i1 i2 ...inr xi1 ; xi2 ; . . . ; xnrð Þ þ R̂nr ð2Þ

In this paper, finite difference HDMR is used with a reference point (or
anchor point) through which hyper‐planes are constructed. Let
c ¼ ci1 ci2 � � � cnrf g be this point to construct the component functions.
As a practical choice, the reference point is often set to the mean values
μx of the input variables. The component functions are determined by
the formation of the hypothetical planes through c which cuts the func-
tion for an accurate representation. This results in a sequential evalua-
tion of the component functions as

g0 ¼ g cð Þ; gi1 xi1ð Þ ¼ g ci1 ; xi1ð Þ � g0; gi1 i2 xi1 ; xi2ð Þ
¼ g ci1 i2 ; xi1 ; xi2ð Þ � gi1 xi1ð Þ � g i2 xi2ð Þ � g0 ð3Þ

and so on, where g ci1 ; xi1ð Þ and g ci1 i2 ; xi1 ; xi2ð Þ denote the subfunctions
g xi1 ; ci2 ; . . . ; cnrð Þ and g xi1 ; xi2 ; ci3 ; . . . ; cnrð Þ, respectively. In the subfunc-
tions, the coordinates of all the input variables are locked at the refer-
ence point except for the specific input variables which are mentioned
in the brackets. Similarly, the notations can be extended for the other
component functions of the HDMR expansion. These component func-
tions are subtracted by the preceding orders (as in Eq. 3) to assure
the exclusive contribution of that order in the expansion. Substituting
Eq. (3) till 1st order terms back in Eq. (2) leads to

g xð Þ ¼ ∑
i1 ∈Nnr

g ci1 ; xi1ð Þ � nr � 1ð Þg cð Þ þ R̂1 ð4Þ

where, R̂1 is the residual contribution of all orders above 1. The bivari-
ate contributions of the input variables are presented by the 2nd order
component function g i1 i2 xi1 ; xi2ð Þ. These are determined by a surface, cut

through the variable space defined by xi1 and xi2 at a location c. Hence,
the 2nd order dimension curtailed HDMR expansion can be obtained
following the similar process

g xð Þ ¼ ∑
i1; i2 ∈Nnr

i1 < i2

g ci1 i2 ; xi1 ; xi2ð Þ � nr � 2ð Þ ∑
i1 ∈Nnr

g ci1 ; xi1ð Þ

þ nr � 1ð Þ nr � 2ð Þ
2

g cð Þ þ R̂2 ð5Þ

Fig. 1. Schematic representation of hierarchy in HDMR in terms of component functions for (a) complete formulation with n variables and (b) sparse formulation
as per d-Adaptive proposal where only variable x2 is screened as insignificant such that nr ¼ n� 1 (highlighted by dark grey colour). The number of component
functions in each order is calculated by binomial operator as specified and for simplicity g xið Þ is denoted by gi.
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where, the notation R̂2 represents the residual in 2nd order HDMR. The
above expressions (i.e. Eqs. (4) and (5)) explicitly eliminate the contri-
butions of all the insignificant dimensions from the expansion. How-
ever, in the present study, it is proposed to use 1st order with all the
random variables and thereon, the dimensions are curtailed from 2nd
order onward. This intermittency is recommended for practical purpose
as it reduces the number of component functions which increases with
the order. Hence, the new dimension curtailed expansion is given as

g xð Þ ¼ ∑
i1; i2 ∈Nnr

i1 < i2

g ci1 i2 ; xi1 ; xi2ð Þ � nr � 1ð Þ ∑
i1 ∈Nnr

g ci1 ; xi1ð Þ

þ ∑
i1 ∈Nn

g ci1 ; xi1ð Þ þ nr nr�1ð Þ
2 � n� 1ð Þ

n o

g cð Þ þ �R2

ð6Þ

The residual in this expansion is represented by �R2. The above expan-

sion can also be expressed in the compact for g xð Þ ¼ ~g xð Þ þ �R, where
~g xð Þ is the approximation without the residual influence. Also, this
expression is subjected to evaluation of g �ð Þ at only the reference point
c and the support points around it. Hence, to determine the output at
any arbitrary point x, the expansion in Eq. (6) is modified as

~g xð Þ ¼ ∑
i1; i2 ∈Nnr

i1 < i2

yi1 i2 ci1 i2 ; xi1 ; xi2ð Þ � nr � 1ð Þ ∑
i1 ∈Nnr

yi1 ci1 ; xi1ð Þ

þ ∑
i1 ∈Nn

yi1
ci1 ; xi1ð Þ þ nr nr�1ð Þ

2 � n� 1ð Þ
n o

y0

ð7Þ

In this context, the sensitivity analyses to identify the important input
variables are performed using Pearson correlation coefficient which is
defined by

ρgxi ¼
E g � E g½ �ð Þ xi � E xi½ �ð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E g � E g½ �ð Þ2
h i

E xi � E xi½ �ð Þ2
h i

r ; 8 i∈Nn ð8Þ

as suggested by Rathi and Chakraborty [36]. In the above expression,
the correlation coefficients ρgxi are evaluated to detect the importance

of that particular variable. It may be noted that the proposed formula-
tion is applicable with any other sensitivity analysis to determine the
significant dimension by employing other techniques available in the
literature [27,28,33,47–49].

Once the significant variables are selected, associated unknown
terms are represented by the subfunctions of g xð Þ. In this paper, these
terms are expressed by truncated PCE for local approximation. This
secondary representation of each component function is required to
determine the response at any arbitrary point based on the values at
the support points. Earlier, the coefficients associated with the PCE
were used to address the local approximation using the MLS technique
as suggested by Rathi and Chakraborty [36]. Application of MLS
incurred a scalar approach which leads to the independent determina-
tion of the unknown coefficients at each realization. This issue is
addressed by introducing additional nonparametric terms [i.e. U �ð Þ]
in each cut made by finite difference‐HDMR under the proposed for-
mulation. Hence, the secondary approximation in each component
function is represented by

yk �ð Þ ¼ α0Γ0 þ ∑
i1 ∈ k

αi1Γ1 zi1ð Þ þ ∑
i1 ;i2 ∈ k

αi1 i2Γ2 zi1 ; zi2ð Þ þ � � �

þ ∑
i1 ;i2 ;...;ip ∈ k

αi1 i2 ...ipΓp zi1 ; zi2 ; . . . ; zip
� �

þ∑1⩽j⩽ns
βjRk z; zj

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Uk �ð Þ

ð9Þ

Here, the notation k represents the associated indices
i1; i2; . . . ; inr ; i1i2; . . . ; inr�1inr as per Eq. (7) in a set and p denotes the
degree of orthogonal polynomial bases Γp. Previous literatures

[5,6,12] suggest various orthogonal bases Γ as per Askey scheme which
can be adopted in this formulation. However, Hermite polynomial
bases are used in this study which is given below

Γp zi1 ; zi2 ; . . . ; zip
� �

¼ exp
1
2
zzT

� �

�1ð Þp @
p
exp � 1

2 zz
T

� �

@zi1@zi2 � � � @zip
ð10Þ

where, z ¼ zi1 zi2 . . . zip

 �

such that Γ0 ¼ 1;E Γi1½ � ¼ 0 and

E Γi1Γi2½ � ¼ δi1 i2 . The notations E and δ represent the expectation opera-
tor and Kronecker delta function, respectively. The unknown coeffi-
cients associated to theses bases in Eq. 9 are α0; αi1 ; αi1 i2 , …, αi1 i2 ...ip

and the variable z is Gaussian with N 0;1ð Þ. This discretization is also
helpful as it can be directly adopted for random fields modeled by
Karhunen‐Loève transformation as both are in the standard normal
space. Moreover, this formulation can be extended for different distri-
butions with dependent random variables using standard transforma-
tion techniques e.g. Rosenblatt transformation [50] or Nataf model
[51]. These features can be accommodated in the proposed framework
as it provides adequate flexibility.

Here, it may be noted that in this formulation, the component func-
tions includes nonparametric terms Uk �ð Þ in PCE framework. It helps
to capture the influence of ns support points based on the unknown
coefficient βj and weight function Rk z; zjð Þ in the variable space. In

the weight function, z; zj denote the outcomes at prediction location
and jth support points, respectively. Different weight functions exist
in the literature for this purpose e.g. linear, cubic, spline, exponential,
Gaussian etc. [52]. In this study, the nonparametric term Uk �ð Þ is
assumed to be Gaussian with zero mean and σ2kRk zI ; zJð Þ as the covari-
ance, where σk is the standard deviation. On simplification, Eq. (9) can
be rewritten as

yk �ð Þ ¼ Γk �ð ÞTα�
k þ rk �ð ÞTβ�k ð11Þ

which is substituted back into Eq. (7) to get the proposed hybrid formu-
lation of the d‐Adaptive HDMR in the following format

~g xð Þ¼ ∑
i1; i2∈Nnr

i1 < i2

Γi1 i2 xi1 ;xi2ð ÞTα�
i1 i2

� nr �1ð Þ ∑
i1∈Nnr

Γi1 xi1ð ÞTα�
i1

þ ∑
i1∈Nn

Γi1 xi1ð ÞTα�
i1

þ
∑i1; i2∈Nnr

i1 < i2

ri1 i2 xi1 ;xi2ð ÞTβ�i1 i2

� nr �1ð Þ∑i1∈Nnr
ri1 xi1ð ÞTβ�i1 þ∑i1∈Nn

ri1 xi1ð ÞTβ�i1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

proposed hybrid formulation

þ nr nr�1ð Þ
2 � n�1ð Þ

n o

Γ
T

0α
�
0

ð12Þ

Expanding the above equation gives the complete expression for the
proposed hdA‐HDMR which takes the following form

~g xð Þ ¼ ∑
nr�1

j1¼1
∑
nr

j2>j1

∑
p

k2¼0
∑
2

l1¼1
� � � ∑

l k2�1ð Þ

lk2¼1
αijl1

���ijlk2
Γk2 zijl1

; . . . ;zijlk2

� �( )" #

� nr �1ð Þ∑
nr

j1¼1
∑
p

k1¼0
αij1 ;k1

Γk1 zj1
� �

( )

þ ∑
n

j1¼1
∑
p

k1¼0
αij1 ;k1

Γk1 zj1
� �

( )

þ ∑
nr�1

j1¼1
∑
nr

j2>j1

∑
ns

m2¼1
βm2

Rij1 ij2
z;zm2ð Þ

" #

� nr �1ð Þ∑
nr

j1¼1
∑
ns

m1¼1
βm1

Rij1
z;zm1ð Þ

" #

þ∑
n

j1¼1
∑
ns

m1¼1
βm1

Rij1
z;zm1ð Þ

" #

þ nr nr�1ð Þ
2 � n�1ð Þ

n o

α0Γ0

ð13Þ

It can be noted that the above formulation in Eq. (13) is constructed for
a single decomposition around the reference point. However, the pre-
sent study proposes an iterative scheme for efficient support point gen-
eration around multiple reference points. In this regard, multiple
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HDMRs are constructed over these reference points. The contribution of
each HDMR is summarized as

~g xð Þ ¼ ∑
it

i¼1
γ ið Þ x; c ið Þ� �

~g ið Þ xð Þ ð14Þ

where, it is the number of iterations. These multiple generations also
provide flexibility by incorporating different polynomial degree p and

order o for individual HDMR. A typical example of this can be explained
using two different orders, say 1st and 2nd orders, in different itera-
tions. Here, the first iteration utilizes 2nd order model whereas succes-
sive iterations use 1st order. This is applied to limit the generation of
support points and subsequently, the computational effort without loss
of accuracy as suggested in Rathi and Chakraborty [36]. Thus, the hdA‐
HDMR formulation is expressed by

ð15Þ

here, the superscript in parentheses denotes the iteration, such that

R
ið Þ
ij1 ij2

represents the weight term R� of the component function yij1 ij2

with variables zij1 and zij2 for ith iteration. It may be noted that high-

lighted terms in the above equation constitute the proposed hybrid
dimension decomposition formulation. The use of lower orders in this
expression is not restricted and the influence of higher order HDMR
can be easily incorporated extending the sequence shown in Eq. (3).
The degree p of the orthogonal bases in PCE can be either chosen by
the designer or selected based on the number of support points ns avail-

able for its complete generation. The unknown coefficients, α �ð Þ
� ; β �ð Þ

� and

γ �ð Þ, in the above equation are determined utilizing the support points
which are discussed in the following section.

2.1. Determination of unknown coefficients

In this study, the unknown quantities in Eq. (15) are characterized
in three categories based on their evaluation strategies. A steps‐wise
evaluation of these coefficients are given below ‐.

Step 1: The unknown coefficients α �ð Þ
� associated to the orthogonal

bases are evaluated using mean square error between the
PCE and the original values. It is minimized using best linear
unbiased prediction (BLUP) [53–55] as in Kriging which is
similar to MLS technique [36] for unbiased prediction. Using
this optimization, the coefficients are determined as

α� ¼ Γ
T �ð ÞR�1

Γ �ð Þ
� �1

Γ
T �ð ÞR�1g �ð Þ ð16Þ

where, gk ¼ gk x1ð Þ gk x2ð Þ . . . gk xnsð Þ
h iT

∈R
ns�ng is the normal-

ized output such that gk �ð Þ ¼ gk �ð Þ � μ
g
k

� 
=σgkand ng is the dimen-

sion of the output. The notations μ
g
k and σ

g
kare calculated as

follows

μ
g
k ¼

1
ns

∑
ns

i1¼1
gk �i1
� �

ð17aÞ

σ
g
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ns

∑
ns

i1¼1
gk �i1ð Þ � μ

g
k

� �2

s

ð17bÞ

Further, the polynomial bases in Eq. (16) are presented as

Γk ¼ Γk z1ð Þ Γk z2ð Þ . . . Γk znsð Þ½ �T ∈R
ns�nb and the weight matrix

Rk ∈R
ns�ns is formed as R

ij
k ¼ Rk xi; xjð Þ; i; j ¼ 1;2; . . . ; ns, where

rk xð Þ ¼ Rk x; x1ð Þ Rk x; x2ð Þ . . . Rk x; xnsð Þ½ �T and the weigh struc-
ture evaluated using Gaussian expression follows

Rk zI ; zJ
� �

¼
Yn

i¼1

exp �θ̂i z
I
i � zJi

� �2
h i

ð18Þ

In this study, the value of θ̂i is adopted as 0.75 for all the vari-
ables in the upcoming numerical analysis. The selection of this
value depends on the designer and it is not decided based on
any prior sensitivity analysis. The authors envisage that such
ad hoc sensitivity analysis will not influence the proof of concept
established here. However, the present study does not restrict its

evaluation using the sensitivity of θ̂ on the output which can be
performed as a separate study.

Step 2: Next, the coefficients β �ð Þ
� associated with the nonparametric

terms are determined utilizing the solution strategy involved
in Step 1 as

β� ¼ R�1 g �ð Þ � Γ �ð Þα�
h i

ð19Þ
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Step 3: Since, all the unknown coefficients in α �ð Þ
� and β �ð Þ

� are
determined in the previous two steps, Eq. (13) is
applied to construct the individual HDMRs. Finally,
the individual contribution of these HDMRs are evalu-
ated as

γ ið Þ ¼

Yit

j¼1; j–i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n

k¼1 xk � c
jð Þ

k

� �2
r

∑it

o¼1

Yit

l¼1; l–o

∑n

k¼1 xk � clk
� �2

h i1
2

ð20Þ

where, ∑it

i¼1γ
ið Þ ¼ 1. It can be noted that similar to the above two

steps, γ �ð Þ also utilizes the location of the arbitrary point. That
apart, the determination of this coefficient considers the refer-

ence point of the HDMR to ascertain its influence. It justifies
the adaptive nature introduced by γ based on the proximity of
HDMR w.r.t. the arbitrary point where the approximation is
evaluated. It helps in a better fit, especially when mapping the
local variations of the original function.

To calculate these coefficients, the present study employs distribution
adaptive multi‐sparse grid scheme which uses Smolyak’s algorithm
[56] and follows multiple HDMR decompositions to give an efficient
sparse generation of the support points. The application of Smolyak’s
algorithm results in curtailment of the full‐grid interpolation, thus
improving the computational tractability. In the present formulation,
the generation of support points require a dimension‐wise adaptive
formulation which is given by

ð21Þ

where, x ilð Þ
�;Δ ¼ x ilð Þ

� n x il�1ð Þ
� with x 0ð Þ ¼ ∅; q is the level of sparse grid gen-

eration and qnr is the level for insignificant random variables. Further-
more, in Eq. 21, jij1 ¼ ∑n

k¼1ik is the summation of hierarchies denoted
by ik for kth random variable. ΔHq;n gives the locations of the support
points generated exclusively at level q using tensor product. These loca-
tions are determined in a unit space (i.e. Nn) as follows

x i;jð Þ ¼
0:5 8j ¼ 1 when nsi ¼ 1
j�1
nsi�1 8j ¼ 1 . . . ; nsi if nsi > 1

(

ð22Þ

which can be linearly transformed to the original domain Ωx. In the
above equation, number of grid points nsi in ith hierarchy is calculated
by

nsi ¼
1 if i ¼ 1

2i�1 þ 1 8i > 1

�

ð23Þ

This ultimately forms a dendriform as illustrated in Fig. 2a which starts
with a centre point and fills the domain in successive levels. In the pre-
sent study, the centre point reflects the reference point c in each itera-
tion around which the other points are placed. The locations are
generated using Hq;n ¼

S

i⩽qΔHi;n such that all the levels within q are

considered for the support points. A 2D system with variables x1 and
x2 is illustrated for visualization of the generation scheme adopted in
the present paper. Two cases are considered where the first case has
both random variables as significant and in the other case, one random
variable is insignificant. Fig. 2b and 2c gives the exclusive generation of
supports points in each hierarchical level of the sparse grid. Here, the
individual hierarchal indices for x1 and x2 (i.e. i1 and i2, respectively)
are assigned as 1, 2, …, 5 for demonstration and the coordinates are
evaluated using Eq. (22) in the unit space. In the sparse grid, support
points are selected based on the ‘1 norm of the hierarchal indices vector
i and sparse grid q as in Eq. (21). Fig. 2b shows the selected indices
based on its summation for different levels of q which are denoted by
• in the plot. In the second case, the support points are generated using
an additional constraint shown in the box (see Eq. (21)) to limit the
locations of the neglected random variable. Thus, another ‘1 norm is
introduced exclusively for the neglected random variable. For demon-
stration purpose, the level qnr is considered as 3 in this example. This
results in the equal generation of point for both the cases till the sparse
grid level is 3. Thereon, only the hierarchal indices in the x1 (i.e. signif-
icant random variable) direction are selected to generate the locations.

Subsequently, the number of support points generated in case 2 is less
than case 1 as shown in Fig. 2c. This is particularly helpful in curtailing
the curse of dimensionality in large problems as the space filling
scheme is adaptive with respect to the sensitivity of the dimension.

In the present paper, the proposed method is applied to uncertainty
quantification, reliability analysis and design optimization of the com-
posite plate with spatial randomness. The stochastic FE formulation
used in this study and the application of the proposed hdA‐HDMR
for uncertainty quantification are discussed in the following sections.

3. Stochastic FE formulation of composite plate

The stochastic FE analysis of the laminated composite plate shown
in Fig. 3 is discussed in this section. For simplicity, a square composite
plate of unit length is considered with uniformly thick plies (i.e. hc=nm,
where nm is number of piles). As shown in this figure, the geometric
axes involved in this analysis are denoted as x̂; ŷ and ẑ with mid‐
plane of the plate lying in x̂–ŷ axes. The deflections along these axes
are evaluated using first order shear deformation theory (FSDT) [57]

u x̂; ŷ; ẑð Þ ¼ u0 x̂; ŷð Þ þ ẑϕx̂ x̂; ŷð Þ
v x̂; ŷ; ẑð Þ ¼ v0 x̂; ŷð Þ þ ẑϕŷ x̂; ŷð Þ
w x̂; ŷ; ẑð Þ ¼ w0 x̂; ŷð Þ

ð24Þ

In the above equation, u0; v0; w0 are the mid‐plane displacements and
ϕ� x̂; ŷð Þ represents the rotation about the associated axis. Using the
potential energy approach, the stiffness matrix of the laminated com-
posite plate can be expressed for eth element in domain Ω

e
m as [57]

Ke ¼ ∑
nm

m¼1

Z

Ω
e
m

BTm
�QmBm dΩ

e
m ð25Þ

The notations used in the above expression i.e. m; ne; Bm and �Qm

denote the corresponding ply, number of elements, strain–displacement
transfer matrix and transformed constituent matrix, respectively. The

transformed constituent matrix is evaluated by �Qm ¼ TTmQmTm, where
Tm represents the transformation using the direction cosines w.r.t.
angle of the ply θmc and the constituent matrix Qm is determined using
the material properties i.e. elastic modulli Em

1 ;E
m
2 , shear modulli

Gm
12;G

m
13;G

m
23 and Poisson’s ratio νm of the plate. Similarly using the

kinetic energy equation, the element‐wise mass matrix of the plate with
density ρmc can be expressed as
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Me ¼ ∑
nm

m¼1

Z

Ve
m

NT

mPmNm dV
e
m ð26Þ

where, Pm ¼
Rþh=2
�h=2 ρmc dẑ;Nm is the shape function matrix and V repre-

sents the volume of the system.
In deterministic FE analysis, the material properties embedded in

Me and Ke matrices are set at fixed values. However, in the stochastic
approach these properties are defined in a probability space Θ;F ;Pð Þ
which makes them function of θ∈Θ. To model this stochastic nature,
random field approach is often adopted with the FE description dis-
cussed above. Karhunen‐Loéve expansion (KLE) is considered here to
express the random fieldH x̂; θð Þ in discrete quantities following a trun-
cated spectral decomposition as given below [58]

H x̂; θð Þ≈μH x̂ð Þ þ ∑
M

i¼1

ffiffiffiffi

λi
p

zi θð Þψ i x̂ð Þ ð27Þ

In the above equation, μH x̂ð Þ and M represent the mean of the random
field and the number of terms in the discretization. Moreover, λi and
ψ i x̂ð Þ denote the solutions from an eigenvalue problem which are eval-
uated from the autocovariance function CHH x̂; x̂0½ � ¼ E H x̂; θð ÞH x̂0; θð Þ½ �.
The kernels of this covariance function can be determined using various
forms available in the literature [59]. In this study, exponential form is
employed as expressed below [60]

CHH x̂; x̂0½ � ¼ σ2:ρ x̂; x̂0ð Þ ¼ σ2: exp � jx̂ � x̂0j
lx̂

þ jŷ � ŷ0j
lŷ

� �� �

ð28Þ

where, σ2 is the variance of the homogeneous random field, x̂; x̂0 repre-
sent the spatial coordinates and the correlation lengths lx̂; lŷ are along x̂

and ŷ axes, respectively. Here, the term homogeneous is associated
with the randomness and is not related to the homogeneous material
property. It may be noted that the value of these lengths influence
the correlation in the discretized field such that lx̂; lŷ ! 1 makes the
correlation structure equal (i.e. random variable approach).

Let Em
1 and ρmc follow Gaussian distribution using these properties in

Eq. (27), the field can be expressed as

Em
1 x̂; θð Þ ¼ μm1 þ ∑

M

i¼1

ffiffiffiffiffiffiffi

λ
1ð Þ
mi

q

z
1ð Þ
mi θð Þψ 1ð Þ

mi x̂ð Þ; ρmc x̂; θð Þ

¼ μm2 þ ∑
M

i¼1

ffiffiffiffiffiffiffi

λ
2ð Þ
mi

q

z
2ð Þ
mi θð Þψ 2ð Þ

mi x̂ð Þ ð29Þ

Substituting Eq. (29) into Eqs. (25) and (26) result in

Ke x̂; θð Þ ¼ ∑
nm

m¼1
Ke0

m þ ∑
M

i¼1
Ke1

mi x̂ð Þz 1ð Þ
mi θð Þ

� �

ð30Þ

and

Me x̂; θð Þ ¼ ∑
nm

m¼1
Me0

m þ ∑
M

i¼1
Me2

mi x̂ð Þz 2ð Þ
mi θð Þ

� �

ð31Þ

Fig. 2. Hierarchal generation of sparse grids for different cases with (a) one random variable, (b) two random variables and (c) two random variables but only one
is significant (i.e. xi1 ), here the number of points from each hierarchy is given in the brackets.

Fig. 3. A multi-layered laminated composite plate used in this study.
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respectively. Here, the sub‐matrices in Eqs. (30) and (31) are evaluated

as Ke0
m ¼

R

Ω
e
m
μm1B

T

m
�QmBm dΩ

e
m;K

e1
mi x̂ð Þ ¼

R

Ω
e
m

ffiffiffiffiffiffiffi

λ
1ð Þ
mi

q

ψ
1ð Þ
mi x̂ð ÞBTm �QmBm dΩ

e
m,

Me0
m ¼

R

Ve
m
μm2N

T

mPmNm dV
e
m and Me2

mi x̂ð Þ ¼
R

Ve
m

ffiffiffiffiffiffiffi

λ
2ð Þ
mi

q

ψ
2ð Þ
mi x̂ð Þ NT

mPmNm dV
e
m.

Using these element matrices, the global stiffness and mass matrices
i.e. K x̂; θð Þ andM x̂; θð Þ are determined as suggested by Chen and Soares
[61]. Incorporating this stochastic formulation in static analysis, the
governing equation takes the following form

∑
nm

m¼1
K0

m þ ∑
nmM

j¼1
K1

j x̂ð Þz 1ð Þ
j θð Þ

" #

u θð Þ ¼ f ð32Þ

On solving Eq. (32), stresses σ x̂; θð Þ ¼ σ1 x̂; θð Þ σ2 x̂; θð Þ τ12 x̂; θð Þf gT at

Gauss quadrature points are determined in the ply using �Qm x̂; θð Þ. In
the present study, failure index F is adopted to quantify the perfor-
mance of the composite plate under static loading using modified
Tsai‐Hill failure criterion [60]

F x̂; θð Þ ¼ σ1 x̂; θð Þ
X

� �2

þ σ2 x̂; θð Þ
Y

� �2

þ τ12 x̂; θð Þ
S

� �2

� σ1 x̂; θð Þσ2 x̂; θð Þ
X2 ð33Þ

This criterion incorporates the longitudinal, transverse and shear
strengths (i.e. X; Y and S, respectively) of the composite plate where
F x̂; θð Þ ⩾ 1 corresponds to failure. Similarly, the formulation can be
extended for the dynamics analysis where the Lagrange equation can
be invoked to get the dynamic equilibrium in the following form

∑
nm

m¼1
M0

m þ ∑
nmM

j¼1
M2

j x̂ð Þz 2ð Þ
j θð Þ

" #

€u θ; tð Þ

þ ∑
nm

m¼1
K0

m þ ∑
nmM

j¼1
K1

j x̂ð Þz 1ð Þ
j θð Þ

" #

u θ; tð Þ

¼ f tð Þ ð34Þ

For free vibration, it can be solved as an eigenvalue problem which is
given by

∑
nm

m¼1
K0

m þ ∑
nmM

j¼1
K1

j x̂ð Þz 1ð Þ
j θð Þ

" #�1

∑
nm

m¼1
M0

m þ ∑
nmM

j¼1
M2

j x̂ð Þz 2ð Þ
j θð Þ

" #

u θ; tð Þ

¼ 1

nf θð Þ

 �2 u θ; tð Þ ð35Þ

where, nf is the natural frequency of the composite plate. The uncer-
tainty propagating due to θ can be quantified using the proposed
approach as discussed in the next section.

4. Application in stochastic computation

In this section, the proposed hdA‐HDMR is discussed for different
applications in the stochastic field. As the method employs an iterative
framework based on the adaptive contributions of the multiple
HDMRs, it requires adequate selection of the component surfaces. In
this regard, selection of the reference point(s) after the initial iteration
is a critical task to achieve the desired objective. Hence, as a solution
to this issue, the objective of the problem is defined to determine the
region of interest which can be either the optimal locations like MPP,
maxima/minima or the favourable locations in a probabilistic sense
depending upon the problem statement are as follows:

• Uncertainty Quantification: In uncertainty analysis, the response
surface is required to map the statistically favourable regions, like
area near mean, tail ends etc., accurately to estimate the moments.
Hence, the components of HDMR and support points are required
to be generated in these regions of interest. In this regard, without
the loss of generality, the reference point is preferably selected at

the mean values of the random variables in the first iteration.
The support points are generated following their respective proba-
bility distributions. This can be performed by mapping the CDF as

x ¼ F�1
X Φ zð Þ½ � ð36Þ

if the random variables are uncorrelated. In the above expression,
notations FX �ð Þ and Φ �ð Þ represent the CDFs of x and z, respectively.
Apart from the distribution based influence, multiple generations of
the support points in iterative manner is performed by assuming
same reference location such that cit ¼ cit�1. However, the influence
domain of the support point is reduced using the reduction factor λx.
This factor iteratively reduces the extent of Ωx in successive gener-
ations unless otherwise mentioned for the specific case. In this
study, the reduction factor is assumed to be 0.75 for the uncertainty
quantification. Once the global hdA‐HDMR is constructed, popula-
tion based sampling schemes (e.g. MCS) with adequate sample size
is adopted for the uncertainty quantification.

• Reliability Analysis: The region of interest in the reliability anal-
ysis is the limit state (i.e. g xð Þ ¼ 0), especially near the failure point
or MPP. Hence, in this study, a MPP based optimization is demon-
strated using hdA‐HDMR to determine the probability of failure. As
explained earlier, the use of Hermite polynomials makes the opti-
mization straightforward for this analysis which takes the following
form

Minimize
ffiffiffiffiffiffiffi

zzT
p

w:r:t: z

Subjected to : ~g xð Þ ⩽ 0

x∈Ωx

ð37Þ

The solution of the above optimization process gives the MPP as z�;it

and subsequently, x�;it for that iteration which is followed by succes-
sive iterations to locate the actual MPP for the problem. Hence,
additional points are added in these successive iterations to improve
the quality of hdA‐HDMR. These additional points are generated

around the MPP evaluated in each iteration i.e. c itþ1ð Þ ¼ x�;it . The
convergence of this process is checked using permissible errors E1

and E2 for the change in the ~g x�;�ð Þ and z�;�. Usually, the values of

these permissible errors ranges within 10�2
–10�3. Once the global

surface is ready, simulation techniques are adopted for failure
estimation.

• Reliability Based Design Optimization: RBDO problem solves a

constraint optimization to determine the design point x
�;it
d in the

variable space Ωxd
which is given by

Maximize xd

Subjected to : P ~g x; xdð Þ ⩽ 0½ � ¼ p�f
xd ∈Ωxd

ð38Þ

where, P �½ � denotes the probability of occurrences defined in �½ �
and xd is the design variable vector which can be random or deter-
ministic in nature. To solve the above equation, response surface is
built using both x and xd. The new reference points are defined
using the optimized value of xd and the mean values of x when
the iterations are continued till the convergence is achieved satisfac-
torily. In this regard, permissible tolerance for the convergence of
the x

�;�
d is chosen as discussed in the reliability analysis (i.e. E1

and E2).

Above applications bypass multiple evaluations of the original
stochastic FE model required in the simulation and ease the computa-
tional burden. It can be noted that the nonlinear multidimensional
optimization processes as in Eqs. (37) and (38) can be solved using
any standard tool available in the literature [62]. The present study
employs SQP technique available in the MATLAB® [63]. A flowchart
summarizing the complete process for different applications is pre-
sented in Fig. 4. Following these steps, the numerical simulations are
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performed to justify the merits of the proposed hybrid d‐Adaptive
HDMR in the upcoming section.

5. Results and discussion

In this section, the proposed hdA‐HDMR is implemented for
stochastic FE analysis of composite plates to determine the free vibra-
tion characteristic and failure index when subjected to transverse load-
ing. The performance function g xð Þ for stochastic computation
includes the limit states based on the failure index (i.e. 1� F) and nat-
ural frequencies nf . It is dependent on the random fields and variables
x as specified at respective locations within the section. The composite
plate is characterised by the two‐dimensional homogeneous random
field for the material properties that are modeled using KLE. The stan-
dard input variable z following standard normal distribution is consid-
ered based on its wider acceptance. The proposed method is used here
for uncertainty quantification, reliability analysis and design optimiza-
tion. The problem is solved using other similar methods like MLS‐

HDMR [34,22,35], RS‐HDMR [27] and Kriging [64] for comparison.
The MLS‐HDMR [22,34,35] is a finite difference HDMR where the
component functions are modeled by regular polynomial bases. It is
formed using cartesian grid based support points with coordinates
ci � k� jð Þσxi ; ci and ci þ k� jð Þσxi , where σxi represents the standard
deviation of ith variable, k is the level of support points and index
j ¼ 1;2; . . . ; k� 1. The coordinates of the reference point ci are set at
the mean μxi of the random variables and the number of support points

for order o is evaluated using ns ¼ ∑o

i¼0
n! na�1ð Þi
n�ið Þ!i! with na ¼ 2k� 1. MLS

technique is utilized to determine the coefficients associated with

the regular polynomial bases i.e. 1 x1 x2 . . . xn x
2
1 x1x2 . . . x2

n

� 
in

the component functions. The weight function employed as suggested
in Chowdhury et al. [22,34,35] to assist the MLS based calculations.
RS‐HDMR [27] involves quasi random sampling like Sobol’ sequence
to represent the component functions based on the orthogonal polyno-
mials like modified Legendre polynomial as given by Dey et al. [28].
The degree of these polynomials are adaptive based on the Sobol’ sen-
sitivity index. Both these methods employ a single generation of the

Fig. 4. Flowchart of the proposed algorithms using hdAMFD-HDMR for uncertainty quantification, reliability analysis and RBDO.
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HDMR to construct the dimension decomposition based response sur-
face. The third method considered in this study is Kriging using DACE
Toolbox [64] which also uses regular polynomial bases. In addition to
the bases, weight functions are defined between the support points to
form the meta‐model. It uses a random sampling scheme such as LHS
to generate the support points. The efficacy of these methods are jus-
tified based on the computational effort involved in the simulation and
the accuracy of the results. In this study, the accuracy of the aforemen-
tioned methods is determined using MCS with adequate sample size as
the benchmark. The computational cost is indicated based on the num-
ber of original FE analysis performed. This indicates the amount of
CPU time consumed by the particular method for computation. The
inference from the numerical analysis is presented in the following
subsections.

5.1. Uncertainty quantification

A square cantilever composite laminated plate is modeled here
which is made of graphite‐epoxy stacked in different angles. The stack-
ing sequence of these plies are considered as random with mean at
�45=þ 45=� 45½ � (in degree) having 10% coefficient of variation
(cov). The deterministic values of the material properties are as fol-
lows: E2 = 8.90 GPa, G12 = 7.10 GPa, G23 = 2.84 GPa and G13 =
7.10 GPa [28]. The other material properties of the graphite‐epoxy
composite plate such as E1 and ρc are considered as two‐directional
independent homogeneous Gaussian random fields with mean at
138.00 GPa and 3202.00 kg/m3, respectively, where Poisson’s ratio
ν∼N 0:3000; 0:0009ð Þ. The standard deviation σx of these fields are
defined as 13.80 GPa and 320.20 kg/m3, and the correlation lengths
lx̂; lŷ as 0.50. Using these statistical properties, the covariance function
of the random fields are given by σx ρ x̂; x̂0ð Þ. The thickness of the lam-
inas are equal and the thickness to length ratio (i.e. hc=b) of the com-
posite plate is 0.004. Stochastic FE analysis is performed using a 6� 6
mesh with uniform size. Each element of the plate is modeled using
nine‐noded quadrilateral isoparametric elements, hence a total of
155 nodes are formed in the FE model. The fields are discretized to

form the vectors of random fields with respect to 36 elements using
KLE as described in Section 3.

In this study, free vibration analysis is carried out to determine the
first five natural frequencies of the composite plate. These frequencies
and the corresponding mode shapes are obtained using the above men-
tioned properties. Direct MCS is adopted to determine the frequencies
using 104 realizations. The effect of uncertainties on the modal prop-
erties are presented in Fig. 5. The probability distribution functions
of these modal parameters obtained from MCS are plotted in Fig. 6
which are considered as the benchmark for further analysis. Apart
from MCS, other meta‐models are also used to quantify the uncertain-
ties in the natural frequencies. It can be seen in Fig. 6 that the pdfs
obtained from RS‐HDMR have significant mismatch with MCS. This
is due to the unwanted effects of the spurious component functions.
The number of FE solutions carried out to construct this model is
3000 with 2nd order component functions. The lower and upper
bounds of the support points are set to μx � hrσx, where hr ¼ 1. The
maximum degree of the orthogonal polynomial basis is fixed at 5.
MLS based finite difference‐HDMR is then employed which improves
the results from the previous case i.e. RS‐HDMR. However, it still
yields significant error, especially for first four natural frequencies as
shown in Fig. 6(a)–(d). In this case, the order o of the HDMR is reduced
to 1 as the number of support points required to form the 2nd response
surface is high (> 3000). A total of 609 FE evaluations are used for the
level of grid points k ¼ 4. The results explain that even if it considers
till the 1st order terms (i.e. no combined effects are used), the accuracy
is inconsistent. Hence, the performance of the above two methods
infer that an adaptive selection of the order should provide the desired
results. However, before using the proposed algorithm, performance of
the Kriging based meta‐model is also verified in this study to quantify
the uncertainties. Support points are generated using LHS with a sam-
ple size of 3000 to construct this meta‐model. The 4th and 5th natural
frequencies observe a close match with the MCS results, however, the
first three natural frequencies face error in estimation. Finally, the pro-
posed hdA‐HDMR is used which shows a close match with the MCS
results and distinctly marks its accuracy with respect to other methods
applied here. This dimension decomposition is built in two iterations

Fig. 5. Mode shapes due to stochastic material properties where (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4 and (e) mode 5.
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with first iteration starting at mean μx as the reference point (i.e. c�;0).
In this uncertainty quantification, no objective function is defined,
hence the second iteration follow the same reference point but the
bounds of the support points are reduced by 25% prior to populate
with more points. Overall, the proposed method offers a better fit
and can map the pdfs of the first five natural frequencies with an
insignificant error of estimation.

The CDF of the natural frequencies are also plotted in Fig. 7a which
shows the accuracy of different methods when compared with the MCS
data. A comparative study is performed based on the statistical
moments (such as mean, standard deviation, skewness and kurtosis)
of the first five fundamental frequencies as shown in Table 1. The tab-
ulated results show adequate match in the estimation of the first
moment (i.e. mean) among all the methods performed in this study

Fig. 6. Comparison of pdf of modal responses from a spatially uncertain cantilever composite plate where (a) first, (b) second, (c) third, (d) fourth and (e) fifth
natural frequencies.

Fig. 7. Comparison of CDF of modal responses from a spatially uncertain cantilever composite plate where (a) first, (b) second, (c) third, (d) fourth and (e) fifth
natural frequencies.
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Table 1

Statistical properties of the first five stochastic natural frequencies of a cantilever composite plate (units in rad/s).

Nat. Freq. Method Mean Std. Dev. Skewness Kurtosis

Direct MCS 12.090 1.001 0.388 3.325
hdA-HDMR 12.085 0.998 0.318 3.137

1 Kriging 12.063 1.318 0.008 3.060
MLS-HDMR 12.117 1.309 0.244 3.076
RS-HDMR 10.712 36.167 −2.735 79.482

Direct MCS 35.658 1.828 0.213 3.119
hdA-HDMR 35.639 1.837 0.193 3.091

2 Kriging 35.761 2.257 −0.022 3.001
MLS-HDMR 35.635 2.215 −0.039 2.965
RS-HDMR 33.854 60.939 −3.267 100.820

Direct MCS 74.504 5.366 0.096 2.878
hdA-HDMR 74.508 5.500 0.109 3.078

3 Kriging 74.544 7.306 0.014 3.039
MLS-HDMR 74.710 6.710 0.094 2.986
RS-HDMR 68.492 181.320 −5.270 120.810

Direct MCS 91.317 4.113 0.366 3.385
hdA-HDMR 91.240 4.034 0.283 3.161

4 Kriging 91.099 4.150 −0.005 3.000
MLS-HDMR 91.255 4.591 0.351 3.179
RS-HDMR 90.467 118.290 −2.380 112.870

Direct MCS 137.900 6.361 0.244 3.171
hdA-HDMR 137.860 6.333 0.250 3.123

5 Kriging 137.900 6.471 −0.011 3.013
MLS-HDMR 137.780 6.592 0.100 3.001
RS-HDMR 137.570 134.220 −2.427 93.551

Note: The number of FE calls by MCS, hdA-HDMR, Kriging, MLS-HDMR and RS-HDMR are 104, 730, 3000, 609 and 3000, respectively.

Fig. 8. Magnitude of the unknown coefficients (i.e., α� and β�) associated with PCE and nonparametric terms, respectively, evaluated to determine the natural
frequencies of a cantilever composite plate. For α�, the coefficient indices to the left of the vertical dashed lines correspond terms not larger than the specified
degree p of PCE.
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except RS‐HDMR. Higher moments show better quality when the pro-
posed hdA‐HDMR is used as compared to the other methods. This
proves the consistency of the proposed method as compared to the
other models adopted here. As a general observation among all these
methods, the performance of the RS‐HDMR is significantly erroneous
for stochastic finite element analysis. In this context, a dimension
adaptive version of the multiple finite difference‐HDMR has proved
to be accurate for stochastic computations. The unknown coefficients
obtained from hdA‐HDMR for these natural frequencies nf are pre-
sented in Fig. 8a. As mentioned, both the iterations (i.e. it ¼ 1 and
2) are plotted and the coefficients are depicted using a numbered
index sequence following ν; θc; ρc and E1 as 1, 2–4, 5–40 and
41–76, respectively. The polynomial based coefficient α� is segregated
as per degree p. It observes sudden change in the magnitude which is
attributed to the two random fields ρc and E1 in this illustration. These
fields start from the coefficient index 6 to 41 and 42 to 77, respec-
tively, for p ¼ 1 and same trend can be observed for degree p ¼ 2. This
truncated PCE is assisted by nonparametric terms corresponding to
error modeling coefficient β� which is indexed in the same sequence.
However, unlike α�, it is not dependent on p and hence, its numbering
is based on the occurrence in the full expansion. The coefficient β� also
reflects the acute change in the magnitude due to the indexing of the
random fields.

The proposed hdA‐HDMR is also adopted to solve for a simply sup-
ported composite plate with non‐normal random fields subjected to
UDL. The dimensions for this plate remains unaltered with thickness
h = 0.010 m where the thickness of each angel ply is equal and the
angle stacking sequence is 0=90=0½ � (in degree). In this example, three
non‐normal random fields and six random variables are considered
which are related to strength of the plate. The elastic moduli

E1 x̂; ŷð Þ ¼ F�1
E1

ΦZ1 z1 x̂; ŷð Þð Þ½ � and E2 x̂; ŷð Þ ¼ F�1
E2

ΦZ2 z2 x̂; ŷð Þð Þ½ � are

defined as random fields which follow two‐dimensional homogenous
and independent Weibull distribution W aW ; bWð Þ i.e.

f X xjaW ; bWð Þ ¼ bW
aW

x

aW

� �bW�1

exp � x

aW

� �bW
" #

8x ⩾ 0 ð39Þ

The distribution in the above equation is defined for the realization x at
(x̂i; ŷj) with aW and bW representing its scale and shape parameters,
respectively. These parameters are given as E1∼W 158:90; 20:70ð Þ
and E2∼W 9:00; 14:40ð Þ for the aforementioned random fields as sug-
gested by Sasikumar et al. [60]. Here, the notation Zi denotes Gaussian
random field with mean 154.900 GPa, 8.700 GPa and cov 5.90%,
9.50% for i ¼ 1;2, respectively. The third random field is defined for
shear modulus G12 x̂; ŷð Þ ¼ c3 exp α3 x̂; ŷð Þ½ � which is modeled using log-
normal distribution with mean 4.500 GPa and cov 8.80%. The param-
eters in this random field are evaluated as

c3 ¼ μ2x3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2x3 þ σ2
x3

q

¼ μx3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cov3

p
and α3 x̂; ŷð Þ represents a Gaussian

random field with mean zero and covariance function equal to

ln 1þ cov2x3

� �

:ρ x̂; x̂0ð Þ. The correlation structures are considered as

isoparametric for this example with values of the correlation lengths
fixed at 0.40 [36,60]. The other properties i.e. ν;Xt ;Xc;Y t ;Yc and S

as considered as random variables such that lx̂; lŷ ! 1. Among these,
ν;Xt ;Xc; S follow lognormal distribution with mean 0.281, 2.409 GPa,
1.148 GPa, 0.083 GPa and cov (in %) 7.50, 6.70, 18.10, 5.00 whereas
Y t ;Yc (in MPa) are Weibull distributed with
W 50:30;5:80ð Þ;W 208:60; 7:40ð Þ, respectively [36,60]. The subscripts
in the properties i.e. �t and �c denote the strengths with respect to ten-
sion and compression. The composite plate is subjected to a two‐
dimensional uniformly distributed loading (i.e. along x̂ and ŷ) of
73.558 kN/m2. This load is determined corresponding to F ¼ 0:75 as
suggested by Sasikumar et al. [60]. The stochastic FE analysis is per-
formed using a 6�6 uniform discretization of the random fields. Over-
all, the problem results in 114 (i.e. 6� 6� 3þ 6) random variables
with non‐normal distributions. Fig. 9a shows the probability distribu-
tion of the failure index for this composite plate using MCS, hdA‐
HDMR, RS‐HDMR, MLS‐HDMR and Kriging. In this analysis, RS‐
HDMR, MLS‐HDMR and Kriging call 3000, 685 and 3000 original func-
tion evaluations, respectively. The proposed hdA‐HDMR requires 1380
function evaluations as opposed to 2067 (refer [36]) FE calls in dAMFD‐
HDMR. Fig. 9a demonstrates the accuracy in the pdf and CDF estima-
tion of failure index obtained from different methods. These results
show a close match between the probability distributions using the
hdA‐HDMR and MCS. MLS‐HDMR with 1st order also offers better
result among the other methods illustrated here. However, the level
of accuracies obtained from the proposed method is superior to the
others.

Another case study is performed for a non‐rectangular simply sup-
ported composite plate using asymmetric ply orientation. A parallelo-
gram shaped composite plate is adopted of length, slanted breadth and
angle as 1 m, 1.2 m and 56.44	. The composite is made of carbon
epoxy material M55J/M18 [60] where the properties, namely, ν;X t

(MPa), Xc (MPa), Y t (MPa), Y c (MPa) and S (MPa) follow
G 1170:75;0:00027ð Þ; W 1981:83;10:20ð Þ; W 600:43;24:00ð Þ;
W 21:58;20:27ð Þ;W 106:96;60:61ð Þ and U 52:48;55:06ð Þ, respectively.
The nomenclature of the distributions and associated statistical param-
eters denote Gamma G(shape, scale), WeibullW(scale, shape), Lognor-
mal LN (mean, standard deviation) and Uniform U(lower bound,
upper bound) distributions. The remaining properties such as E1

(GPa), E2 (GPa) and G12 (GPa) are random fields following
W 355:04;19:26ð Þ;U 6:21;6:93ð Þ and LN (1.519, 0.032), respectively.
The correlation lengths are assumed as 1.00 and the field is uniformly
discretized in 6�6 mesh pattern. The ply orientation is considered to

Fig. 9. Comparison of (a) pdf and (b) CDF based on failure index from a spatially uncertain simply supported composite plate using different methods.
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be 0=30=60½ � (in degree) and the plate is subjected to UDL of 18 kN/
m2. The uncertainty propagation in the failure index F as expressed
by Eq. (33) is estimated using different methods. It can be observed
from Fig. 10a that Kriging, MLS‐HDMR and RS‐HDMR improves the
prediction quality from the previous cases. However, they still yield
notable mismatch in the pdf which is better mapped by the proposed
method. Similar observations can be derived for the stress component
σ1 as depicted in Fig. 10a. Also, the unknown coefficients evaluated
from hdA‐HDMR are plotted in Fig. 11, where the variables are
indexed in the order – ν; E1; E2;G12;X t ;Xc;Y t ;Yc and S positioned at
1, 2–37, 38–73, 74–109, 110, 111, 112, 113 and 114, respectively.
The results illustrate similar observations as discussed above in the
case of cantilever plate.

5.2. Reliability analysis

Using the aforementioned simply supported rectangular composite
plate, probability of failure is estimated for different values of UDL to
develop the fragility curve as shown in Fig. 12. For reliability analysis,
a larger sample size of MCS (i.e. nc =5E5) is employed to estimate low
pf . The FE solutions made by different methods (i.e. RS‐HDMR, MLS‐

HDMR and Kriging) for each load case remain same as mentioned in
the above discussion. It is observed that the Kriging using DACE Tool-
box [64] faces difficulty to deal with large dimensions. The issue is
severe in the case of pf estimation, especially for low pf where sample

size is inevitably large. The simulation technique adopted by the mod-
els require estimation of the weight between the support points and
the sampled realizations as per Eq. (18). In this case, both these values
(i.e. number of support points ns and sample size nc) are relatively
high, hence it faces difficulty to compute the weight matrix R of the
Gaussian process. Also, these calculations are performed simultane-
ously for all the coordinates of the support points as opposed to the
MLS technique which employs a scalar approach where these calcula-

tions are performed one‐by‐one. This computational issue makes the
application of Kriging based meta‐model very slow and eventually,
time exhaustive. The aforementioned issue is addressed in this study
by the proposed hybrid d‐Adaptive HDMR formulation which breaks
the complete polynomial basis into smaller sub‐matrices. It reduces
the computational burden associated with the simultaneous calcula-
tions of the support points by dividing it into various sub‐matrices.
Also, it can be noted that deterministic sampling offered by the sparse
grid scheme helps to reduce the computational cost associated with the
calculation of weigh structure. This can be explained for any compo-
nent function where only limited number of variables are effective
due to dimension decomposition. Accordingly, these effective loca-
tions of the random variables are only considered for the weight func-
tion calculations. However, this is not the case for random sampling
based DoE where irrespective of the component functions, all coordi-
nates are considered. This problem makes Kriging [64] with random
sampling less preferable for reliability analysis as all the variables need
to be considered for weight function calculation. In brief, it can be sta-
ted that this process is streamlined in the present proposal which helps
to improve efficiency. It ultimately yields at a much faster computation
of the reliability analysis. In addition to this computational efficiency,
the proposed method converges using 922 to 2067 support points for
different load cases in the fragility curve. Fig. 12 shows the pf esti-

mated from this numerical exercise which are matching to the ones
obtained from MCS. The figure also presents the fragility curve using
a logarithm scale to emphasize the quality of results obtained in the
lower tail end. The failure probabilities from the other methods illus-
trated in this study yield significant error, however, RS‐HDMR per-
forms relatively better in the low pf range. Apart from the MLS‐

HDMR (with k ¼ 4) shown in Fig. 12, k ¼ 3 and 5 (ns ¼ 457 and
913, respectively) are also studied which yield significant inaccuracies
in the end results. These results are not produced in this paper to avoid
repetition as they are inconsequential to the outcome of this study. A

Fig. 10. Comparison of pdf and CDF based on (a) failure index and (b) σ1 (N/m
2) of a spatially uncertain simply supported parallelogram shaped composite plate

using different methods.
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typical illustration of the solved coefficients (i.e. α� and β�) are given in
Fig. 13 where the index follows similar sequence as stated in the case
of parallelogram composite plate. The plotted results provide similar
observations as reported in the previous cases. Moreover, it demon-
strates the convergence in the coefficient values (i.e. α�) with succes-
sive iterations which also reflect reduction in magnitude of the error
modeling coefficient β�. Fig. 13a also shows the coefficient

γ �ð Þ ∈ 0;1½ � which varies based on the location of the realization as it
is dependent on the reference point of the iteration and the location
where the approximation is evaluated.

The reliability analysis is also performed for the parallelogram
shaped M55J/M18 composite plate based on the properties mentioned
earlier. The limit state considered for the problem is g xð Þ ¼ 1� F

which is subjected to UDL of 11 kN/m2. The probability of failure pf
estimated from different methods is given in Table 2. Once the

meta‐models are constructed, a simulation size of one million samples
is adopted to estimate pf . Despite this large sample size, Kriging and

MLS‐HDMR fails to encounter any failure instances. Among these
methods, hdA‐HDMR provides fairly accurate estimation of pf with

limited number of support points. Moreover, the normalized CPU time
consumed by different methods is also reported in this study (see
Fig. 14) which shows the advantage of the proposed adaptive dimen-
sion decomposition. It is performed on an Intel(R) Core(TM) i5‐
2430 M computer having processing speed and RAM of 2.40 GHz
and 6.00 GB, respectively. The software platform adopted to solve this
numerical exercise is MATLAB®. This exercise is performed for all the
composite plate cases which nearly provide similar findings and thus,
the replications of such results are avoided. The proposed method con-
sumes a fraction of time 0:2%ð Þ as compared to the direct MCS which
nearly consumes 82 h. This is due to the decomposition of the polyno-
mial bases as well as the nonparametric terms which ease the burden
on computation. However, direct Kriging application lacks the decom-
position of nonparametric terms which leads to more time consump-
tion. Also, MLS based coefficient determination involves
independent calculations at each realization which is exhaustive if
their number is significant. The adaptive framework of RS‐HDMR
leads to additional computational cost with more number of support
points. In summary, this discussion comprehensively states the merit
of the proposed method over the well‐known similar tools for reliabil-
ity analysis.

5.3. Reliability based design optimization

Previous subsections clearly demonstrate the superiority of the pro-
posed method in stochastic computations. Finally, it (i.e. hdA‐HDMR)
is applied to a RBDO problem using the same composite plate. Here,
the design problem is solved by evaluating the maximum UDL in trans-

Fig. 11. Magnitude of the unknown coefficients (i.e., α� and β�) associated with PCE and nonparametric terms, respectively, evaluated to determine (a) failure
index F and (b) σ1 in the simply supported parallelogram shaped composite plate. For α�, the coefficient indices to the left of the vertical dashed lines correspond
terms not larger than the specified degree p of PCE.

Fig. 12. Fragility curve w.r.t. UDL developed for a simply supported
composite plate with 0=90=0½ � using different methods.
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verse direction for a desired reliability of the carbon‐epoxy composite
plate. The load is a deterministic variable in this problem of dimension
decomposition using random variables as suggested in Eq. (38). The
probability of failure is estimated using MCS with a sample size of

5E5. Three different values of desired p�f (i.e. 10�2, 10�3 and 10�4)

are adopted to design the maximum load under the present condition.
The UDLs corresponding to these reliabilities are optimized and the
results are presented in Fig. 15. The maximum load is also obtained
using MCS and it is observed that the results from hdA‐HDMR are
fairly accurate in load estimation. In total the RBDO for case 1 (i.e.

p�f ¼ 10�2), case 2 (i.e. p�f ¼ 10�3) and case 3 (i.e. p�f ¼ 10�4) require

930, 930 and 1161 FE calls to convergence. The quality of end results
obtained by the proposed method proves to be cost effective for relia-
bility based design optimization. The problems demonstrated above

require multiple high‐fidelity estimations of the pf which face notable

challenges such as inaccuracies, convergence and computational cost.
Also, the results presented here clearly show that other methods dis-
cussed previously (e.g. RS‐HDMR, MLS‐HDMR and Kriging) either lack
accuracy, efficiency or both and hence, may not be suitable for large
dimensional problems.

6. Summary and conclusions

The present paper proposes an alternative hybrid formulation of
the dimension adaptive HDMR. Here, the uncertainty propagation is
modeled by multiple generations of the dimension decomposition at
different anchored locations. In nutshell, the proposed hdA‐HDMR
performs satisfactorily for problems with a large number of input
variables. Different problems are used to demonstrate the advantages
of the proposed hdA‐HDMR. The major contributions in this study
are as follows:

1. A novel dimension adaptive formulation is developed using finite
difference HDMR, PCE and Gaussian model for error. The support
points are judiciously selected in a dimension adaptive sparse grid
framework for better accuracy at an optimal computational cost.

2. The error is modeled using a weight function based on the dis-
tance between the support points. The associated unknown
coefficients are quantified using best linear estimation predic-
tor along with the PCE. Multiple error terms are defined for

Fig. 13. Magnitude of the unknown coefficients (i.e., α�; β� and γ �ð Þ) associated with PCE and nonparametric terms, respectively, evaluated to determine failure
index F of the simply supported composite plate. For α�, the coefficient indices to the left of the vertical dashed lines correspond terms not larger than the specified
degree p of PCE.

Table 2

Probability of failure estimated for the parallelogram shaped composite plate
subjected to UDL = 11 kN/m2.

Method pf Number of function evaluations

Direct MCS 0.000010 1,000,000
hdA-HDMR 0.000011 922
Kriging 0.000000 1,000
MLS-HDMR 0.000000 913
RS-HDMR 0.000006 3,000
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component functions in the HDMR using this modeling
approach (i.e. hybrid formulation) which has proved to be sig-
nificantly accurate for stochastic computations.

3. The proposed hybrid dimension adaptive modeling constitutes of
mixed‐order HDMRs which helps to model uncertainty propagation
in case of large dimensional problems (> 100). Three strategies are
suggested using the proposed method for different applications
such as uncertainty quantification, reliability analysis and RBDO.
Overall, it proves to be very effective for high‐fidelity modeling
as justified by the numerical results, particularly in RBDO where
multiple estimations of the probability of failure are required.
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Appendix A. Illustration of the Development of Proposed

Formulation

The proposed generic formulation of hdA‐HDMR is illustrated using
a low dimensional problem for clarity. For this purpose, a five dimen-
sional problem (i.e. n ¼ 5) is considered to demonstrate a 2nd order
constitutive equation of HDMR which is expressed by

g xð Þ ¼ g0 þ ∑
5

i¼1
g i xið Þ þ ∑

4

i¼1
∑
5

j>i

g ij xi; xj

� �
þ R̂2 ðA:1Þ

In the above equation, the component functions can be determined
using Eq. (3) as

g0 ¼ g cð Þ; g1 x1ð Þ ¼ g c1; x1ð Þ � g0; g2 x2ð Þ ¼ g c2; x2ð Þ � g0;

g12 x1; x2ð Þ ¼ g c12; x1; x2ð Þ � g1 x1ð Þ � g2 x2ð Þ � g0
ðA:2Þ

and so on for the other indices (i.e. 3, 4 and 5). On substituting these
terms back to Eq. (A.1) gives

g xð Þ ¼ g c12; x1; x2ð Þ þ g c13; x1; x3ð Þ þ g c14; x1; x4ð Þ þ g c15; x1; x5ð Þ
þg c23; x2; x3ð Þ þ g c24; x2; x4ð Þ

þg c25; x2; x5ð Þ þ g c34; x3; x4ð Þ þ g c35; x3; x5ð Þ þ g c45; x4; x5ð Þ
�3g c1; x1ð Þ
�3g c2; x2ð Þ

�3g c3; x3ð Þ � 3g c4; x4ð Þ � 3g c5; x5ð Þ þ 6g cð Þ þ R̂2

ðA:3Þ

This can be illustrated for the full expansion as shown in Fig. 16. The
determination of the significant random variables can be performed
using the support points evaluated for the 1st order component func-
tions of the HDMR. The sensitivity can be calculated either using Eq.
(8) or any other sensitivity analysis [27,28,33,47–49]. In this illustra-
tion, let the random variables x1; . . . ; x4 be significant (i.e. nr ¼ 4)
and x5 as insignificant based on a threshold [36]. The sparse dimension
adaptive HDMR formulation can be constructed using Eq. (6) as follows

g xð Þ ¼ ∑
3

i¼1
∑
4

j>1
g cij; xi; xj

� �
� 3∑

4

i¼1
g ci; xið Þ þ ∑

5

j¼1
g cj; xj

� �
þ 2g cð Þ þ �R2 ðA:4Þ

On expanding the above expression as

g xð Þ ¼ g c12; x1; x2ð Þ þ g c13; x1; x3ð Þ þ g c14; x1; x4ð Þ þ g c23; x2; x3ð Þ
þg c24; x2; x4ð Þ þ g c34; x3; x4ð Þ
�2g c1; x1ð Þ � 2g c2; x2ð Þ � 2g c3; x3ð Þ � 2g c4; x4ð Þ

þg c5; x5ð Þ þ 2g cð Þ þ �R2

ðA:5Þ

shows the reduction in number of unknown terms in the dimension
decomposition. The approximate surface can be constructed by interpo-
lating each component function using the PCE (i.e. Eq. (7)) as

~g xð Þ ¼ y12 c12; x1; x2ð Þ þ y13 c13; x1; x3ð Þ þ y14 c14; x1; x4ð Þ
þy23 c23; x2; x3ð Þ þ y24 c24; x2; x4ð Þ
þy34 c34; x3; x4ð Þ � 2y1 c1; x1ð Þ � 2y2 c2; x2ð Þ

�2y3 c3; x3ð Þ � 2y4 c4; x4ð Þ þ y5 c5; x5ð Þ þ 2y0

ðA:6Þ

where, the terms

yi ¼ α0Γ0 þ αiΓ1 zið Þ þ αiiΓ2 zi; zið Þ þ � � � þ ∑
ns

k¼1
βkRi z; z

k
� �

ðA:7Þ

and

Fig. 15. Design load in UDL estimated for a simply supported composite plate
with [0/90/0] from RBDO using the proposed method and MCS for given
threshold p�f .

Fig. 14. CPU time consumed by different methods in the reliability analysis of
composite plate.
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yij ¼ α0Γ0 þ αiΓ1 zið Þ þ αjΓ1 zj
� �

þ αiiΓ2 zi; zið Þ þ αijΓ2 zi; zj
� �

þαjjΓ2 zj; zj
� �

þ � � �
þ∑

ns

k¼1
βkRij z; z

k
� �

ðA:8Þ

Further, simplifying these terms give

yi ¼ α0 � αiið Þ þ αizi þ αiiz
2
i þ � � � þ ∑

ns

k¼1
βkRi z; z

k
� �

) yi ¼ α0
0 þ αizi þ αiiz

2
i þ � � � þ ∑

ns

k¼1
βkRi z; z

k
� �

ðA:9Þ

yij ¼ α0 � αii � αjj

� �
þ αizi þ αjzj þ αiiz

2
i þ αijzizj

þαjjz
2
j þ � � � þ ∑

ns

k¼1
βkRij z; z

k
� �

) yij ¼ α0
0 þ αizi þ αjzj þ αiiz

2
i þ αijzizj þ αjjz

2
j

þ � � � þ ∑
ns

k¼1
βkRij z; z

k
� �

ðA:10Þ

Substituting these terms in Eqs. (A.7) and (A.8) back to Eq. (A.6) leads
to the dimension decomposition formulation as

~g xð Þ¼ Γ12 x1;x2ð ÞTα�
12þΓ13 x1;x3ð ÞTα�

13þΓ14 x1;x4ð ÞTα�
14

þΓ23 x2;x3ð ÞTα�
23þΓ24 x2;x4ð ÞTα�

24

þΓ34 x3;x4ð ÞTα�
34�2Γ1 x1ð ÞTα�

1�2Γ2 x2ð ÞTα�
2

�2Γ3 x3ð ÞTα�
3�2Γ4 x4ð ÞTα�

4þΓ5 x5ð ÞTα�
5

þr12 x1;x2ð ÞTβ�12þr13 x1;x3ð ÞTβ�13þr14 x1;x4ð ÞTβ�14
þr23 x2;x3ð ÞTβ�23þ r24 x2;x4ð ÞTβ�24
þr34 x3;x4ð ÞTβ�34�2r1 x1ð ÞTβ�1�2r2 x2ð ÞTβ�2�2r3 x3ð ÞTβ�3

�2r4 x4ð ÞTβ�4þr5 x5ð ÞTβ�5
þ2α�

0

ðA:11Þ

In the above expression, the unknown coefficients α and β are deter-
mined using Eqs. (16) and (19), respectively. It may be noted that in
the determination of individual sets of α and β different support points
are used. This is based on the support points associated with the respec-

tive random variables generated using the proposed sparse grid scheme
as per Eq. (21). Hence, this offers a judicious division of the support
points which makes it more attractive than RS‐HDMR and Kriging.
On simplifying the expansion, the hybrid formulation of the proposed
dimension decomposition is expressed as

~g xð Þ ¼ α0;12 þ α1;12Γ1 z1ð Þ þ α2;12Γ1 z2ð Þ þ α11;12Γ2 z1; z1ð Þ
þα12;12Γ2 z1; z2ð Þ þ α22;12Γ2 z2; z2ð Þ
þα0;13 þ α1;13Γ1 z1ð Þ þ α3;13Γ1 z3ð Þ þ α11;13Γ2 z1; z1ð Þ
þα13;13Γ2 z1; z3ð Þ þ α33;13Γ2 z3; z3ð Þ þ � � �
�2α0;1 � 2α1;1Γ1 z1ð Þ � 2α11;1Γ2 z1; z1ð Þ � 2α0;2

�2α2;2Γ1 z2ð Þ � 2α22;2Γ2 z2; z2ð Þ � � � �
�2α44;4Γ2 z4; z4ð Þ þ α0;5 þ α5;1Γ1 z5ð Þ þ α55;5Γ2 z5; z5ð Þ
þr12 x1; x2ð ÞTβ�12 þ r13 x1; x3ð ÞTβ�13 þ r14 x1; x4ð ÞTβ�14
þr23 x2; x3ð ÞTβ�23 þ r24 x2; x4ð ÞTβ�24
þr34 x3; x4ð ÞTβ�34 � 2r1 x1ð ÞTβ�1 � 2r2 x2ð ÞTβ�2
�2r3 x3ð ÞTβ�3 � 2r4 x4ð ÞTβ�4 þ r5 x5ð ÞTβ�5 þ 2α�

0

ðA:12Þ

Hence, using the above expression to construct the multi HDMR based
response surface, the proposed formulation (Eq. (15)) can be expressed
in the following form

~g xð Þ ¼ γ 1ð Þ x; c 1ð Þ� �
α

1ð Þ
0;12 þ α

1ð Þ
1;12Γ

1ð Þ
1 z1ð Þ þ α

1ð Þ
2;12Γ

1ð Þ
1 z2ð Þ þ α

1ð Þ
11;12Γ

1ð Þ
2 z1; z1ð Þ

h

þ α
1ð Þ
12;12Γ

1ð Þ
2 z1; z2ð Þ: þ α

1ð Þ
22;12Γ

1ð Þ
2 z2; z2ð Þ þ � � � þ α

1ð Þ
44;34Γ

1ð Þ
2 z3; z4ð Þ � 2α 1ð Þ

0;1

� 2α 1ð Þ
1;1Γ

1ð Þ
1 z1ð Þ � 2α 1ð Þ

11;1Γ
1ð Þ
2 z1; z1ð Þ � � � � � 2α 1ð Þ

44;4Γ
1ð Þ
2 z4; z4ð Þ þ α

1ð Þ
0;5

þ α
1ð Þ
5;1Γ

1ð Þ
1 z5ð Þ þ α

1ð Þ
55;5Γ

1ð Þ
2 z5; z5ð Þ þ r

1ð Þ
12 x1; x2ð ÞTβ� 1ð Þ

12 þ � � �
þ r

1ð Þ
34 x3; x4ð ÞTβ� 1ð Þ

34 � 2r 1ð Þ
1 x1ð ÞTβ� 1ð Þ

1 � � � � � 2r 1ð Þ
4 x4ð ÞTβ� 1ð Þ

4

þ r
1ð Þ
5 x5ð ÞTβ� 1ð Þ

5 þ2α� 1ð Þ
0

i

þ ∑
it

i¼2
γ ið Þ x; c ið Þ� �

α
ið Þ
0;1 þ α

ið Þ
1;1Γ

ið Þ
1 z1ð Þ þ α

ið Þ
11;1Γ

ið Þ
2 z1; z1ð Þ þ � � �

h

þ α
ið Þ
44;4Γ

ið Þ
2 z4; z4ð Þ þ r

ið Þ
1 xið ÞTβ� ið Þ

1 þ � � � þ r
ið Þ
4 x4ð ÞTβ� ið Þ

4 þ3α� ið Þ
0

i

ðA:13Þ

In Eq. (A.13) the unknown weight coefficient γ ið Þ associated with the
multiple generation of HDMR can be evaluated using Eq. (20).
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