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In this study an attempt is made to generate the microstructure of short fibre composites through rep- 

resentative volume element (RVE) approach and then analyzed using mathematical theory of homoge- 

nization with periodic boundary conditions to estimate the homogenized or effective material properties. 

An algorithm, based on random sequential adsorption technique (RSA), has been developed to generate 

the RVE for such materials. The goal of the present study is to demonstrate the methodology to generate 

RVEs which are effective in predicting the stiffness of the short fibre composites with repetitiveness. For 

this purpose, RVEs for four different scenarios of fibre orientations have been developed using this tech- 

nique. These four different scenarios are: Fibres are aligned in a direction; fibres are oriented randomly 

in one plane; fibres are randomly oriented in one plane and partially random oriented in other plane and 

finally, fibres are completely random oriented. For each case three to four different fibre volume frac- 

tions are studied with five different RVEs for each volume fraction. These four cases presented different 

material behaviour at macroscale due to random location and orientation of fibres. The effective prop- 

erties obtained from numerical technique are compared with popular non RVE methods like Halpin–Tsai 

and Mori–Tanaka methods for the case where fibres are aligned in a direction and were found to be in 

good agreement. The variation in the predicted properties for a given volume fraction of any of the four 

cases studied is less than 1%, which indicates the efficacy of the algorithm developed for RVE genera- 

tions in repetitiveness of predicted effective properties. The four cases studied showed gradual change in 

macroscopic behaviour from transversely isotropic, with respect to a plane, to a nearly isotropic nature. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Materials selection and their properties plays a primary role 

in engineering design. The performance of the structure or com- 

ponent relies mainly on the material properties. Fibre reinforced 

composites (FRC) made with polymer matrix materials are popu- 

lar materials due to their high specific stiffness, strength, tough- 

ness and fatigue behaviour. Fibre reinforced composites, with long 

fibres, processed by cost effective manufacturing techniques are 

efficient to carry primary loads, but there are many applications 

for which the requirements are less demanding and the expen- 

sive manufacturing techniques cannot handle long fibres due to 

complexity of shape. Therefore, in such situations short fibre re- 

inforced composites (SFRC) are widely used ( Harris, 1999 ). SFRC 

products are commonly manufactured by conventional manufac- 

turing techniques like injection moulding, compression moulding 

and extrusion processes, etc. However, injection moulding process 
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is a popular method used in industries for manufacturing poly- 

meric composites of complex shapes without compromising the 

performance of components at a reasonable cost. During the man- 

ufacturing process, molten polymer along with short fibres is in- 

jected into the mould followed by curing process and the final 

part is extracted from the mould ( Vincent et al., 2005 ; Park and 

Park, 2011 ). SFRCs obtained from injection mould technique are 

widely used in auto-mobile and civil engineering applications be- 

cause of their less weight and increased production rates. Recent 

applications of SFRCs in aerospace domains include replacement of 

metallic structures to carry enough loads due to secondary loading 

members ( Rezaei et al., 2009 ). To expand their applications in var- 

ious sectors, prediction of material behaviour is essential. Short fi- 

bre composites are being extensively used in automotive structural 

applications due to their low costs and mass production capabil- 

ities. However, to extend its application in aerospace domain, the 

material behaviour needs to be analyzed carefully. 

The material properties of short fibre reinforced composites 

depend upon many criteria apart from their individual constituent 

properties. The factors such as volume fraction, fibre orientation, 
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fibre location, fibre aspect ratio, cross sectional geometry of fibre 

and size of RVE decide the properties of resulting material. These 

criteria have to be considered while predicting the properties 

of short fibre composites. This leads to a challenging task. The 

different methods used to predict the properties of SFRCs are 

analytical or non RVE methods, micromechanics based finite ele- 

ment method using homogenization techniques and Fast Fourier 

Transform technique. 

To investigate the material behaviour of SFRCs, different analyt- 

ical methods are available in literature. The most popular methods 

are ( Mori and Tanaka, 1973 ) and ( Halpin, 1969; Halpin and Kar- 

dos, 1976 ) techniques. Mori and Tanaka (1973) technique is based 

on Eshelby ’s (1957) inclusion in isotropic medium to estimate the 

average internal stress in a matrix containing inclusion with eigen- 

strain. Mori–Tanaka method does not derive the explicit relations 

for the effective stiffness tensor of composite. Later, Benveniste 

(1987) reconsidered and proposed a closed form expression to 

compute the effective moduli based on the assumption that the 

average strain in inclusion is related to average strain in matrix 

material by a fourth order tensor. This fourth order tensor re- 

lates uniform strain in the inclusion embedded in matrix material, 

subjected to uniform strain at infinity. Chow (1978) ; Tucker and 

Liang (1999) proposed an expression for strain concentration ten- 

sor based on dilute Eshelby’s model and average strain in matrix, 

to predict the stiffness tensor of short fibre composites. 

Among numerical approaches, Ionita and Weitsman (2006) de- 

veloped a material model for SFRCs which simulates the random 

geometry of material based on laminated random strand technique 

to predict the material properties. This method is based on classi- 

cal laminate theory where the fibres are randomly oriented in in- 

plane and does not account for out of plane orientation of fibres. 

Nazarenko et al. (2016) developed a mathematical model based 

on energy-equivalent homogeneity combined with the method of 

conditional moments to analyse short fibre composites. The paral- 

lel and random distribution of fibres was considered and the in- 

terphase was described by Murdoch material surface model. The 

properties of the energy-equivalent fibre are determined on the 

basis of Hill’s energy equivalence principle assuming its cylindri- 

cal shape. 

Approaches using finite element method, as a numerical tool, 

to compute the material behaviour of SFRCs are very popular. 

Kari et al. (2007) developed the RVE models based on the nu- 

merical technique to estimate the material behaviour of random 

short fibre composites. They studied the influence of size ef- 

fect on RVE considering both the constituents as isotropic in na- 

ture. Velmurugan et al. (2014) estimated the effect of material 

behaviour influenced by unidirectionally aligned curved short fi- 

bre composites for glass/epoxy composites and aluminum/boron 

composites. In their study, curved fibres of sinusoidal shape were 

considered and characterized by amplitude, wavelength and di- 

ameter of fibre. Jain et al. (2013) developed the microstructure 

model known as volume element using random sequential algo- 

rithm (RSA) (2007) to predict the stresses in individual inclusion 

and matrix material. The fibres were modeled as sphero-cylinders 

and ellipsoids of various aspect ratios. Further, fibres were al- 

lowed to be unidirectionally aligned and also randomly oriented 

in in-plane. Fully random orientation of fibres was not consid- 

ered in their study. Fu and Lauke (1996) developed an analyti- 

cal method considering the effects of fibre length and fibre ori- 

entation distributions for predicting the tensile strength of short 

fibre reinforced polymers. The strength of these polymers is de- 

rived as a function of fibre length and fibre orientation distribu- 

tion taking into account the dependences of the ultimate fibre 

strength and the critical fibre length on the inclination angle and 

the effect of inclination angle on the bridging stress of oblique 

fibres. 

Ghossein and Lévesque (2012) developed a numerical tool 

to predict the effective properties of composites by generat- 

ing RVE with randomly distributed spherical particles as re- 

inforcement using an algorithm based on molecular dynamics. 

Duschlbauer et al. (2006) developed an RVE by using Monte Carlo 

algorithm to estimate the thermoelastic and thermophysical be- 

haviour of metal matrix composites. In their study, the fibres 

were oriented randomly in in-plane direction. Eckschlager et al. 

(2002) also implemented the unit cell approach for metal ma- 

trix composite to study the elastic behaviour of random oriented 

discontinuous fibre reinforcements. Spherical and cylindrical fibre 

reinforcements were generated using RSA algorithm for 15% vol- 

ume fraction. A finite element implementation of these models 

was done using ABAQUS. Doghri and Tinel (2005) proposed an RVE 

development using orientation distribution function and averaging 

is pronounced in two steps. Firstly, homogenization of each pseudo 

grain is obtained. Secondly, homogenization of all pseudo grains is 

done to estimate the macro response of RVE. Numerical simula- 

tions were performed on elasto-plasto matrix components known 

as silicon fibre reinforced aluminum alloy. Pan et al. (2008a) devel- 

oped a numerical technique to generate the microgeometry using 

RSA technique to estimate the effective properties of short fibre 

reinforced composites. Glass fibres were modeled with an elliptical 

cross sectional shape and large volume fraction is obtained by al- 

lowing the fibres to bend sharply over the other fibres at the cross- 

ing region, which leads to a high stress concentration in the kink 

region of fibres. They also addressed the fibre interaction effect 

on local stress field by varying the distance between two fibres. 

Advani and Tucker (1987) applied the use of even order orientation 

tensors to study the effect of orientation on unidirectional aligned 

composites. Ogierman and Kokot (2016) studied the fibre orienta- 

tion and its influence on material properties and dynamic response 

of the structure based on the coupling of injection moulding tech- 

nique to distribute the short fibres, microscale modeling to rep- 

resent an RVE and finite element based homogenization technique 

to estimate the material properties. Orientation averaging approach 

proposed by Advani and Tucker (1987) is considered to couple the 

fibre orientation data obtained from injection moulding technique 

and to estimate the effective properties. Berger et al. (2007) evalu- 

ated the effective properties of randomly distributed cylindrical fi- 

bre composites. They used numerical homogenization tool for this 

purpose. Their focus was to study the influence of change in vol- 

ume fraction and length/diameter aspect ratio of fibres. In their 

study they considered arbitrarily oriented and parallel oriented fi- 

bre arrangements. 

Most of the works based on some homogenization technique 

depend on the size of an RVE. In the present study, a microme- 

chanics model based on mathematical theory of homogenisation is 

implemented to determine the effective properties. This approach 

is independent of the size of RVE. RVE development plays a key 

role in finite element procedure to determine the effective proper- 

ties of the material. 

The behaviour of a composite material can be predicted by 

studying the effect of its individual constituents at microscale. The 

arrangement of fibres in matrix plays a vital role in the develop- 

ment of a model for this study. The assumptions made for a typ- 

ical micromechanics analysis can be seen in the work of Hori and 

Nemat-Nasser (1999) . A square packed fibre and matrix arrange- 

ment is popularly used model to represent the microscale model 

of continuous fibre composites as shown in Fig. 1 (a) (shown as an 

example). Due to symmetry and periodic arrangement of fibres, a 

single rectangular array can be used to analyse the material at mi- 

croscale which is known as representative volume element (RVE). 

Similarly, a random packing and periodic arrangement of fibre and 

matrix at microscale indicates a RVE for short fibre composites. A 

sample RVE (in 2D) for short fibre composite is shown in Fig. 1 (b). 
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Fig. 1. Representative volume elements for continuous and short fibre composites. 

(a) RVE for continuous fibre composite, (b) RVE for short fibre composite. 

The characterization of a composite material structure is stud- 

ied using RVE at the microlevel, which decouples the composite 

analysis into macro and micro level analyses. Microstructural de- 

tails are considered in local level analysis to determine the ef- 

fective properties and to calculate the relationship between effec- 

tive or average RVE strain and the local strain within the RVE. In 

global level analysis, the actual composite structure is replaced by 

an equivalent homogenized material having the calculated effec- 

tive properties to determine the average stress and strain within 

equivalent homogenized structure ( Hollister and Kikuchi, 1992 ). 

Sukiman et al. (2017) studied a microstructure of randomly dis- 

tributed short fibre composites using computational homogeniza- 

tion to evaluate effective thermal and mechanical properties. The 

focus of the work was to study the effect of area fraction on the 

size of the deterministic representative volume element (DRVE). 

This study was based on two dimensional RVE. 

Determination of RVE size is an important aspect for RVE based 

methods. In general, the RVE must be chosen such that the re- 

quirements of statistical homogeneity must be satisfied by the RVE 

so as to provide a meaningful statistical representation of typical 

material properties. Iorga et al. (2008) proposed a method based 

on laminated random strand method for RVE size. This method is 

well suited for the composites with randomly oriented in-plane 

fibres. Pelissou et al. (2009) proposed a statistical strategy for 

RVE size determination for a metal matrix composite with ran- 

domly distributed aligned brittle inclusions. The work carried out 

by Gitman et al. (2007) can be seen, as an example, for more de- 

tails on existence and size determination of RVE. One can also see 

the study of Kanit et al. (2006) for the estimation of RVE size. 

The main objective of this article is to automatically develop an 

RVE of short fibre composites and estimate its effective properties 

through micromechanical models. Here, random sequential adsorp- 

tion technique proposed by Pan et al. (2008b ) is implemented in 

a numerical method to generate the RVE for chopped fibre com- 

posites. The mathematical theory of homogenization ( Hollister and 

Kikuchi, 1992 ) is used to predict the effective properties of RVEs 

developed. Furthermore, the homogenization method is imple- 

mented in a finite element code with periodic boundary condi- 

tions. This is implemented through the periodic nature of RVEs 

generated. Thus, the overall goal is to develop an approach to gen- 

erate the microstructure of short fibre composite and predict its ef- 

fective macroscopic behaviour. Further, the approach should be ef- 

ficient in predicting the properties repetitively for a given scenario. 

The detailed procedure implemented to make the RVEs periodic in 

nature is also presented. In the present study, different scenarios 

of RVEs have been generated to study the effect of fibre orienta- 

tions on the effective properties. Here, the following four types of 

RVEs are generated and studied for the effective behaviour. 

Case 1: Fibres are aligned in a direction. 

Case 2: Fibres are randomly oriented in one plane. 

Case 3: Fibres are randomly oriented in one plane and a small 

deviation is allowed in one of the remaining plane. 

Case 4: Fibres are completely randomly oriented in all planes. 

Furthermore, the effect of fibre volume fraction on the effective 

properties of the RVEs of all four cases is also studied. For each 

of the case, three fibre volume fractions are studied and for each 

volume fraction five RVEs are generated and analyzed for effective 

properties. 

The novelty of the current study is to give a simple method- 

ology, using RSA technique to generate the RVE with periodicity 

of the material for short fibre composites. Here, the emphasis is 

given on the generation of 3D RVEs rather than 2D RVEs for better 

interaction effect of surrounding fibres. A detailed methodology to 

ensure the material periodicity across all boundaries of the cuboid 

RVE has been presented. Further, a suitable homogenization pro- 

cedure is used such that for a given type of fibre distribution the 

effective properties from different RVEs are predicted consistently. 

This has been demonstrated through numerous simulations over 

different RVEs as mentioned above. 

In the following section, the methodology adopted for the gen- 

eration of RVEs is presented in detail. Thereafter, the efficacy of the 

generated RVEs presenting different types of composites is demon- 

strated through their effective properties. The effective properties 

of these RVEs are predicted by mathematical theory of homoge- 

nization ( Hollister and Kikuchi, 1992 ). The theory is implemented 

through a finite element code. The finite element formulation of 

the theory is also presented briefly. Finall y, the effective properties 

of the resulting composites are analyzed and presented. 

Remark 1. The development of an approach for RVE generation 

for short fibre composite and its effective behaviour prediction can 

easily be applied to multi-scale CNT (Carbon Nano-Tube) compos- 

ites analysis. The effective Carbon nano-fibre can be obtained ei- 

ther from molecular dynamics or from micro-mechanics technique 

like Concentric Cylinder Assemblage (CCA) model of Hashin and 

Rosen (1964) . The details of this work can be seen in Seidel and 

Lagoudas (2006) . Here, the effective CNT fibres can be used as 

short fibre in the RVE. The present work is a link aimed for such a 

multi-scale analysis. 

2. Generation of RVE 

In determining the effective properties of composite materials 

using finite element technique, the generation of RVE plays a vital 

role. In the present study the size of the cuboid shape RVE is cho- 

sen following the work of Iorga et al. (2008) . The size of the RVE 

is based on laminated random strand method. It takes into account 

the length and diameter (aspect ratio) of fibres. Further, the thick- 

ness dimension of the RVE is chosen based on pseudo-layers of 

the stands. More details can be seen in Iorga et al. (2008) and ref- 

erences therein. One can see the work of Gitman et al. (2007) for 

the various definitions of an RVE used in literature as well its size 

determination. 

In this section, steps involved in the generation of an RVE with 

geometric periodicity is explained in the following. 

2.1. Random sequential adsorption technique 

Random sequential adsorption technique is widely employed to 

generate the representative volume element to study the elastic 

properties of random chopped fibre composites. In the following, 

we briefly explain the working of this technique. 
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Fig. 2. Fibre model in a 3D space ( Iorga et al., 2008 ). 

In a 3D space, chopped fibre is modeled as a straight cylinder 

with its center point C , radius r , length l , in-plane orientation angle 

� and out-of-plane orientation angle θ , as shown in Fig. 2 . 

The random sequential adsorption algorithm for RVE generation 

deposits fibres sequentially into the cube by randomly generating 

their center points C and two Euler angles. Here, the location and 

orientations are generated according to uniform probability distri- 

bution function. Practically, two fibres are not allowed to intersect 

each other. Further, the penetration of a new fibre with previously 

accepted fibre is also not allowed in RSA algorithm. The periodicity 

of fibre is maintained in RSA algorithm to ensure material conti- 

nuity across the boundaries when multiple RVEs are arranged for 

the generation of macrostructure, since RVE is locally periodic. A 

certain minimum distance is maintained between two random fi- 

bres to avoid the generation of excessively steep stress gradients 

and meshing difficulties. The minimum distance in this algorithm 

is being set as 0.001 times the side length of RVE. The volume frac- 

tion is updated each time when a newly generated random fibre is 

placed inside the cube satisfying the above criteria. 

2.2. Geometric periodicity 

To study the behaviour of composite materials comprising of 

fibre and matrix, microstructural model had been generated. Mi- 

crostructural model, here known as representative volume ele- 

ment, is a statistical representation of real structure with hetero- 

geneous nature. One of the major assumption of RVE generation is 

that the model is geometrically periodic in nature. The key idea of 

this section is to detail the implementation of geometric periodic- 

ity in the development of RVE. 

The geometric periodicity can be seen as material periodicity, 

that is, the material should not experience the wall effect. In other 

words, it means that the reinforcement should penetrate through 

the walls or boundaries of an RVE (see Gitman et al., 2007 ). In 

order to have the continuity of the material the reinforcements 

penetrating the boundaries are allowed to reappear through op- 

posite sides. Thus, an RVE represents any part of the material and 

can be considered as the part of a larger sample. On similar lines, 

to ensure the geometric or material periodicity for a 3D (cuboid) 

RVE, geometric periodicity has to be maintained all along the faces, 

edges and corners of RVE considered. Therefore, by replicating an 

RVE in three perpendicular directions one should be able to form 

the actual structure. 

In the following sections, the implementation of periodicity 

across faces, edges and corners is explained in detail. A model cu- 

bic cell and its nomenclature used in the generation of geometric 

periodicity in an RVE is presented in Fig. 3 . This nomenclature can 

be used for more than one cell with respect to the cell number. 

2.2.1. Periodicity across faces 

In this case periodicity across faces is implemented to maintain 

the continuity of fibres across the faces of an RVE when a fibre 

crosses a face. The following procedure is incorporated to build the 

periodicity of an RVE across face. 

The fibres that are crossing the face of a parent cell is shared 

by a single adjacent virtual cell as shown in Fig. 4 (a). The parent 

cell is numbered as cell 1 and virtual cell is numbered as cell 2. A 

part of fibre shared by cell 1 is named as region 1 and denoted as 

R 1. The remaining part of fibre shared by cell 2 is named as region 

2, which is denoted as R 2. In this case, fibre crossing the face 2 of 

cell 1 enters the face 4 of cell 2 as shown in Fig. 4 (a). The fibre is 

trimmed by the face across which it crosses and separated along 

with their respective cells as shown in Fig. 4 (b). The region 1 of 

fibre along with cell 1 separately and region 2 of fibre along with 

cell 2 separately cannot be considered as an RVE, because the con- 

tinuity of the fibre is not maintained across the faces of individual 

cells. To ensure the continuity of fibre across faces, R 2 of cell 2 is 

copied to occupy the same position in cell 1 as shown in Fig. 4 (c). 

The same can be obtained by copying R 1 of cell 1 to occupy same 

position in cell 2. Now, the cell in Fig. 4 (c) can be stated as an RVE. 

It should be noted that the common intersection between cylindri- 

cal fibre and faces of an RVE need not be circular in shape, due to 

orientation of fibre. 

2.2.2. Periodicity across edges 

This case deals with the implementation of periodicity when 

fibres cross the boundary of RVE through the edges. Here, a fibre 

is considered to pass across the edge FH in cell 1, as shown in 

Fig. 5 (a). 

A fibre crossing the edge of a parent cell is shared by three 

virtual adjacent cells as shown in Fig. 5 (a). This part of the fibre, 

along with the parent cell, is not periodic in nature. The following 

steps are adopted to make the parent cell to be periodic. 

Both parent and virtual cells along with fibre are trimmed with 

X and Y planes and separated as shown in Fig. 5 (b). The fibre is 

trimmed into four different regions and named along with their 

respective cells as R 1 through R 4. Each region of fibre along with 

its shared cell does not make the respective cell geometrically peri- 

odic along the edges. To make periodic arrangement, part of fibres 

from cell 2, cell 3 and cell 4 are copied and made to occupy the 

same position and orientation in cell 1 as they occupied in their 

respective cells as shown in Fig. 5 (c). The cubic cell in Fig. 5 (c) can 

now be called as an RVE. The same RVE can be generated from any 

of the adjacent cell by making the regions of fibre in the remaining 

cell to occupy the same position in this cell. 

2.2.3. Periodicity across corners 

When fibres are sequentially arranged in a cube, there is a pos- 

sibility that a fibre may cross the boundary of the cube through its 

corner. A fibre crossing the boundary of the parent cell through 

its corner is shared by seven adjacent virtual cells as shown in 

Fig. 6 (a). Each cell holds a small region of fibre. The parent cell 

is numbered as cell 1 and the remaining cells are virtual cells and 

their numbering is shown in Fig. 6 (a). The fibre crossing the corner 

of cell 1 is trimmed by X, Y and Z planes and then separated in the 
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Fig. 3. A model cell and its nomenclature in an RVE. 

Fig. 4. Periodicity in an RVE with fibres across faces. (a) Fibre across a face of a unit cell, (b) trimmed fibre across a face, (c) RVE made with periodicity across faces. 

respective cells as shown in Fig. 6 (b). R 1 along with cell 1 alone 

does not represent an RVE. To ensure it as an RVE, geometric peri- 

odicity needs to be maintained. Hence, region of fibres from seven 

adjacent virtual cells are copied and made to occupy the same po- 

sition in the parent cell as it occupied in their respective virtual 

cells as shown in Fig. 6 (c). Now the cell in Fig. 6 (c) can be termed 

as an RVE with periodic arrangement across the corners. With the 

similar procedure, any of the virtual adjacent cell can be made an 

RVE with periodicity across the corners. 

Remark 2. In an actual RVE, the periodicity will include the peri- 

odicity across all faces, edges and corners. 

2.3. Mathematical formulation for line intersection 

In the generation of RVE, the fibres are added sequentially until 

the required volume fraction is attained. In addition, the new fi- 

bre added should not intersect with the previously added fibres. 

Thus, an algorithm to check for the intersection of fibres is re- 

quired. An algorithm has been developed using Sunday’s technique 

( Schneider and Eberly, 2002 ) to check the intersection of two fibres 

using calculus. The fibres considered are straight and cylindrical in 

shape. So, to check for intersection it is easy to check the distance 

between two axes of cylinders rather than comparing the distance 

between two surfaces of the cylinders. 

Consider two lines L 1 and L 2 given as, respectively 

� P (s ) = � P 0 + s 
(

� P 1 − � P 0 
)

= � P 0 + s � u (2.1) 

� Q (t) = � Q 0 + t 
(

� Q 1 − � Q 0 

)

= � Q 0 + t � v (2.2) 

where, � u and � v are line direction vectors. Let a vector between the 

points on these two lines be given as 

� W ( s, t ) = � P ( s ) − � Q ( t ) (2.3) 

For any n -dimensional space, the two lines L 1 and L 2 are clos- 

est at points P C = P ( s C ) and Q C = Q ( t C ) for which W ( s C , t C ) is the 

global minimum for W ( s, t ). If the two lines L 1 and L 2 are not 

parallel and do not intersect each other, then the segment P C Q C 

joining these points is uniquely simultaneously perpendicular to 
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Fig. 5. Periodic fibres across an edge. (a) Fibre across an edge of a unit cell, (b) trimmed fibre across an edge, (c) RVE made with periodicity across an edge. 

both lines. � W C = � W ( s C , t C ) is uniquely perpendicular to line direc- 

tion vectors � u and � v and this is equivalent to it by satisfying the 

following two conditions: 

� u · � W C = 0 and � v · � W C = 0 (2.4) 

where, � W C = � P ( s C ) − � Q ( t C ) = � W 0 + s C � u − t C � v . Now, substitute � W C in 

Eq. (2.4) and solving, we get 

( � u · � u ) s c − ( � u · � v ) t c = −� u · � W 0 (2.5) 

( � v · � u ) s c − ( � v · � v ) t c = −� v · � W 0 (2.6) 

where, � W 0 = � P 0 - � Q 0 . Let a = � u · � u ; b = � u · � v ; c = � v · � v ; d = � u · � W 0 and 

e = � v · � W 0 . Substituting these values in Eq. (2.5) and Eq. (2.6) and 

solving for s C and t C results in 

s C = 
be − cd 

ac − b 2 
∀ ac − b 2 � = 0 

t C = 
ae − bd 

ac − b 2 
∀ ac − b 2 � = 0 

(2.7) 

If ac − b 2 = 0 , it indicates that two lines are parallel and the 

distance between the lines is constant. This condition can be 

solved for parallel distance separation by constraining the value of 

one parameter and using either of the Eq. (2.7) to solve for the 

other as given below. 

Now, let us select s C = 0 and t C = 
d 
b 

= 
e 
c . Substituting s C and t C 

instead of s and t in Eq. (2.1) and Eq. (2.2) indicating two points 

P C and Q C between two lines L 1 and L 2 where they are closest to 
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Fig. 6. Periodic fibres across a corner. (a) Fibre across a corner of a unit cell, (b) 

trimmed fibre across a corner, (c) RVE made with periodicity across a corner. 

Fig. 7. A unit square in ( s, t )-plane. 

each other. The distance between them is given by 

d ( L 1 , L 2 ) = 

∣

∣� P ( s C ) − � Q ( t C ) 
∣

∣= 

∣

∣

∣

∣

(

� P 0 − � Q 0 

)

+ 
( be − cd ) � u −( ae − bd ) � v 

ac − b 2 

∣

∣

∣

∣

(2.8) 

The distance measured by using Eq. (2.8) may not be the clos- 

est distance between two line segments due to its infiniteness. The 

segments on these lines are given as, respectively 

Segment S 1 = � P (S) = � P 0 + s 
(

� P 1 − � P 0 
)

= � P 0 + s � u ∀ 0 ≤ s ≤ 1 

(2.9) 

Segment S 2 = � Q (S) = � Q 0 +t 
(

� Q 1 − � Q 0 

)

= � Q 0 + t � v ∀ 0 ≤ t ≤ 1 

(2.10) 

The first step in calculating distance between two segments is 

to get the closest points for infinite lines that they lie on. Hence, s C 
and t C for L 1 and L 2 are computed initially and if these are in the 

range of respective segments then they are the closest point. How- 

ever, if they lie outside the range of either, then new points have to 

be determined that minimize � W (s, t) = � P (s ) − � Q (t) over the range 

of interest. So, quadratic minimization method has been imple- 

mented to determine the minimum length of W as it is same as 

minimizing length of | W | 2 . Here, | W | 2 = � W · � W = 
(

� W 0 + s � u − t � v 
)

·
(

� W 0 + s � u − t � v 
)

, which is a quadratic function of s and t and defines 

a paraboloid over the ( s, t )-plane with a minimum at C = ( s C , t C ) 
(see Fig. 7 ), which is strictly increasing along the rays in the ( s, t )- 

plane that start from C and go in any direction. But when segments 

are involved we need the minimum over a subregion G of the ( s, 

t )-plane, and the global absolute minimum at C may lie outside the 

region G (see Fig. 7 ). However, in these cases the minimum always 

occurs on the boundary of G and in particular on the part of G ’s 

boundary that is visible to C , indicating a line from C to the bound- 

ary point which is exterior to G . It forms a unit square in this case. 

The four edges of the square are given by s = 0 , s = 1 , t = 0 , t = 1 

as shown in Fig. 7 and if C = (s C , t C ) is outside G then it can see at 

most two edges of G . 

The conditions upon which the values s and t of the closest 

point between two line segments can be obtained, are as follows: 

• If s C < 0, C can see edge s = 0; If s C > 0, C can see edge s = 1; 
• If t C < 0, C can see edge t = 0; If t C > 0, C can see edge t = 1 

Clearly, if C is not in G , then at least 1 or at most 2 of these in- 

equalities are true, and they determine which edges of G are can- 

didates for a minimum of | W | 2 . 

The procedure for the minimization for each candidate edge 

and basic calculus implemented to compute the minimum on that 
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Table 1 

Fibre orientations in RVEs studied. 

Cases In Plane Orientation, φ° Out of Plane Orientation, θ°

1 0 0 

2 0-360 0 

3 0-360 ±10 

4 0-360 0-360 

edge, either in its interior or at an end point can be seen in the 

work of Schneider and Eberly (2002) . 

2.4. Computer implementation 

RVE generation algorithm based on RSA technique has been 

implemented in MATLAB by modeling fibres as a line segment 

in a cube or cuboid. By using the information generated, a com- 

mand file has been generated in MATLAB, which is imported in the 

commercial software HYPERMESH ® to generate a solid RVE model 

maintaining periodicity in it. Since fibres get trimmed to maintain 

periodicity, the cross sectional shape of fibres may look elliptical. 

The tetrahedron elements are most suitable for such a geometry. 

Therefore, the tetrahedron elements are formed from a 2D trian- 

gular elements on the boundary. Initially, a solid RVE is meshed 

on one side of the surface of cube using 2D triangular elements 

and the same elements get duplicated and transformed to oppo- 

site face to maintain the periodicity. Similarly, elements for fibre 

on the surface get duplicated and transformed to the opposite face. 

To form a 3D tetrahedron mesh, elements formed through triangu- 

lar mesh should be closed. To ensure closed volume, equivalence 

check is done. 3D tetrahedron matrix and fibre elements are cre- 

ated, which now represent an RVE with finite elements. Once the 

mesh has been generated using the required volume fraction, the 

software provides the coordinates and connectivity matrix for all 

the nodes generated. This data serves as an input for the finite el- 

ement code for homogenization theory. A conjugate gradient solver 

is developed to solve the resulting system of equations. 

The results obtained from the finite element implementation 

of homogenization theory for the prediction of effective properties 

from the RVEs generated are compared with those obtained from 

Halpin–Tsai ( Halpin and Kardos, 1976 ) and Mori–Tanaka methods 

( Mori and Tanaka, 1973; Mura, 1987 ). The details of these methods 

are presented in Appendix A. The finite element and the periodic 

boundary conditions implementation is presented in Appendix B. 

3. Results and discussion 

In this section, effects of fibre orientation and fibre volume frac- 

tion on the effective properties of RVE developed using RSA algo- 

rithm and the material behaviour based on fibre orientation are 

discussed. 

To study the effect of orientation of fibre in chopped fibre re- 

inforced composites, four different types of RVEs have been de- 

veloped. Firstly, RVEs have been developed with all chopped fi- 

bres aligned in a particular direction. Secondly, all the fibres were 

randomly oriented in on of the plane (here XY -plane is chosen) 

and restricted in remaining planes of an RVE generated. Next, RVE 

is created with randomly oriented fibres in one plane ( XY -plane) 

and partially oriented in another plane (here XZ -plane is chosen). 

The orientation restricted to another plane is ±10 °. Finally, an RVE 

with completely random oriented fibres in all planes is generated. 

Table 1 represents the summarised form of different cases consid- 

ered in this study for the effect of fibre orientation on effective 

properties. The material considered in this study is AS4 carbon fi- 

bre and 3501-6 Epoxy matrix ( Soden et al., 1998 ). The material 

Table 2 

Mechanical properties of AS4 carbon fibre 

material ( Soden et al., 1998 ). 

E 1 E 2 G 12 G 23 ν12 
(GPa) (GPa) (GPa) (GPa) 

225 15 15 7 0.2 

Table 3 

Mechanical properties of 3501-6 epoxy 

matrix material ( Soden et al., 1998 ). 

E G ν

(GPa) (GPa) 

4.2 1.567 0.35 

properties of the fibre and matrix materials are given in Table 2 

and Table 3 , respectively. 

To generate random distribution in an RVE, uniform distribu- 

tion function (available in MATLAB) had been used in RSA algo- 

rithm. RVEs are generated for different volume fractions for all the 

cases mentioned in Table 1 . For a given volume fraction 5 RVEs 

are generated to see the efficacy of methodology adopted to gen- 

erate RVE in repeating the predicted effective stiffness. The fibres 

considered in this study are of cylindrical in shape. Initially, fi- 

bres are generated with its center at origin aligned along X di- 

rection and then translated to randomly generated coordinates in- 

side the RVE by using uniform distribution function with geomet- 

ric periodicity until a desired volume fraction is achieved. The 

dimensions of RVE are chosen based on previous study carried 

out by Iorga et al. (2008) as 2 l f ×2 l f ×4 d f , where l f is the length 

and d f is the diameter of short fibres considered. In the current 

study the estimation of RVE size not emphasized, rather the ap- 

proach used in Iorga et al. (2008) has been used to choose the 

RVE sizes. Further, the RVE size chosen above is for the case of 

completely random oriented fibre case. More details can be seen 

in Iorga et al. (2008) and references therein. 

Once the RVE size is chosen the fibres are added sequentially 

as discussed earlier. This procedure of adding fibres to an RVE is 

continued till no more fibres can be added to it without touching 

the already added fibres in the RVE. Since, the size of the RVE and 

number of fibres are known the fibre volume fraction of the result- 

ing material can be calculated. It should be noted that in maintain- 

ing the periodicity if any fibre is coming out of the RVE then that 

part is placed inside the RVE. Thus, the number of fibres in an RVE 

is always a whole number. 

Remark 3. In the generation of RVE with the periodic condition 

only the integer number of fibres are added in it. Furthermore, the 

size of the RVE is kept fixed. Thus, depending upon the aspect ra- 

tio of the fibres and their orientations a certain volume fraction 

could be achieved like 15.43%, 21.03%, etc. but these same volume 

fractions could not be achieved for all the cases studied. However, 

to have a fair comparison, it has been tried to achieve almost the 

same volume fractions for all cases studied. 

3.1. Case 1: in-plane aligned fibres 

In this section effective properties of aligned fibre composites 

and its material behaviour is studied in detail. The convergence 

criterion for aligned fibre composite properties is also reviewed in 

detail. 

In this case, fibres were not allowed to orient in any direction 

during the generation of RVEs. Four different fibre volume fractions 

of 15.43%, 18.23%, 21.03%, 22.44% are considered to study the effec- 

tive material properties and their behaviour. The maximum volume 

fraction which can be achieved using RSA algorithm for this case 
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Fig. 8. RVEs for Case 1 with fibre volume fraction of 15.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 9. RVEs for Case 1 with fibre volume fraction of 18.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 10. RVEs for Case 1 with fibre volume fraction of 21.03%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

is 22.44% with 16 cylinders of aspect ratio 3.5. Five models of RVE 

for each volume fraction have been generated as shown in Figs. 8 , 

9 , 10 and 11 , respectively. Fig. 12 shows a typical meshed RVE used 

in the analysis. One can note that the exact meshes are reproduced 

on opposite faces of the RVE to ensure periodic boundary condi- 

tions. 

The effective stiffness tensors obtained by analyzing the RVEs 

for fibre volume fraction of 15.43 and 22.44% are given in Tables 4 

and 5 , respectively as examples. The subscripts used with these 

tensors denote the corresponding RVE. It is to be noted that all 

these tensors are symmetric. 
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Table 4 

Effective stiffness tensors for all fibres aligned case with fibre volume fraction of 15.43% (Values in MPa). 

[ C ] 1 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

11886 3500 3504 0 0 85 

7170 3328 0 4 5 

7176 0 0 0 

1907 0 0 

2130 0 

2112 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, [ C ] 2 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

11650 3482 3480 0 5 0 

7164 3343 0 0 0 

7162 2 0 7 

1931 0 2 

2095 0 

2097 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

[ C ] 3 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

12396 3532 3485 0 37 0 

7166 3337 2 0 5 

7164 0 5 0 

1909 0 0 

2108 0 

2139 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, [ C ] 4 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

11386 3450 3560 10 98 5 

7168 3347 0 3 0 

7153 18 3 4 

1918 3 13 

2121 22 

2091 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

[ C ] 5 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

11374 3537 3477 10 84 2 

7146 3340 0 1 8 

7195 0 7 0 

1906 0 9 

2135 0 

2082 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

Table 5 

Effective stiffness tensors for all fibres aligned case with fibre volume fraction of 22.44% (Values in MPa). 

[ C ] 1 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

14002 3535 3568 0 45 14 

7563 3303 11 0 0 

7559 0 6 0 

2129 0 0 

2432 1 

2412 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, [ C ] 2 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

14694 3607 3558 12 69 0 

7562 3308 0 0 0 

7539 1 4 2 

2112 0 3 

2407 0 

2487 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

[ C ] 3 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

13900 3638 3548 0 104 0 

7545 3305 14 0 0 

7574 3 9 3 

2091 0 11 

2434 14 

2435 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, [ C ] 4 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

14514 3599 3559 5 0 0 

7539 3322 12 0 12 

7537 0 4 0 

2129 0 0 

2425 14 

2471 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

[ C ] 5 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

14303 3619 3564 0 0 0 

7521 3322 0 8 0 

7558 9 0 10 

2107 9 5 

2461 16 

2425 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

Table 6 

Properties of aligned short fibre composites: Case 1. 

V f RVE E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) No. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

1 9.548 5.280 5.284 2.111 2.130 1.907 0.333 0.334 0.374 0.992 0.774 

2 9.344 5.258 5.256 2.097 2.095 1.931 0.331 0.331 0.376 1.011 0.782 

15.43 3 10.051 5.271 5.293 2.140 2.109 1.909 0.340 0.328 0.379 0.997 0.752 

4 9.042 5.271 5.199 2.091 2.120 1.918 0.319 0.349 0.376 1.006 0.798 

5 9.029 5.214 5.288 2.082 2.135 1.906 0.344 0.324 0.368 0.996 0.797 

HT 10.061 5.403 5.403 2.019 2.019 1.845 0.321 0.321 0.29 - - 

MT 8.596 5.683 5.683 2.190 2.190 2.04 0.338 0.338 0.383 - - 

1 10.558 5.482 5.486 2.219 2.230 1.988 0.331 0.331 0.371 0.994 0.749 

2 9.969 5.401 5.416 2.244 2.198 1.996 0.338 0.327 0.372 1.013 0.782 

18.43 3 10.982 5.467 5.502 2.208 2.253 1.998 0.334 0.326 0.375 1.002 0.735 

4 11.246 5.471 5.511 2.222 2.229 1.980 0.339 0.324 0.375 0.993 0.721 

5 10.454 5.426 5.517 2.216 2.242 1.975 0.347 0.317 0.368 0.989 0.756 

HT 11.338 5.642 5.642 2.118 2.118 1.890 0.311 0.311 0.302 - - 

MT 9.643 6.019 6.019 2.339 2.339 2.170 0.338 0.338 0.387 - - 

1 11.142 5.654 5.783 2.354 2.348 2.073 0.352 0.304 0.356 0.985 0.748 

2 11.569 5.696 5.700 2.345 2.368 2.055 0.330 0.331 0.364 0.984 0.733 

21.03 3 11.538 5.622 5.694 2.410 2.361 2.081 0.347 0.315 0.366 1.006 0.746 

4 11.750 5.698 5.668 2.371 2.399 2.063 0.323 0.339 0.368 0.992 0.735 

5 11.983 5.612 5.673 2.402 2.318 2.075 0.346 0.314 0.372 1.011 0.724 

HT 12.741 5.903 5.903 2.212 2.212 1.948 0.311 0.311 0.278 - - 

MT 10.616 6.328 6.328 2.477 2.477 2.277 0.338 0.338 0.389 - - 

1 11.679 5.802 5.785 2.418 2.432 2.129 0.323 0.331 0.361 1.0 0 0 0.746 

2 12.327 5.788 5.789 2.487 2.407 2.112 0.335 0.325 0.365 0.996 0.725 

22.44 3 11.518 5.746 5.811 2.435 2.433 2.091 0.342 0.319 0.356 0.983 0.752 

4 12.156 5.754 5.769 2.471 2.425 2.129 0.334 0.325 0.366 1.010 0.735 

5 11.927 5.727 5.783 2.425 2.462 2.107 0.339 0.323 0.363 0.999 0.741 

HT 13.448 6.024 6.024 2.257 2.257 2.091 0.313 0.313 0.281 - - 

MT 11.171 6.504 6.504 2.556 2.556 2.339 0.338 0.338 0.390 - - 
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Fig. 11. RVEs for Case 1 with fibre volume fraction of 22.44%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 12. A typical meshed RVE for Case 1. (a) meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 

Remark 4. Note that the X, Y and Z directions are repre- 

sented as 1, 2 and 3, respectively. Further, the stress and 

strain vectors, for the resulting constitutive material, are arranged 

as { σ 11 σ 22 σ 33 σ 23 σ 13 σ 12 } 
T and { ε 11 ε 22 ε 33 ε 23 ε 13 ε 12 } 

T , respec- 

tively. The components of effective stiffness tensor C ij have one to 

one correspondence with respect to these vectors. 

To quantify the closeness of in-plane isotropic behaviour of an 

RVE with fibres aligned in XY -plane, a parameter based on stiff- 

ness tensor entries relation for transversely isotropic behaviour is 

defined as 

a Y Z = 
2 C 44 

C yz 22 −C 23 
(3.1) 

where, C yz 
22 = 

C 22 + C 33 
2 and C ij are the components of effective stiff- 

ness tensor. It is to be noted that the fibres are aligned along X di- 

rection. Therefore, it is expected for this case that the macroscopic 

behaviour will be isotropic in a plane perpendicular to X -axis, that 

is, the YZ -plane. However, one can define such a parameter for any 

other plane as well. Further, to check if the overall material be- 

haviour is isotropic, a non dimensional parameter, a is employed 

here. This is defined based on the stiffness entries relation for a 

typical isotropic material behaviour as 

a = 
2 Y 44 

Y 11 − Y 12 
(3.2) 

where, Y 11 = 
C 11 + C 22 + C 33 

3 ; Y 12 = 
C 12 + C 23 + C 31 

3 and Y 44 = 
C 44 + C 55 + C 66 

3 . 

Thus, the parameter a YZ is an indicator of in-plane isotropy for YZ - 

plane, whereas the parameter a is an indicator of overall isotropy. 

When the value of a Y Z = 1 then the material is isotropic in YZ - 

plane and when a approaches 1 the material is said to be isotropic. 

The relations between stiffness entries for various material be- 

haviour can be seen from their stiffness tensor (for example see 

Mohite ). Similar definitions of parameters are proposed in Kanit 

et al., (2006) . 

Substituting the entries from effective stiffness tensor obtained 

from homogenization model, a YZ values are obtained and tabulated 

in Table 6 . The mean and standard deviation in these values for all 

fibre volume fractions studied are reported in Table 7 . Thus, from 

these tables it is seen that that this material indicates more than 

99% isotropic behaviour in YZ -plane, that is, macroscopic behaviour 

is transversely isotropic. The parameter a has the values above 0.72 

as can be seen from Table 7 . This indicates that macroscopic be- 

haviour is not isotropic. Further, from this table it can also be seen 

that as the fibre volume fraction increases the mean value of the 

parameter a decreases. This can be explained on the basis of fi- 

bre packing geometry. Let us measure the contribution of the fi- 

bres towards stiffness of the resulting material in terms of their 

projected areas on the planes of an RVE. As can be seen from the 

RVEs shown in Figs. 8 through 11 , the increase in projected area 
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Table 7 

Average and SD for properties of Case 1. 

Property V f 15.43 (%) V f 18.43 (%) V f 21.03 (%) V f 22.44 (%) 

Mean SD Mean SD Mean SD Mean SD 

E 1 (GPa) 9.402 0.422 10.641 0.493 11.596 0.309 11.921 0.332 

E 2 (GPa) 5.258 0.026 5.449 0.034 5.656 0.040 5.763 0.031 

E 3 (GPa) 5.264 0.038 5.486 0.041 5.703 0.046 5.787 0.015 

G 12 (GPa) 2.104 0.022 2.221 0.013 2.376 0.028 2.447 0.030 

G 13 (GPa) 2.117 0.016 2.230 0.020 2.358 0.029 2.431 0.019 

G 23 (GPa) 1.914 0.010 1.987 0.009 2.069 0.010 2.113 0.016 

ν12 0.334 0.009 0.337 0.006 0.339 0.0012 0.334 0.007 

ν13 0.333 0.009 0.324 0.005 0.320 0.014 0.324 0.004 

ν23 0.374 0.004 0.372 0.003 0.365 0.006 0.362 0.003 

a YZ 1.0 0 0 0.008 0.998 0.009 0.996 0.012 0.997 0.009 

a 0.781 0.019 0.748 0.023 0.737 0.009 0.739 0.011 

on YZ plane as compared to other planes is lesser. Furthermore, 

as the fibre volume fraction increases the projected areas on the 

three planes are not increased proportionately. Thus, the stiffness 

contribution due to fibre volume fraction increase is more in other 

planes as compared to that for YZ plane. This can be clearly seen 

from Tables 4 and 5 as well. Thus, the parameter a shows a small 

decrement in its value as the fibre volume fraction is increased. 

The effective engineering properties/constants are deduced 

from the coefficients obtained by inverting these tensors (compli- 

ance tensors). The effective properties obtained from homogeniza- 

tion technique for all the five RVE models for all volume fraction 

are reported in Table 6 . The obtained results are compared with 

those of Mori–Tanaka (denoted by MT ) and Halpin–Tsai (denoted 

by HT ) methods. 

From these results it can be seen that for all the fibre volume 

fractions studied the results of the homogenization method lie be- 

tween Mori–Tanaka and Halpin–Tsai methods. Further, it can be 

seen that as the volume fraction increases, the Young’s moduli and 

shear moduli increase and the Poisson’s ratios decrease slightly. 

This is because at low volume fractions RVE is almost filled with 

low stiffness epoxy material and as fibre volume fraction increases 

matrix content reduces and fibre starts withstanding load, which 

is comparatively a stiffer material leading to decrease in Poisson’s 

effect. Since fibres are aligned in X direction, effective elastic con- 

stants like Young’s moduli and shear moduli are high in that direc- 

tion compared to other directions. 

The mean values of the effective properties for the RVEs for 

their respective fibre volume fractions along with standard devi- 

ation (SD) for these values are reported in Table 7 . The percentage 

standard deviation among the properties is comparatively higher 

for E 1 values and close to zero for the remaining properties. It can 

be seen from Table 7 that as the volume fraction increases, SD 

for E 1 decreases slightly and there seems no change for remain- 

ing properties. The variation in effective properties among differ- 

ent RVE models of a volume fraction is due to random packing and 

periodic arrangements of fibres in that RVE. 

Table 8 indicates the percentage difference between mean val- 

ues of effective properties obtained from homogenization model 

implemented with respect to Mori–Tanaka and Halpin–Tsai mod- 

els. It is seen that this percentage difference is less for Halpin–Tsai 

method than Mori–Tanaka method in the respective properties, ex- 

cept the out of plane Poisson’s ratio in transverse direction, ν23 . It 

is further seen that, in general, as the volume fraction increases 

this difference increases for both methods. For Young’s moduli this 

difference varies between 2.5% to 12%, for shear moduli it is be- 

tween 3% to 10% and for Poisson’s ratio the maximum difference 

is seen upto 26%. This maximum difference is seen with respect 

to Halpin–Tsai method for ν23 . Furthermore, this maximum dif- 

ference is because the fibre packing fraction is not considered in 

Halpin–Tsai model. Also, the engineering constants of short fibre 

Table 8 

Percentage difference in properties by homogenization theory with respect to Mori–

Tanaka and Halpin–Tsai model. 

Property V f 15.43 (%) V f 18.43 (%) V f 21.03 (%) V f 22.44 (%) 

MT HT MT HT MT HT MT HT 

E 1 8.96 6.81 10.59 6.51 8.82 9.38 6.50 12.17 

E 2 7.76 2.60 9.56 3.43 11.22 4.06 12.07 4.36 

E 3 7.65 2.50 8.88 2.76 10.39 3.22 11.66 3.94 

G 12 4.03 4.32 4.73 5.11 4.17 7.18 4.35 7.76 

G 13 3.39 4.96 4.34 5.51 4.92 6.44 5.00 7.13 

G 23 7.04 3.92 8.42 4.66 9.59 5.66 10.12 6.25 

ν12 1.55 4.63 0.15 7.75 0.44 9.15 1.01 8.12 

ν13 1.64 4.54 4.04 3.86 5.34 3.36 4.08 5.06 

ν23 2.35 22.61 3.9 24.47 6.39 25.22 7.49 25.74 

composite are weakly dependent on fibre aspect ratio and hence 

approximated using continuous fibre formulae. 

Remark 5. The values of the engineering constants reported for 

the effective behaviour in Table 9 assumes that the degree of 

anisotropy for the effective stiffness tensors is negligibly small. 

For example, the highest upper right 3 ×3 non-zero entry for [ C ] 1 
when compared with the smallest upper left 3 ×3 entry is less 

than 3%. A similar observation is made in the studies carried out 

by Kanit et al. (2006) and Iorga et al. (2008) . Therefore, the ef- 

fective stiffness tensor is assumed to have the coefficients corre- 

sponding to normal-normal coupling part (upper left 3 ×3 entries) 

and diagonal entries for shear part only (diagonal entries of lower 

right 3 ×3 entries) and all other entries are made zero. Then this 

is inverted to evaluate the engineering constants. When the engi- 

neering constants obtained from this approach are compared with 

those obtained by retaining all the terms in original effective stiff- 

ness tensor of an RVE (as given in Tables 4 and 5 ) then no signif- 

icant change in the values is observed. The values shown in boxes 

in Table 9 are the values with a negligible change when compared 

to those in Table 6 . The maximum change is less than 1%. Thus, 

this also shows that the degree of anisotropy is not significant. 

Therefore, for the remaining cases studied in the following, this 

anisotropy is not ignored while calculating the properties of RVEs. 

A brief convergence study is also carried out for finite element 

computations by investigating the numerical results as the num- 

bers of elements are increased in the domain (RVE). A set of nu- 

merical solutions for in-plane aligned fibres case has been made 

for five different meshes based on the number of elements used 

in these meshes. Here, the convergence of engineering constants 

E 1 , E 2 , G 12 , G 23 , ν12 and ν23 is studied. The number of elements 

are varied from 5 ×10 4 to 3 ×10 5 . The results obtained for vari- 

ous mesh sizes interpret that around 2 ×10 5 number of elements 

the results (that is, property values) are converged. Hence, for the 

remaining models of RVE, mesh size with number of elements 

2 ×10 5 and above are used to discretize the model. The linear 

tetrahedron elements are used to obtain the solution. The conver- 

gence of the engineering constants with the number of elements 

is shown in Fig. 13 . 

3.2. Case 2: In-plane randomly oriented fibres 

In this section, the material behaviour of RVEs generated with 

random in-plane orientation of fibres in XY -plane is studied in 

detail. In the RVEs generated, initially the fibres with their cen- 

tres located at different positions, are aligned along X -axis. The 

location of centres of these fibres are generated randomly with 

a uniform probability distribution function. Then these fibres are 

oriented randomly about Z -axis, again with a uniform probabil- 

ity distribution function. The fibres are allowed neither to inter- 

sect nor to overlap each other. RVEs with three different volume 
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Table 9 

Properties of aligned short fibre composites: Case 1. Properties obtained ignoring anisotropy completely. Boxes show 

changed values as compared to given in Table 6 . 

V f RVE E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 
(%) No. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.43 1 9.551 5.280 5.284 2.112 2.130 1.907 0.333 0.334 0.374 

2 9.344 5.258 5.256 2.097 2.095 1.931 0.331 0.331 0.376 

3 10.051 5.271 5.293 2.139 2.109 1.909 0.340 0.328 0.379 

4 9.042 5.271 5.199 2.091 2.121 1.918 0.318 0.348 0.375 

5 9.032 5.214 5.287 2.082 2.136 1.906 0.343 0.324 0.368 

18.43 1 10.558 5.482 5.486 2.219 2.230 1.988 0.331 0.331 0.371 

2 9.969 5.401 5.416 2.244 2.198 1.996 0.338 0.327 0.372 

3 10.982 5.467 5.502 2.208 2.253 1.998 0.334 0.326 0.375 

4 11.247 5.471 5.511 2.222 2.229 1.980 0.339 0.324 0.375 

5 10.467 5.426 5.517 2.218 2.242 1.975 0.347 0.317 0.368 

21.03 1 11.148 5.654 5.783 2.354 2.348 2.073 0.352 0.304 0.356 

2 11.569 5.696 5.700 2.345 2.368 2.055 0.330 0.331 0.364 

3 11.538 5.622 5.694 2.410 2.361 2.081 0.347 0.315 0.366 

4 11.750 5.698 5.668 2.371 2.399 2.063 0.323 0.339 0.368 

5 11.983 5.612 5.673 2.402 2.318 2.075 0.346 0.314 0.372 

22.44 1 11.680 5.802 5.785 2.418 2.432 2.129 0.323 0.331 0.361 

2 12.327 5.788 5.789 2.487 2.407 2.112 0.335 0.325 0.365 

3 11.522 5.746 5.811 2.435 2.434 2.091 0.342 0.319 0.356 

4 12.156 5.754 5.769 2.471 2.425 2.129 0.334 0.325 0.366 

5 11.927 5.727 5.783 2.425 2.462 2.107 0.339 0.323 0.363 

Fig. 13. Convergence of engineering constants with number of elements in an RVE for Case 1. (a) E 1 , (b) E 2 , (c) G 12 , (d) G 23 , (e) ν12 , (f) ν23 . 
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Fig. 14. RVEs for Case 2 with fibre volume fraction of 15.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 15. RVEs for Case 2 with fibre volume fraction of 18.23%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 16. RVEs for Case 2 with fibre volume fraction of 22.44%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

fractions have been generated with a maximum volume fraction 

of 22.44%. Five different models of RVEs for volume fractions of 

15.43%, 18.23% and 22.44% have been generated to study the ef- 

fect of fibre volume fraction on the behaviour of RVEs. The RVEs 

for these volume fractions are shown in Figs. 14 , 15 and 16 , re- 

spectively. Fig. 17 shows an RVE with meshing used in the finite 

element analysis. 

Table 10 represents the effective material properties obtained 

through homogenization technique for different volume fractions. 

It is observed that for a given volume fraction the Young’s mod- 

ulus in X and Y directions are close to each other compared to 

Z direction, whereas the values of shear moduli and Poisson’s ra- 

tios are close to each other in out of plane directions ( XZ and YZ 

plane). This is due the fact that fibres are having random orienta- 
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Fig. 17. A typical meshed RVE for Case 2. (a) Meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 

Table 10 

Properties of in-plane oriented short fibre composites: Case 2. 

V f Model E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.43 1 6.774 6.337 5.425 2.783 2.021 2.005 0.356 0.306 0.314 0.873 0.952 

2 6.707 6.412 5.285 2.367 2.010 1.991 0.294 0.337 0.343 0.886 0.897 

3 7.058 5.847 5.358 2.552 2.038 1.981 0.358 0.306 0.331 0.919 0.934 

4 6.825 6.282 5.330 2.413 2.023 1.987 0.313 0.329 0.335 0.884 0.905 

5 6.343 6.663 5.377 2.582 1.986 2.018 0.309 0.324 0.320 0.858 0.929 

18.23 1 7.522 6.531 5.575 2.697 2.123 2.074 0.321 0.315 0.332 0.893 0.904 

2 7.077 6.879 5.593 2.657 2.122 2.090 0.309 0.320 0.322 0.782 0.864 

3 6.556 7.314 5.573 2.889 2.081 2.115 0.300 0.322 0.313 0.829 0.940 

4 6.957 6.621 5.544 2.809 2.137 2.094 0.326 0.316 0.320 0.885 0.952 

5 6.745 7.436 5.539 2.765 2.083 2.120 0.279 0.336 0.325 0.829 0.909 

22.44 1 8.501 7.025 5.936 3.174 2.275 2.209 0.350 0.296 0.318 0.874 0.911 

2 8.001 7.385 5.926 3.168 2.239 2.215 0.329 0.305 0.312 0.844 0.914 

3 7.155 8.234 5.940 3.018 2.204 2.308 0.285 0.314 0.307 0.813 0.902 

4 7.308 8.181 5.914 3.005 2.237 2.293 0.289 0.319 0.309 0.813 0.899 

5 7.286 7.361 5.883 3.328 2.258 2.249 0.341 0.302 0.297 0.849 0.981 

tion in XY -plane and as explained for Case 1, the projected areas of 

fibres on XZ and YZ planes are approaching to be equal. Thus, con- 

tribution of fibre stiffness is almost equal in these planes, unlike 

in Case 1. However, for YZ -plane the projected area is almost same 

as in Case 1 for a given volume fraction. It is to be noted that the 

fibre itself is transversely isotropic in nature here. Due to this ar- 

rangement of fibres in RVEs and their transverse isotropic nature, 

the isotropy in YZ plane is affected. This can be seen through the 

decrement of parameter a YZ in comparison to Case 1. This is re- 

duced to a minimum of 83% for the studied volume fractions. On 

the contrary, this arrangement has led to an improvement in over- 

all isotropic behaviour as can be seen through the values of pa- 

rameter a . This value is above 91% for the volume fractions studied 

(See Table 11 ). Furthermore, as the volume fraction increases these 

properties also increase. 

Table 11 represents the mean and standard deviation in effec- 

tive property values of RVEs developed. The values of Young’s mod- 

uli and shear moduli increase as the volume fraction increases. 

However, Poisson’s ratios decrease slightly with the increase in vol- 

ume fraction. In general, the standard deviation in the values of 

effective properties is less than 1 and increases as volume frac- 

tion is increased. The standard deviation values for Young’s mod- 

uli in X and Y directions have comparatively larger scatter than 

remaining properties due to random orientation and distribution 

Table 11 

Average and standard deviation in effective properties of Case 2. 

Property V f 15.43 (%) V f 19.63 (%) V f 22.44 (%) 

Mean SD Mean SD Mean SD 

E 1 (GPa) 6.741 0.259 6.971 0.367 7.650 0.579 

E 2 (GPa) 6.308 0.296 6.956 0.406 7.637 0.540 

E 3 (GPa) 5.355 0.052 5.565 0.023 5.920 0.023 

G 12 (GPa) 2.540 0.164 2.764 0.092 3.139 0.133 

G 13 (GPa) 2.015 0.019 2.109 0.026 2.243 0.027 

G 23 (GPa) 1.996 0.015 2.099 0.019 2.255 0.045 

ν12 0.326 0.029 0.307 0.019 0.319 0.030 

ν13 0.321 0.014 0.322 0.008 0.307 0.009 

ν23 0.329 0.011 0.322 0.007 0.309 0.008 

a YZ 0.884 0.022 0.844 0.045 0.838 0.026 

a 0.923 0.022 0.914 0.034 0.921 0.034 

of fibres in that direction ( XY -plane). Further, as the volume frac- 

tion increases the scatter in the property values also increases. The 

variation in properties among different RVE models for a particu- 

lar volume fraction is attributed to packing arrangement of fibres 

in RVEs. The very low value of standard deviation (less than 1%) 

among the property values indicates that the present approach is 

efficient in generating the RVEs such that predicted macroscopic 

behaviour is repetitive in nature for the given volume fraction for 

this case also. 
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Fig. 18. RVEs for Case 3 with fibre volume fraction of 15.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 19. RVEs for Case 3 and fibre volume fraction of 19.63%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 20. RVEs for Case 3 with fibre volume fraction of 21.04%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

3.3. Case 3: in-plane randomly oriented and out of plane partial 

randomly oriented fibres 

In this section the RVEs generated with fibres randomly ori- 

ented in a plane and partially oriented in out of plane directions 

are analyzed for their effective properties. This case is a generaliza- 

tion of Case 2, indicating that RVE cannot have all the fibres ran- 

domly oriented in one plane only all the time and hence a small 

out of plane deviation is allowed. The procedure followed to gen- 

erate an RVE is same as in Case 2 and further allowing orientations 

of the fibres by ±10 ° in XZ -plane. Here also the effect of volume 

fraction is studied by considering three different volume fractions. 
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Fig. 21. A typical meshed RVE for Case 3. (a) Meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 

Table 12 

Properties of in-plane and partial out of plane orientation for short fibre composites: Case 3. 

V f Model E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.43 1 6.745 5.878 5.391 2.617 2.042 1.980 0.362 0.303 0.319 0.913 0.956 

2 6.824 6.037 5.335 2.542 2.020 1.986 0.333 0.318 0.332 0.914 0.934 

3 6.569 7.072 5.325 2.406 1.995 2.018 0.272 0.345 0.342 0.839 0.875 

4 6.365 6.946 5.377 2.363 1.995 2.025 0.287 0.338 0.323 0.839 0.884 

5 6.828 6.483 5.368 2.361 2.013 1.990 0.305 0.327 0.337 0.868 0.882 

19.63 1 6.237 7.504 5.681 2.852 2.120 2.188 0.299 0.316 0.299 0.829 0.951 

2 6.873 7.430 5.675 2.812 2.149 2.163 0.296 0.324 0.314 0.835 0.918 

3 7.496 7.224 5.728 2.741 2.151 2.161 0.309 0.315 0.323 0.854 0.885 

4 7.812 6.392 5.646 2.805 2.214 2.109 0.343 0.310 0.327 0.913 0.924 

5 7.023 7.782 5.718 2.777 2.113 2.167 0.286 0.327 0.314 0.808 0.882 

21.04 1 7.388 8.042 5.960 2.931 2.247 2.274 0.293 0.316 0.305 0.813 0.891 

2 8.834 7.328 5.856 2.833 2.299 2.240 0.287 0.330 0.342 0.884 0.851 

3 7.607 7.638 5.931 3.198 2.233 2.259 0.315 0.305 0.311 0.841 0.929 

4 7.053 8.721 5.940 2.866 2.224 2.296 0.259 0.329 0.307 0.778 0.866 

5 8.311 7.992 5.905 2.846 2.259 2.245 0.281 0.330 0.329 0.823 0.842 

Table 13 

Average and standard deviation in effective properties of Case 3. 

Property Vf 15.43 (%) Vf 19.63 (%) Vf 21.04 (%) 

Mean SD Mean SD Mean SD 

E 1 (GPa) 6.666 0.198 7.088 0.606 7.839 0.722 

E 2 (GPa) 6.483 0.531 7.267 0.528 7.944 0.521 

E 3 (GPa) 5.359 0.028 5.690 0.033 5.918 0.040 

G 12 (GPa) 2.458 0.115 2.797 0.042 2.935 0.152 

G 13 (GPa) 2.013 0.020 2.149 0.040 2.252 0.029 

G 23 (GPa) 2.0 0 0 0.020 2.158 0.029 2.263 0.023 

ν12 0.312 0.036 0.307 0.022 0.287 0.020 

ν13 0.326 0.017 0.318 0.007 0.322 0.011 

ν23 0.331 0.010 0.315 0.011 0.319 0.016 

a YZ 0.875 0.037 0.847 0.039 0.827 0.038 

a 0.906 0.036 0.912 0.028 0.875 0.035 

The three volume fractions of 15.43%, 19.63% and 21.04% are stud- 

ied for this case. For each volume fraction five different models 

of RVE have been generated. Fig. 18 , Fig. 19 and Fig. 20 show the 

RVE models generated for 15.43%, 19.63% and 21.04% fibre volume 

fractions, respectively. Figure 21 shows an RVE meshed for finite 

element analysis. 

The effective properties obtained for the RVE models have been 

reported in Table 12 . Table 13 represents the mean and standard 

deviation in these effective properties. It is seen that effective 

properties from different RVEs for the respective volume fractions 

are close to each other. It can be observed that the Young’s mod- 

ulus in z direction, E 3 shows a slight increment in the values for 

respective volume fraction. This is due to partial orientation of fi- 

bres in that direction. This also affects the Young’s moduli in X and 

Y directions and a small increment is also seen in these values in 

comparison to those reported for Case 2. Further, it is observed 

that the shear moduli G 13 and G 23 are again close to each other for 

respective RVEs of all volume fractions as in Case 2. However, the 

respective values are little lowered in comparison to those of Case 

2. This is because of partial orientation of fibres in the Z -direction. 

The contribution coming from the fibre direction is now lesser. A 

similar behaviour is observed for G 12 for the same reason. 

From Table 13 it is seen that the effective properties of compos- 

ite material developed increase as the volume fraction increases. 

This is due the fact that the contribution of the properties from 

fibre, particularly the ones in fibre direction increases as the fi- 

bre volume fraction increases. However, for the Poisson’s ratios the 

values decrease as the fibre volume fraction increases. Again this is 

due to constraint imposed by fibre properties in fibre direction on 

the lateral expansion of the resulting composite. 

Tables 12 and 13 give insight about the macroscopic behaviour 

of the resulting composites through the parameters a YZ and a . The 

isotropy in YZ -plane, in general, is reduced in comparison to Case 

2. Further, as the fibre volume fraction increases this value de- 
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Fig. 22. RVEs for Case 4 with fibre volume fraction of 15.23%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 23. RVEs for Case 4 with fibre volume fraction of 19.23%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

creases. The parameter a YZ is seen to have value above 0.82 for the 

volume fractions studied. Furthermore, the macroscopic isotropic 

behaviour represented by a is seen to reduce and also reduces with 

the increase in fibre volume fraction. Here, this parameter has a 

value above 0.87 for the volume fractions studied. The change in 

macroscopic behaviour in comparison to Case 2 is due to partial 

alignment of fibres in the Z -direction. Note that the volume frac- 

tions achieved in the RVEs of cases studied, that is Case 1, Case 2, 

etc. are very close but not the same. 

3.4. Case 4: completely random oriented fibres 

In this section, fibres are allowed to orient randomly in all 

planes inside an RVE. To generate the RVE, fibres are located one 

after the other at random locations and oriented randomly in in- 

plane ( XY -plane) and out of plane ( YZ -plane). The geometric pe- 

riodicity is maintained in RVEs and fibres are allowed neither to 

overlap nor to intersect each other. The fibre volume fractions con- 

sidered for RVE generation with random oriented fibres are 15.23%, 

19.23% and 21.64%. The RVEs generated are as shown in Figs. 22 , 

23 , 24 , respectively for these volume fractions. Five different mod- 

els of RVE for each volume fraction considered have been created 

and their effective properties are obtained. A typical meshed RVE 

from this case has been shown in Fig. 25 . 

The effective stiffness tensors for the fibre volume fraction of 

15.23%, as an example, are given in Table 14 . The subscripts used 

with the stiffness tensor [ C ] denote the corresponding RVE of that 

volume fraction. From this table it is seen that the degree of 

anisotropy is not significant for this case also. 

Table 15 presents the effective properties of individual RVE 

models considered for this case. It is observed from Table 15 that 

Young’s moduli in all three directions of different RVEs for a partic- 

ular volume fraction are almost equal. Furthermore, a similar ob- 

servation can be made for shear moduli and Poisson’s ratios. Mean 

and standard deviation in the values of the properties from these 

models have been calculated and reported in Table 16 . It is inferred 
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Fig. 24. RVEs for Case 4 with fibre volume fraction of 21.64%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 25. A typical meshed RVE for Case 4. (a) Meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 

from Table 16 that as the volume fraction increases the effective 

elastic moduli increase and Poisson’s ratio decrease. The standard 

deviation for all properties is less than 1% for all volume fractions 

studied. This indicates that the deviation of effective properties of 

an individual model from the mean values is very less. This again 

indicates the efficacy of repetitiveness of the approach used to gen- 

erate RVEs in predicting effective properties. 

The parameters a YZ and a reported in Table 15 and 

Table 16 show that their values are approaching to unity. Thus, it 

indicates that the overall macroscopic behaviour of the material 

is approaching to isotropic. This behaviour is as expected because 

the arrangement of fibres inside such a composite is completely 

random leading to equal distribution of their properties in all 

directions. However, it is seen that as the fibre volume fraction 

increases the values of these parameters decrease slightly. 

It is seen that the parameter a YZ , which is defined to denote 

the isotropy in YZ plane is approaching to unity for this case. It 

was seen earlier that for the Case 1 it also approached unity. Then 

for Case 2 and Case 3 it deviated from unity. It is to be noted that 

as the overall material behaviour is approaching to isotropic nature 

then in any plane it will behave isotropic in nature. Thus, this ob- 

servation is consistent. One could have chosen any plane to check 

the isotropy in that plane. However, in the Case 1 the fibres were 

aligned normal to YZ plane, therefore, this plane was used to check 

the isotropy. 

Remark 6. In general, it is seen that as the fibre volume fraction 

increases the SD in the effective property values increases. This is 

due to packing factor of fibre arrangement. In the present approach 

the fibres are added one after the other with the constraint that 

they do not touch other. This is implemented by controlling the 
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Table 14 

Effective stiffness tensors for all fibres randomly arranged case with fibre volume fraction of 15.23% (Values in MPa). 

[ C ] 1 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

7825 3452 3547 47 101 173 

7528 3457 0 35 78 

7906 20 79 57 

2083 61 47 

2130 24 

2090 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, [ C ] 2 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

7605 3473 3455 1 44 83 

7761 3440 11 18 87 

7992 48 64 15 

2075 10 8 

2070 21 

2117 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

[ C ] 3 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

7748 3439 3562 0 0 129 

7592 3418 0 0 15 

7880 0 0 7 

2044 0 3 

2179 0 

2062 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, [ C ] 4 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

7604 3411 3455 0 24 0 

7617 3481 0 36 0 

8057 29 63 7 

2128 9 41 

2060 0 

2060 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

[ C ] 5 = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

7588 3386 3531 30 25 0 

7754 3423 60 0 0 

7943 0 0 20 

2065 22 0 

2114 13 

2046 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

Table 15 

Properties of completely random orientated short fibre composites: Case 4. 

V f RVE E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) No. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.23 1 5.622 5.436 5.700 2.086 2.127 2.080 0.316 0.310 0.301 0.978 0.985 

2 5.483 5.633 5.858 2.115 2.070 2.075 0.316 0.296 0.290 0.936 0.964 

3 5.543 5.525 5.686 2.060 2.180 2.045 0.310 0.318 0.294 0.947 0.983 

4 5.520 5.512 5.873 2.060 2.060 2.128 0.314 0.293 0.298 0.977 0.967 

5 5.465 5.701 5.752 2.047 2.114 2.065 0.297 0.317 0.293 0.934 0.962 

19.23 1 5.700 5.838 6.405 2.119 2.203 2.191 0.304 0.285 0.272 0.919 0.942 

2 5.884 5.921 6.121 2.151 2.237 2.264 0.294 0.297 0.299 0.981 0.966 

3 5.968 5.932 6.303 2.194 2.182 2.239 0.306 0.284 0.291 0.952 0.944 

4 5.858 5.886 6.070 2.133 2.395 2.193 0.294 0.317 0.289 0.948 0.984 

5 6.069 6.322 6.003 2.285 2.290 2.199 0.293 0.317 0.293 0.917 0.957 

21.64 1 6.277 6.207 6.564 2.283 2.435 2.338 0.293 0.299 0.277 0.939 0.958 

2 6.093 6.631 6.245 2.396 2.353 2.359 0.280 0.309 0.289 0.938 0.971 

3 6.050 6.400 6.532 2.311 2.401 2.354 0.286 0.300 0.276 0.931 0.964 

4 5.848 6.407 6.785 2.338 2.288 2.433 0.293 0.275 0.272 0.946 0.959 

5 6.081 6.639 6.536 2.368 2.325 2.346 0.285 0.295 0.277 0.908 0.945 

Table 16 

Average and standard deviation in effective properties of Case 4. 

Properties V f 15.23 (%) V f 19.23 (%) V f 21.64 (%) 

Mean SD Mean SD Mean SD 

E 1 (GPa) 5.527 0.062 5.896 0.137 6.069 0.153 

E 2 (GPa) 5.561 0.105 5.980 0.195 6.457 0.182 

E 3 (GPa) 5.774 0.087 6.180 0.168 6.532 0.192 

G 12 (GPa) 2.074 0.027 2.176 0.067 2.339 0.044 

G 13 (GPa) 2.110 0.048 2.261 0.085 2.361 0.058 

G 23 (GPa) 2.078 0.031 2.217 0.033 2.366 0.038 

ν12 0.311 0.008 0.298 0.006 0.288 0.006 

ν13 0.307 0.011 0.300 0.016 0.296 0.013 

ν23 0.295 0.004 0.289 0.010 0.278 0.006 

a YZ 0.954 0.022 0.944 0.026 0.933 0.015 

a 0.972 0.011 0.958 0.017 0.959 0.009 

distance between the closest points on the adjacent fibres. Further, 

the dimensions of the RVE chosen are fixed for all fibre volume 

fractions. Thus, these constraints restrict the arrangement of fibres 

that are added at later stages. In turn, it causes the deviation in 

the effective properties. However, this deviation for all the cases 

studied here is less than 1% indicating the efficacy of the approach 

developed for the RVE generation. 

4. Conclusions 

In the present study a statistical representation of the short fi- 

bre composite material at microscale through a representative vol- 

ume element has been developed using random sequential adsorp- 

tion technique. A numerical tool developed using MATLAB gener- 

ates the RVE for a maximum volume fraction of 22.44% by main- 

taining the distance between adjacent two fibres as 0.001 times 

the side length of the RVE. Geometric periodicity is implemented 

while developing the RVE to ensure the continuity of the fibres 

across the neighbouring RVEs. Mathematical theory of homoge- 

nization has been implemented for the prediction of effective stiff- 

ness. Here, four different cases of fibre arrangements in RVE had 

been modeled and analyzed for their effective properties. For each 

case of fibre arrangement, RVEs with three/four different fibre vol- 

ume fractions are evaluated for effective stiffness. To study the ef- 

fectiveness of RVE generation algorithm in terms of repetitiveness 

of predicted stiffness, five RVEs are studied for each fibre volume 

fraction. The results of the case where all fibres are aligned in one 

direction are compared with those of Mori–Tanaka and Halpin–Tsai 

methods. A brief convergence study with respect to number of el- 

ements in finite element discretization is also carried out. 

The key conclusions that can be made from this study are listed 

as: 

1. The results obtained from the methods developed using RVE 

are compared with analytical or non-RVE methods like Halpin–

Tsai and Mori–Tanaka method for Case 1 with in-plane aligned 

fibres. The effective properties obtained from RVE method have 

good correlation with Halpin–Tsai and Mori–Tanaka method. 

The effective property values from Halpin–Tsai method for a 

particular volume fraction are close to that of mathematical ho- 

mogenization method for almost all engineering constants, ex- 

cept out of plane Poisson’s ratio ν23 . 
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2. When the volume fraction increases, the effective properties in- 

creases in both RVE and non-RVE methods, also the percentage 

difference with two non RVE methods also increases. Longitu- 

dinal Young’s modulus from present study has 6.5% to 11% and 

6.5% to 12% difference with respect to Mori–Tanaka and Halpin–

Tsai methods, respectively. The transverse Young’s modulus has 

approximately 7.5% to 12% and 2% to 4.5% difference with Mori–

Tanaka and Halpin–Tsai methods, respectively. For transverse 

shear modulus, the percentage difference is 3% to 10.5% and 3% 

to 8% with respect to Mori–Tanaka and Halpin–Tsai methods, 

respectively. 

3. Poisson’s ratio has 0.15% to 4% and 4% to 9% deviation, except 

for ν23 which has 2% to 7% and 22% to 25.8% deviation with 

respect to Mori–Tanaka and Halpin–Tsai methods, respectively. 

This large deviation is due to location and orientation of fibres 

in RVE, volume fraction and aspect ratio of fibres. 

4. The effective properties obtained from mathematical theory of 

homogenization for different RVEs for a particular case ensures 

the reliability of RSA algorithm developed and consistently pre- 

dicts the effective material properties. Standard deviation val- 

ues on effective properties of RVEs developed is either close to 

zero or less than 1%, which also indicates the efficacy of the al- 

gorithm developed for RVE generation in fulfilling the require- 

ment of repetitiveness of the resulting effective material. 

5. RVEs with in-plane aligned fibres behave like a transversely 

isotropic material at macrolevel in a plane perpendicular to 

the direction of fibre alignment due to fibre packing arrange- 

ment in RVE, whereas RVEs with random in-plane orientation 

at microscale behave like a transversely isotropic material at 

macroscale in another particular plane. Further, RVEs with ran- 

dom in-plane orientation and partial out of plane orientation 

of fibres also behave closely to transversely isotropic nature. Fi- 

nally, RVEs with completely random orientation of all fibres at 

microscale, behaves like an isotropic material at macrolevel. 

As the restriction of random distribution of fibres in an RVE 

is relaxed more and more the macroscopic behaviour changes 

from transverse isotropy, with respect to a particular plane, to 

fully isotropic. For in-plane aligned fibres in RVE, the material 

developed is almost 98-99% close to transverse isotropy and 73- 

78% overall isotropy in nature. The materials with in-plane ran- 

domly oriented fibres, the material is more than 83% close to 

transversely isotropic behaviour and about 91% overall isotropic 

behaviour. The RVEs with randomly in-plane fibre orientation 

and partial out of plane fibre orientation exhibited more than 

82% closeness to transversely isotropic behaviour and over 87% 

overall isotropic behaviour. Finally, the RVEs with completely 

random oriented fibres exhibited more than 90% closeness to 

transversely isotropic behaviour and more than 95% overall 

isotropic behaviour of the material. 

6. As fibre volume fraction increases the parameters defined to 

represent degree of transverse isotropy, a YZ , and degree of over- 

all isotropy, a , decrease, in general, for all four cases studied. 

The maximum change of 14.87% and 11.90%, respectively was 

seen for Case 3 with fibres arranged randomly in in-plane and 

partial out of plane random arrangement. This is due to packing 

geometry factor. 

7. Stiffness tensors showed negligible anisotropy and were sym- 

metric for each of the RVE studied for all the cases. 

Appendix A. Methods for predicting effective stiffness 

In this section three different methods are explained which 

are used to estimate the effective stiffness tensor. These meth- 

ods are: Mathematical theory of homogenization ( Hollister and 

Kikuchi, 1992 ), Halpin–Tsai technique ( Halpin and Kardos, 1976; 

Tucker and Liang, 1999 ) and Mori–Tanaka ( Mori and Tanaka, 1973; 

Mura, 1987 ) method. The former one is an RVE based method and 

the later two are non RVE methods. 

A1. Mathematical theory of homogenization 

Homogenization theory is developed from studies of partial dif- 

ferential equations with rapidly varying coefficients. To represent 

a complex rapidly varying medium with slowly varying medium, 

in which fine scale structure is averaged in an approximate way, 

the following two explicit assumptions are made in homogeniza- 

tion theory. 

1. Fields vary on multiple scales due to existence of microstruc- 

ture. 

2. Microstructure is spatially periodic. 

The relevant field variables are approximated by an asymptotic 

expansion as 

u 
η
i ( x i , y i ) = u 0 i ( x i , y i ) + ηu 1 i ( x i , y i ) + η2 u 2 i ( x i , y i ) + ... (A.1) 

where u 
η
i 
is the exact value of field variable, u 0 i is the macroscopic 

value of field variable, u 1 i ; u 2 i , etc. are perturbations in field vari- 

ables due to microstructure, x i and y i are the global level and micro 

level coordinates, respectively and η is the ratio of microstructure 

size to the total size of analysis region 
(

η = 
x i 
y i 

)

. 

Classical arguments of oscillating functions result that the 

macroscopic stress and strain tensor must be the average of mi- 

croscopic stress and strain quantities. Thus, 

σ i j = 
1 

| V RV E | 

∫ 

V RVE 

σi j ( x ) dV and ǫ i j = 
1 

| V RV E | 

∫ 

V RVE 

ǫi j ( x ) dV 

(A.2) 

where, σ i j , ǫ i j are the average stresses and average strains and σ ij 

and ǫ ij are the local stresses and local strains in RVE and V RVE is 

the volume of RVE. 

Substituting the asymptotic expansion of Eq. (A.1) in terms of 

strains and neglecting the higher order terms of the standard weak 

form of equilibrium equations governing the mechanical behaviour 

of the composite material at different levels of structure, we get 

strains as 

ǫi j ( u ) = 
1 

2 

[(

∂u 0 i 
∂x j 

+ 
∂u 0 j 
∂x i 

)

+ 

(

∂u 1 i 
∂y j 

+ 
∂u 1 j 
∂y i 

)]

(A.3) 

The components of strain tensor can be written as 

ǫi j ( u ) = ǫ i j + ǫ∗
i j (A.4) 

where, 

ǫ i j ( u ) = 
1 

2 

[

∂u 0 i 
∂x j 

+ 
∂u 0 j 
∂x i 

]

and ǫ∗
i j ( u ) = 

1 

2 

[

∂u 1 i 
∂y j 

+ 
∂u 1 j 
∂y i 

]

(A.5) 

wherein, ǫ ij is the local or microstructural strain tensor, ǫ i j is the 

average or macroscopic strain tensor and ǫ∗
i j is the fluctuating mi- 

crostructural strain tensor which is assumed to vary periodically. 

Similarly, the virtual displacement v and hence the virtual strain 

ǫi j ( v ) is also expanded asymptotically as a function of x and y , ne- 

glecting the higher order terms. The resulting components of strain 

tensor can be written as 

ǫi j ( v ) = ǫ0 
i j + ǫ1 

i j (A.6) 

where, 

ǫ0 
i j ( v ) = 

1 

2 

[

∂v 0 i 

∂x j 
+ 

∂v 0 j 

∂x i 

]

and ǫ1 
i j ( v ) = 

1 

2 

[

∂v 1 i 

∂y j 
+ 

∂v 1 j 

∂y i 

]

(A.7) 
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The expanded forms of strain tensors are substituted in stan- 

dard weak form of equilibrium equations given by 
∫ 

�η

C i jkl ǫi j ( v ) ǫkl ( u ) d�η = 

∫ 

Ŵ

t i v i dŴ (A.8) 

where, �η represents the total of macroscopic and microscopic 

domain of the composite materials, Ŵ is the macroscopic do- 

main boundary and traction t i is applied only to boundary of 

composite material. Substituting the expanded strain tensors in 

Eq. (A.8) yields 

∫ 

�η

C i jkl 
(

ǫ0 
i j ( v ) + ǫ1 

i j ( v ) 
) (

ǫkl ( u ) + ǫ∗
kl ( u ) 

)

d�η = 

∫ 

Ŵ

t i v i dŴ

(A.9) 

Since v is an arbitrary function, it varies either on microscopic 

level or macroscopic level. If v varies on microscopic level, keeping 

constant in macroscopic level (yielding ǫ0 
i j ( v ) = 0 ), along with pe- 

riodically varying of ǫ∗
kl 
( u ) leads the microscopic equilibrium. The 

Eq. (A.9) is rewritten assuming η goes to zero in the limit, as 

∫ 

�

1 

V RV E 

∫ 

V RVE 

C i jkl 
(

ǫ1 
i j ( v ) 

) (

ǫkl ( u ) + ǫ∗
kl ( u ) 

)

d V RV E d � = 0 (A.10) 

If v varies only on macroscopic level, keeping constant in micro- 

scopic level (giving ǫ1 
i j ( v ) = 0 ), along with periodically varying of 

ǫ∗
kl ( u ) leads the macroscopic equilibrium. Then Eq. (A.9) is rewrit- 

ten, assuming η goes to zero in the limit, as 

∫ 

�

1 

V RV E 

∫ 

V RVE 

C i jkl 
(

ǫ0 
i j ( v ) 

) (

ǫkl ( u ) + ǫ∗
kl ( u ) 

)

d V RV E d � = 

∫ 

Ŵ

t i v i dŴ

(A.11) 

Eq. (A.10) will be satisfied, if the integral over RVE is zero. This 

means Eq. (A.10) may be written as 

∫ 

V RVE 

C i jkl ǫ
1 
i j ( v ) ǫ

∗
kl ( u ) dV RV E = −

∫ 

V RVE 

C i jkl ǫ
1 
i j ( v ) ǫkl ( u ) dV RV E 

(A.12) 

In general, ǫkl ( u ) is not known apriori. For linear problem in 

3D, ǫkl ( u ) can be written as a linear combination of unit strains as 

given below. 

ǫ11 
pm = −

[ 
1 0 0 
0 0 0 
0 0 0 

] 

, ǫ12 
pm = −

[ 
0 1 0 
0 0 0 
0 0 0 

] 

, 

ǫ13 
pm = −

[ 
0 0 1 
0 0 0 
0 0 0 

] 

, 

ǫ21 
pm = −

[ 
0 0 0 
1 0 0 
0 0 0 

] 

, ǫ22 
pm = −

[ 
0 0 0 
0 1 0 
0 0 0 

] 

, 

ǫ23 
pm = −

[ 
0 0 0 
0 0 1 
0 0 0 

] 

, 

ǫ31 
pm = −

[ 
0 0 0 
0 0 0 
1 0 0 

] 

, ǫ32 
pm = −

[ 
0 0 0 
0 0 0 
0 1 0 

] 

, 

ǫ33 
pm = −

[ 
0 0 0 
0 0 0 
0 0 1 

] 

By applying the symmetry of strain states and substituting the 

unit strains on the right hand side of Eq. (A.12) , it gives a stress 

tensor as 

σ ∗kl 
i j = C i jpm ǫ

kl 
pm (A.13) 

A set of six auxiliary problems have to be solved to obtain all 

the components for ǫ∗kl 
pm ( u ) in Eq. (A.12) . These are 

∫ 

V RVE 

C i jkl ǫ
1 
i j ( v ) ǫ

∗kl 
pm ( u ) dV RV E = 

∫ 

V RVE 

ǫ1 
i j ( v ) σ

∗kl 
i j dV RV E (A.14) 

To ensure periodicity of strain field ǫ∗kl 
pm in Eq. (A.12) the value 

of ǫ∗
i j for any arbitrary ǫkl can be written as 

ǫ∗
i j = −ǫ∗kl 

i j ǫkl (A.15) 

From classical arguments, the relationship between local RVE 

strain and the average strain can be written as 

ǫi j = M i jkl ǫkl (A.16) 

where, M ijkl is local structural tensor which can be obtained by us- 

ing Eq. (A.15) and solving for M ijkl leads to 

M i jkl = 
1 

2 

(

δik δ jl + δil δ jk 

)

− ǫ∗kl 
i j (A.17) 

where, δij is the Kronecker delta. 
The effective stiffness tensor which relates average stress and 

average strain can be calculated from M ijkl by applying Hooke’s law 

at microscopic level and integrating it over the volume of RVE and 

then divide by the volume of RVE. Thus, 

σ i j = 
1 

| V RV E | 

∫ 

V RVE 

C i jpm M pmkl dV RV E ǫkl (A.18) 

from which the effective stiffness tensor can be written as 

C i jkl = 
1 

| V RV E | 

∫ 

V RVE 

C i jpm M pmkl dV RV E (A.19) 

A2. Halpin–Tsai method 

The key point of this section is to give a brief description 

about the formulation of Halpin–Tsai technique used to estimate 

the properties of aligned short fibre composites. 

The works of Hill (1964) and Hermans (1967) were employed to 

derive Halpin–Tsai ( Ashton et al., 1969 ) equations for continuous 

fibre composites. However, ( Kerner, 1956 ) suggested that Halpin–

Tsai form of equations can also be used for particulate composite. 

A detailed derivation of Halpin–Tsai formulation is explained by 

Halpin and Kardos (1976) . A short description of formulation has 

been explained in this section. 

A2.1. Young’s modulus along fibre direction 

Halpin–Tsai expressed longitudinal Young’s modulus for aligned 

short fibre composite as follows 

E 11 
E m 

= 

(

1 + ζ ηV f 
)

(

1 − η V f 
) (A.20) 

where, 

η = 

(

E 1 f 
E m 

− 1 
)

(

E 1 f 
E m 

+ 1 
) and ζ = 2 ∗ AR (A.21) 

where, E 11 is longitudinal Young’s modulus of composite along fi- 

bre direction, E 1 f is Young’s modulus of fibre in longitudinal direc- 

tion, E m is Young’s modulus of matrix material, η is a parameter 

that depends on the matrix Poisson’s ratio and on the particular 

elastic property being considered, V f is the fibre volume fraction 
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of composite material and AR is the aspect ratio of fibre. The pa- 

rameter ζ is a measure of reinforcement geometry and depends 

on loading condition. In general, for short fibre composites, the 

value of ζ lies between 0 and ∞ . The aspect ratio, AR is defined 

as AR = 
l f 
d f 

, where l f is the length of the RVE and d f is the diame- 

ter of the fibre. 

A2.2. Young’s modulus transverse to fibre direction 

Halpin–Tsai method suggests that Young’s modulus in trans- 

verse direction weakly depends on fibre aspect ratio and hence, 

the above equations can be used to obtain the transverse proper- 

ties by letting AR = 1 . 

A2.3. Shear modulus estimation 

Similar to transverse Young’s modulus, aspect ratio does not af- 

fect the shear modulus. The shear modulus G 12 is given by the re- 

lation 

G 12 

G m 
= 

(

1 + ζ η V f 
)

(

1 − η V f 
) (A.22) 

where, G 12 is shear modulus of composite in 1-2 plane, G m is shear 

modulus of matrix material. The parameter η is given as 

η = 

(

G f 
G m 

− 1 
)

(

G f 
G m 

+ ζ
) (A.23) 

Here, G f is the corresponding fibre shear modulus. Further, ζ = 

1 is used. Similar relations can be used to determine G 13 and G 23 . 

A2.4. Poisson’s ratio estimation 

Poisson’s ratio of short fibre composite is bounded between a 

particulate composite and continuous fibre composite, which is in- 

dependent of aspect ratio of fibre. Hence, rule of mixture can be 

applied to determine the properties. The major Poisson’s ratio is 

given as 

ν12 = V f ν f + V m νm (A.24) 

Here, ν f and νm are the corresponding Poisson’s ratios of fibre 

and matrix materials, respectively. Similar relations can be used to 

determine ν13 and ν23 . 

A3. Mori–Tanaka method 

In this section, the formulation of Mori–Tanaka technique ( Mori 

and Tanaka, 1973; Mura, 1987 ) used to estimate the properties of 

oriented cylindrical short fibre composites is reviewed briefly. 

Mori–Tanaka technique is one of the approximation method 

used to estimate the effective properties based on Eshelby’s elas- 

ticity solution ( Eshelby, 1957 ) for inhomogeneous inclusion in an 

infinite medium. The key assumption in this model is that the av- 

erage strain in fibre is related to average strain in matrix by using 

a fourth order strain concentration tensor. Initially, Eshelby solved 

for a homogeneous inclusion of a prolate ellipsoid of revolution 

with semi-major axis a 1 and semi-minor axes a 2 and a 3 in an in- 

finite matrix. It was concluded that within an inclusion the total 

strain ǫ is uniform and related to transformation strain ǫT by 

ǫ = E ǫ
T (A.25) 

where, E is known as Eshelby tensor. The individual components 

of Eshelby tensor are given in the following. 

S iiii = 
3 

8 π ( 1 − ν) 
a 2 i I ii + 

( 1 − 2 ν) 

8 π ( 1 − ν) 
I i 

S ii j j = 
1 

8 π ( 1 − ν) 
a 2 j I i j −

( 1 − 2 ν) 

8 π ( 1 − ν) 
I i 

S iikk = 
1 

8 π ( 1 − ν) 
a 2 3 I ik −

( 1 − 2 ν) 

8 π ( 1 − ν) 
I i 

S i ji j = 

(

a 2 
i + a 2 

j 

)

16 π ( 1 − ν) 
I i j + 

( 1 − 2 ν) 

16 π ( 1 − ν) 

(

I i + I j 
)

S iii j = S i j j k = S i jk j = 0 (A.26) 

where i, j, k varies from 1, 2, 3 in cyclic permutation. I i and I ij are 

the special elementary functions for inclusion of prolate spheroid 

in shape with a 1 > a 2 = a 3 which can be approximated for short 

cylindrical fibre considered in this study. The detailed derivation 

can be seen in Mura (1987) . The terms used in above equation are 

given as 

I 2 = I 3 = 
2 πa 1 a 

2 
3 

(

a 2 1 − a 2 3 

)3 / 2 

{

a 1 
a 3 

(

a 2 1 
a 2 3 

− 1 
)1 / 2 

− cosh −1 
(

a 1 
a 3 

)

}

I 1 = 4 π − 2 × I 2 

I 12 = I 13 = 
( I 2 − I 1 ) 
(

a 2 1 − a 2 2 

)

I 11 = 
4 × π

3 × a 2 1 
−

2 

3 
I 12 

I 22 = I 33 = I 23 = 
π

a 2 2 
−

( I 2 − I 1 ) 

4 
(

a 2 1 − a 2 2 

) (A.27) 

Substituting Eq. (A.27) in Eq. (A.26) , Eshelby tensor for homo- 

geneous inclusion is obtained. 

For an inhomogeneous inclusion in an infinite matrix, strain 

concentration tensor for Eshelby’s equivalent inclusion can be ob- 

tained by using dilute Eshelby model as 

A 
Eshelby 

= 
[

I + E S 
m 
(

C 
f 
− C 

m 
)]−1 

(A.28) 

where, C f and C m are the stiffness tensors for fibre and matrix 

materials, respectively and S m is the compliance tensor for ma- 

trix material. This formulation was used in Hill’s approach by 

Russel (1973) to estimate the properties of aligned fibre compos- 

ites. When many inclusions are immersed in matrix, strain con- 

centration tensor, reformulated by Mori–Tanaka, is given as 

A 
MT 

= A 
Eshelby 

[(

1 − ν f 

)

I + ν f A 
Eshelby 

]−1 
(A.29) 

By using Eq. (A.29) and fibre and matrix properties, effective 

stiffness tensor can be expressed as 

C = C 
m 

+ ν f 

(

C 
f 
− C 

m 
)

A 
MT (A.30) 

By inverting effective stiffness tensor, effective compliance ten- 

sor is obtained, which gives the relations for effective engineering 

constants. 

Appendix B. Finite element implementation of mathematical 

homogenization theory 

In the present study, an in-house finite element code is de- 

veloped to determine the homogenized properties of composite 

materials using mathematical theory of homogenization. The RVEs 

are discretized with linear tetrahedron elements. The commercial 

meshing software HYPERMESH ® is used to discretize the RVEs. 

A displacement based finite element formulation with three dis- 

placement variables at each node has been implemented (see 

Cook et al., 2002 for more details). 

In the following, the implementation of periodic boundary con- 

dition and post-processing of the results (displacement vector) to 

get the effective stiffness tensor is presented in brief. 
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Fig. 26. An RVE with periodic mesh. 

B1. Implementation of periodic boundary condition 

Effective material properties of an RVE can be computed by en- 

suring the repeatability of boundary conditions to make ǫ∗kl 
i j 

peri- 

odic in Eq. (A.14) . The periodic boundary condition is implemented 

as follows. 

1. Creating identical mesh on opposite faces of RVE, leading the 

nodes on opposite faces to have same coordinates tangential to 

face as shown in Fig. 26 . Furthermore, these nodes are given 

same global numbers. 

2. Element stiffness matrix and load vector assembling has been 

done as per the above criteria indicating identical displace- 

ments on opposite faces of an RVE. 

3. Finally, to constrain the rigid body motion, the displacement at 

one of the node has to be fixed. 

B2. Post processing 

Once the weak form of equilibrium equation has been solved 

for six different loading cases individually, the fluctuating strain 

tensor ǫ∗kl 
i j 

are evaluated at each integration point. These are used 

to construct the microstructural strain tensor M ijkl . Then the effec- 

tive stiffness tensor C i jkl can be found by integrating over the dis- 

cretized RVE and then divided by total volume of RVE as 

C = 
1 

V RV E 

NE LE M 
∑ 

i =1 

N IN T 
∑ 

j=1 

[ C ] [ M ] | J | w j (B.1) 

where C is the constituent stiffness tensor, M is microstructural 

strain tensor, | J | is the determinant of the Jacobian, NELEM is num- 

ber of elements in RVE, w j are the weights and NINT is the number 

of integration points used in numerical integration. 

References 

Advani, S.G. , Tucker III, C.L. , 1987. The use of tensors to describe and predict fiber 
orientation in short fiber composites. J. Rheol. 31, 751–784 . 

Ashton, J.E. , Halpin, J.C. , Petit, P.H. , 1969. Primer on Composite Materials: Analysis. 
Technomic Publishing Co, Stanford, Conn., USA . 

Benveniste, Y. , 1987. A new approach to the application of Mori–Tanaka’s theory in 
composite materials. Mech. Mater. 6, 147–157 . 

Berger, H. , Kari, S. , Gabbert, U. , Ramos, R.R. , Castillero, J.B. , Díaz, R.G. , 2007. Evalu- 
ation of effective material properties of randomly distributed short cylindrical 
fiber composites using a numerical homogenization technique. J. Mech. Mater. 
Struct. 2 (8), 1561–1570 . 

Chow, T.S. , 1978. Effect of particle shape at finite concentration on the elastic mod- 
ulus of filled polymers. J. Polym. Sci.: Polym. Phys. Ed. 16, 959–965 . 

Cook, R.D. , Malkus, D.S. , Plesha, M.E. , Witt, R.J. , 2002. Concept and Application of 
Finite Element Analysis. John Wiley & Sons Inc, New York . 

Doghri, I. , Tinel, L. , 2005. Micromechanical modeling and computation of elasto–
plastic materials reinforced with distributed-orientation fibers. Int. J. Plast. 21, 
1919–1940 . 

Duschlbauer, D. , Böhm, H.J. , Pettermann, H.E. , 2006. Computational simulation of 
composites reinforced by planar random fibres: Homogenization and local- 
ization by unit cell and mean field approaches. J. Compos. Mater. 40, 2217–
2234 . 

Eckschlager, A. , Böhm, H.J. , Han, W. , 2002. Multi-inclusion unit cell models for metal 
matrix composites with randomly oriented discontinuous reinforcements. Com- 
put. Mater. Sci. 25, 42–53 . 

Eshelby, J.D. , 1957. The determination of the elastic field of an ellipsoidal inclusion, 
and related problems. Proc. R. Soc. London A 241, 376–396 . 

Fu, S.Y. , Lauke, B. , 1996. Effect of fiber length and fiber orientation distributions on 
the tensile strength of short-fiber-reinforced polymers. Compos. Sci. Technol. 56, 
1179–1190 . 

Ghossein, E. , Lévesque, M. , 2012. A fully automated numerical tool for a 
comprehensive validation of homogenization models and its application to 
spherical particles reinforced composites. Int. J. Solids Struct. 49, 1387–
1398 . 

Gitman, I.M. , Askes, H. , Sluys, L.J. , 2007. Representative volume: existence and size 
determination. Eng. Fract. Mech. 74, 2518–2534 . 

Halpin, J.C. , 1969. Stiffness and expansion estimates for oriented short fiber com- 
posites. J. Compos. Mater. 3, 732–734 . 

Halpin, J.C. , Kardos, J.L. , 1976. The Halpin–Tsai equations: A review. Polym. Eng. Sci. 
16 (5), 344–352 . 

Harris, B. , 1999. Engineering Composite Materials. The Institute of Materials, Lon- 
don . 

Hashin, Z. , Rosen, B.W. , 1964. Elastic moduli of fiber reinforced materials. J. Appl. 
Mech. 31, 223–232 . 

Hermans, J.J. , 1967. The elastic properties of fiber reinforced materials when the 
fibers are aligned. Proc. R. Acad. Amsterdam B70 . 1- 

Hill, R. , 1964. Theory of mechanical properties of fibre-strengthened materials: I. 
elastic behaviour. J. Mech. Phys. Solids 12, 199–212 . 

Hollister, S.J. , Kikuchi, N. , 1992. A comparison of homogenization and standard me- 
chanics analyses for periodic porous composites. Comput. Mech. 10, 73–95 . 

Hori, M. , Nemat-Nasser, S. , 1999. On two micromechanics theories for determin- 
ing micro-macro relations in heterogeneous solids. Mech. Mater. 31, 667–
682 . 

Ionita, A. , Weitsman, Y.J. , 2006. On the mechanical response of randomly rein- 
forced chopped-fibers composites: data and model. Compos. Sci. Technol. 66, 
2566–2579 . 

Iorga, L. , Pan, Y. , Pelegri, A. , 2008. Numerical characterization of material elastic 
properties for random fiber composites. J. Mech. Mater. Struct. 3 (7), 1279–1298 . 

Jain, A. , Lomov, S.V. , Abdin, Y. , Verpoest, I. , Paepegem, W.V. , 2013. Pseudo-grain dis- 
cretization and full Mori–Tanaka formulation for random heterogeneous media: 
predictive abilities for stresses in individual inclusions and the matrix. Compos. 
Sci. Technol. 87, 86–93 . 

Kanit, T. , N’Guyen, F. , Forest, S. , Jeulin, D. , Reed, M. , Singleton, S. , 2006. Apparent 
and effective physical properties of heterogeneous materials: Representativity 
of samples of two materials from food industry. Comput. Methods Appl. Mech. 
Eng. 195, 3960–3982 . 

Kari, S. , Berger, H. , Gabbert, U. , 2007. Numerical evaluation of effective material 
properties of randomly distributed short cylindrical fibre composites. Comput. 
Mater. Sci. 39 (1), 198–204 . 

Kerner, E.H. , 1956. The elastic and thermo-elastic properties of composite media. 
Proc. Phys. Soc. B 69, 808–813 . 

Mohite, P. M.,. Composite materials and structures. http://www.nptel.ac.in/courses/ 
101104010/24 . 

Mori, T. , Tanaka, K. , 1973. Average stress in matrix and average elastic energy of 
materials with misfitting inclusions. Acta Metallurgica 21, 571–574 . 

Mura, T. , 1987. Micromechanics of Defects in Solids. Kluwer Academic Publishers . 
Nazarenko, L. , Stolarski, H. , Altenbach, H. , 2016. Effective properties of short-fiber 

composites with Gurtin-Murdoch model of interphase. Int. J. Solids Struct. 
97–98, 75–88 . 

Ogierman, W. , Kokot, G. , 2016. A study on fiber orientation influence on the me- 
chanical response of a short fiber composite structure. Acta. Mech. 227, 173–183 . 

Pan, Y. , Iorga, L. , Pelegri, A .A . , 2008a. Numerical generation of a random chopped 
fiber composite RVE and its elastic properties. Compos. Sci. Technol. 68, 
2792–2798 . 

Pan, Y. , Iorga, L. , Pelegri, A .A . , 2008b. Analysis of 3D random chopped fiber re- 
inforced composites using FEM and random sequential adsorption. Comput. 
Mater. Sci. 43, 450–461 . 

Park, J.M. , Park, S.J. , 2011. Modeling and simulation of fiber orientation in injection 
molding of polymer composites. Math. Probl. Eng. . Article ID 105637:14 

Pelissou, C. , Baccou, J. , Monerie, Y. , Perales, F. , 2009. Determination of the size of 
the representative volume element for random Quasi-brittle composites. Int. J. 
Solids Struct. 46 (14–15), 2842–2855 . 

Rezaei, F. , Yunus, R. , Ibrahim, N.A. , 2009. Effect of fiber length on thermomechanical 
properties of short carbon fiber reinforced polypropylene composite. Mater. Des. 
30, 260–263 . 

Russel, W.B. , 1973. On the effective moduli of composite materials: effect of fiber 
length and geometry at dilute concentrations. J. Appl. Math. Phys. (ZAMP) 24, 
581–600 . 

Schneider, P.J. , Eberly, D.H. , 2002. Geometric Tools for Computer Graphics, The Mor- 
gan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan 
Kaufmann Publishers . 

Seidel, G.D. , Lagoudas, D.C. , 2006. Micromechanical analysis of the effective elas- 
tic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 
884–907 . 



104 K.P. Babu et al. / International Journal of Solids and Structures 130–131 (2018) 80–104 

Soden, P.D. , Hinton, M.J. , Kaddour, A.S. , 1998. Lamina properties, lay-up configura- 
tions and loading conditions for a range of fibre-reinforced composite laminates. 
Compos. Sci. Technol. 58 (7), 1011–1022 . 

Sukiman, M.S. , Kanit, T. , N’Guyen, A . , Imad, A . , Moumen, E. , Erchiqui, F. , 2017. Ef- 
fective thermal and mechanical properties of randomly oriented short and long 
fiber composites. Mech. Mater. 107, 56–70 . 

Tucker, C.L. , Liang, E. , 1999. Stiffness predictions for unidirectional short-fiber com- 
posites: review and evaluation. Compos. Sci. Technol. 59 (5), 655–671 . 

Velmurugan, R. , Srinivasulu, G. , Jayasankar, S. , 2014. Influence of fibre waviness on 
the effective properties of discontinuous fiber reinforced composites. Comput. 
Mater. Sci. 91, 339–349 . 

Vincent, M. , Giroud, T. , Clarke, A. , Eberhardt, C. , 2005. Description and modeling of 
fiber orientation in injection molding of fiber reinforced thermoplastics. Polym 
46, 6719–6725 . 


	Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites
	1 Introduction
	2 Generation of RVE
	2.1 Random sequential adsorption technique
	2.2 Geometric periodicity
	2.2.1 Periodicity across faces
	2.2.2 Periodicity across edges
	2.2.3 Periodicity across corners

	2.3 Mathematical formulation for line intersection
	2.4 Computer implementation

	3 Results and discussion
	3.1 Case 1: in-plane aligned fibres
	3.2 Case 2: In-plane randomly oriented fibres
	3.3 Case 3: in-plane randomly oriented and out of plane partial randomly oriented fibres
	3.4 Case 4: completely random oriented fibres

	4 Conclusions
	Appendix A Methods for predicting effective stiffness
	A1 Mathematical theory of homogenization
	A2 Halpin-Tsai method
	A2.1 Young’s modulus along fibre direction
	A2.2 Young’s modulus transverse to fibre direction
	A2.3 Shear modulus estimation
	A2.4 Poisson’s ratio estimation

	A3 Mori-Tanaka method

	Appendix B Finite element implementation of mathematical homogenization theory
	B1 Implementation of periodic boundary condition
	B2 Post processing

	 References


