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Abstract

A gesture-based interface involves tracking a moving hand

across frames, and extracting the semantic interpretation

corresponding to the gesture. This is a difficult task, since

there is a change in both the position as well as the appear-

ance of the hand. Further, such a system should be robust

to the speed at which the gesture is performed. This paper

presents a novel attempt at developing a hand gesture-based

interface. We propose an on-line predictive EigenTracker

for the moving hand. Our tracker can learn the eigenspace

on the fly. We propose a new state-based representation

scheme for hand gestures, based on the eigenspace recon-

struction error. This makes the system independent of the

speed of performing the gesture. We use learning for adapt-

ing the gesture recognition system to individual require-

ments. We show results of successful operation of our sys-

tem even in cases of background clutter and other moving

objects.

1. Introduction

The use of hand gestures provides an attractive alternative

to cumbersome interface devices for Human-Computer In-

teraction (HCI) [10]. Hand gesture analysis involves both

spatial as well as temporal processing of image frames. Two

important components of the above task are the tracking of

the moving hand across frames, and extracting the seman-

tic interpretation corresponding to the gesture. Each one is

a difficult task. There is a loss in information due to the

projection of the 3-D human hand to the 2-D image plane.

Elaborate 3-D models have prohibitive high-dimensional

parameter spaces. Further, estimating 3-D parameters from

2-D images is also very difficult [10]. The tracker also has
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to handle changing shapes, other moving objects, and noise

(as in Figure 1). The difficulty of the second task is com-
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Figure 1: A set of representative frames from a hand gesture

analysis (frames in row-major order, with frame numbers).

(Details in text).

pounded by different factors – hand shapes and sizes vary

from individual to individual. Thus, this is a serious prob-

lem for recognizing static hand gestures alone. For a dy-

namic hand gesture, different people may perform the same

gesture in different periods of time.

Pavlovic, Sharma and Huang [10] present an extensive

review of hand gesture interpretation techniques. Bobick

and Wilson [3] propose a state-based technique for repre-

sentation and recognition of gestures in which they define a

gesture as a sequence of states in a measurement or configu-

ration space. A HMM is a possible tool modeling the spatial

and temporal nature of a gesture [10], [1], [11]. Yeasin and

Chaudhuri [12] model the temporal signature of a hand ges-
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ture as a finite state machine.

In this paper, we have proposed a hand gesture based

interface system which uses hand tracking and changes in

hand shapes for the purpose of associating semiotics to

the gesture. Isard and Blake [6] propose the CONDEN-

SATION algorithm (a predictive tracker more general than

a Kalman tracker) for tracking moving objects, including

hand, in clutter, using the conditional density propagation of

state density over time. An EigenTracker [2] has an advan-

tage over traditional feature-based tracking algorithms – the

ability to track objects which simultaneously undergo affine

image motions and changes in view (the Appendix gives

salient features of CONDENSATION and EigenTracking).

An important lacuna of EigenTracking is the absence of a

predictive framework. This paper removes a serious restric-

tion of the EigenTracker framework – the absence of a pre-

dictive framework. We develop a novel predictive Eigen-

Tracker with efficient eigenspace update methods – it can

learn the eigenspace representation on the fly. We have

an automatic initialization process for the tracker – it does

not need to be bootstrapped. This learning-and-tracking of

changing hand shapes fits in with our gesture recognition

framework. We express a gesture as a combination of dif-

ferent epochs, corresponding to eigenspace representations

of static hand shapes, and their temporal relationships. The

system goes through the same set of states, whether the

gesture is performed slowly or done fast. We use a shape-

based state identification scheme. The identification scheme

makes use of hand shapes of individuals (corresponding to

different states) learnt a priori.

The rest of the paper is organized as follows. Sec-

tion 2 presents our predictive EigenTracker, with on-line

eigenspace updates, and automatic initialization. We use

this predictive Eigentracker to track the motion of the hand.

Next, we discuss our gesture recognition framework. This

framework uses information from the predictive Eigen-

Tracker. In each case, we present results of experimentation

with our system.

2. A Predictive EigenTracker for Hand

Gestures

One of the main reasons for the inefficiency of the Eigen-

Tracking algorithm is the absence of a predictive frame-

work. An EigenTracker simply updates the eigenspace and

affine coefficients after each frame, requiring a good seed

value for the non-linear optimization in each case. We use

a predictive framework to speed up the EigenTracker. We

incorporate a prediction of the position of the object being

tracked, using a CONDENSATION-based algorithm. We

describe our model for the system state, dynamics and mea-

surement (observation) as follows.

The hand motion between frames has effects such as ro-

tation, translation, scaling and shear – which can be ac-

counted for by an affine model. The shape of the bound-

ing window for the hand will be a parallelogram. This is

consistent with the affine motion model. Further, a parallel-

ogram offers a tighter fit to the object being tracked (further

reducing the effect of the background) – an important con-

sideration for an Eigenspace-based method. A 6-element

state vector characterizes affine motion. One can use the

coordinates of three image points (any three image points

form a 2-D affine basis). The affine parameters represent

the parallelogram bounding the hand shape in each frame.

Alternatively, the 6 affine coefficients �� (� � � � �)

themselves can serve as elements of the state vector. In

other words, � � ��� �� �� �� �� ��℄
� . These affine

coefficients �� represent the transformation of the current

bounding window to the original one. A commonly used

model for state dynamics is a second order AR process:

�� � ����������������, where�� is a zero-mean,

white Gaussian random vector. The particular form of the

model will depend on the application – constant velocity

model, random walk model, etc.

The measurement is the set of 6 affine parameters from

the image �� = ����. Similar to [6], the observation model

has Gaussian peaks around each observation, and constant

density otherwise. We use a large number of representative

sequences to estimate the covariances of the affine parame-

ters obtained in a non-predictive EigenTracker. These serve

as the covariances of the above Gaussian.

We use a pyramidal approach for the predictive

CONDENSATION-based EigenTracker. The measure-

ments are made at each level of the pyramid. We start at the

coarsest level. Using ���
���� �

�
���� and the measurement at

this level, we get ���
�
� ��

�
�. The affine parameter estimate

at this level goes as input to the next level of the pyramid.

From the estimates at the finest level, we predict the affine

parameters for the next frame.

It is not feasible to learn the multitude of poses corre-

sponding to hand gestures, even for one particular person.

One needs to learn and update the relevant eigenspaces, on

the fly. We discuss this in the following section.

2.1. On-line Eigenspace Updates

In a hand gesture, the appearance of the hand often changes

considerably. One needs to build and update the eigenspace

representation efficiently, on-line. A naive ���� �� al-

gorithm for � images having � pixels each is computa-

tionally inefficient. Particularly, one needs efficient incre-

mental SVD update algorithms, to update the eigenspace

at each frame. For our case, we use a scale-space variant

of the algorithm of Chandrasekaran et al. [4], which takes

������, for � most significant singular values.
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ALGORITHM PREDICTIVE EIGENTRACKER

A. Delineate moving hand

B. REPEAT FOR ALL frames:

1. Obtain image MEASUREMENT optimizing

affine parameters � and

reconstruction coefficients 

2. ESTIMATE new affine parameters

from step 1 output (PREDICTION)

3. IF reconstruction error � �	�� 	�℄
THEN update eigenspace

4. IF reconstruction error very large

THEN construct eigenspace afresh

Figure 2: Our Predictive EigenTracker for Hand Gestures:

An Overview

2.2. Tracker Initialization

Initializing a tracker is a difficult problem because of multi-

ple moving objects, and background clutter. In other words,

one needs to segment out the moving region of interest from

the possibly cluttered background in the frames. Our hand

gesture tracker performs fully automatic initialization. We

use a combination of motion cues (dominant motion detec-

tion [5] as well as skin colour cues [7], [9], [8] to identify

the region of interest in each frame.

2.3. The Overall Tracking Scheme

We now present an overview of our overall predictive

EigenTracker for hand gestures (Figure 2 outlines the main

steps). For the first few frames, we segment out the mov-

ing hand (Section 2.2). We now predict affine parameters

– a parallelogram bounding box for the next frame (Step

1 in Figure 2, details in Section 2). The next step is ob-

taining measurements (of the affine parameters) from the

image – an optimization of the affine parameters � and the

eigenspace reconstruction coefficients  (Appendix). De-

pending on the reconstruction error (Equation 1, Appendix),

it decides on whether or not to perform an eigenspace up-

date (Section 2.1). If the reconstruction error is very large,

this indicates a new view of the object. The algorithm

recomputes a new bounding box and starts rebuilding the

eigenspace (Step 5 in Figure 2). This cue indicates an epoch

change (Section 3). It then repeats the above steps for the

next frame.

Figure 1 shows the result of an experiment on a typical

hand gesture sequence. Our tracker can successfully track

the moving hand in a variety of changing poses, in spite of

background clutter, as well as other moving objects present

in the scene.

Figure 3(b) compares results obtained using the pre-

dictive EigenTracker with those corresponding to a non-

predictive version (Figure 3(a)). The average number of
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(a) Non-predictive EigenTracker

002 010 020

030 040 050

(b) Predictive EigenTracker

Figure 3: Tracking results with (a) a simple EigenTracker,

as compared with (b) results of our predictive EigenTracker

(bottom row): some representative frames. The hand is not

properly tracked using the former.

iterations (for the optimization) improves from 3.5 to 2.9.

A comparison of a non-predictive EigenTracker with a pre-

dictive one for the sequence in Figure 4 shows a drastic im-

provement in the average number of iterations – from 7.44

to 4.67.

2.4. Synergistic Conjunction with Other

Trackers: Restricted Affine Motion

A simple variant of our EigenTracking framework has an

on-line EigenTracker working in conjunction with another

tracker. We can thus take advantage of a tracker tracking

the same object, using a different measurement process, or

tracking principle. The EigenTracker works synergistically

with the other tracker, using it to get its affine parameters.

It then optimizes these parameters, and proceeds with the

EigenTracking. Such a synergistic combination endows the

combined tracker with the benefits of both the EigenTracker

as well as the other one – tracking the view changes of an

object in a predictive manner.

We have experimented with using an SVD update-based

multi-resolution EigenTracker with a skin colour-based
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(a) Non-predictive EigenTracker
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(b) Predictive EigenTracker

Figure 4: Non-predictive EigenTracking versus our Predic-

tive framework: another example

CONDENSATION tracker [9], [8] for cases of restricted

affine motions. The latter considers the parameters of a rect-

angular window bounding the moving hand as state vector

elements – its centroid, the height and the width. The ob-

servation is also a 4-element state vector, consisting of the

rectangular window parameters of the largest skin blob. The

state dynamics considers a constant velocity model for the

centroid position, and a constant position one for the other

two parameters. We use the tracking parameters obtained

from the CONDENSATION skin tracker for each frame,

to estimate the affine parameters for the the Appearance

tracker. The appearance tracker then does the fine adjust-

ments of the affine parameters and computes the reconstruc-

tion error. We first consider a restricted case of affine trans-

formations – scaling and translation alone (Figure 5). The

processing time per frame is 100–180ms when it can track

at the coarsest level itself, and 600–900ms when it goes

to the finest level (image size 320�240). This experiment

shows that having even a very simple restricted affine model

overcomes an inherent problem with the EigenTracker of

being able to track motion up to only a few pixels.

We extend the previous scheme to cover rotations as

well. We first compute the principal axis of the pixel dis-

tribution of the best fitting blob. We align the principal

axis with the vertical 
 -axis and compute the new width,

002 070 072
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Figure 5: A simple combination of a CONDENSATION

skin tracker with an online EigenTracker: scaling and trans-

lation. Details in Section 2.4

height and centroid. These parameters give us the restricted

affine matrix (scaling, rotation, translation): ���������
 �
����	
�. When applied to the current image, these pa-

rameters take it to the first bounding window of the CON-

DENSATION skin tracker. In Figure 6 we show results of

this approach. This scheme allows tracking of large rota-

001 060 090

180 230 235

Figure 6: Using an online EigenTracker in conjunction with

a skin colour-based CONDENSATION tracker: rotation,

translation, scaling. Details in Section 2.4

tions (as evident in Figure 6). We get a better fitting window

and less background pixels, leading to lower eigenspace re-

construction error. The average processing time per frame

is 900ms.

3. Gesture Recognition

We propose a novel methodology for a gesture recognition

system. We use our predictive EigenTracker (Section 2) to

track hand motion across frames. Our predictive Eigen-

Tracking mechanism fits seamlessly into our gesture rep-

resentation and recognition framework. We represent each

gesture as a finite state machine (Figure 7). The states in the

FSM correspond to different static hand shapes. In our sys-

tem, a fixed stationary hand shape is taken as the start shape
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Figure 7: A very simple example of the representation of a

gesture. We represent a gesture as composed of a particular

temporal sequence of epochs, and transitions between them

(Details in text).

– a stationary open palm. A stop state (signifying the end of

the gesture) is a position of the hand that has not changed

its position for at least a particular number of frames. A

gesture is composed of a fixed temporal order of transitions

between states.

The system stores an eigenspace representation corre-

sponding to each static hand shape. It is important to note

that the segmentation of all hand appearances during a ges-

ture is done automatically, based on the eigenspace re-

construction coefficients. The tracker works on the basis

of the eigenspace reconstruction error (Section 2). If the

eigenspace reconstruction error is less than the parameter

	� (as defined in Figure 2), then we take the hand shape

to be the same as that corresponding to the previous frame.

It means that the system is in the same state as it was for

the previous frame. If the error lies between 	� and 	�,

we update the eigenspace representation corresponding to

this hand shape. Only when the error exceeds 	�, does the

EigenTracker signal an epoch change. This epoch change

corresponds to a drastic change in hand shape, and hence,

a new state of the FSM. The system searches hypothesized

transitions from the current state, based on a predefined set

of gestures. Such a state-based representation imparts ro-

bustness to the speed at which a hand gesture is performed

– it will always correspond to the same set of states.

Our current set of gestures explores the idea of having a

static hand shape represent a state, or an epoch. Since we

have a predictive EigenTracker, we have information about

temporal and spatial changes as well. Hence, an extension

of our scheme will also include this information – for the

case when the shape of the hand does not change signif-

icantly, but the position of the hand changes significantly

with time.

The static hand-shapes corresponding to the individual

states can vary from person to person (e.g., a open hand

shape can be different for different people). We propose a

personalized gesture recognition system. Hand shapes of

individuals with fixed semantics are learnt a priori. Our

system uses these learnt shapes for identification of states.

We exploit hand tracking, epoch changes and state identifi-

cation for gesture recognition. A change in epochs (or the

Figure 8: Contour-based verification of static hand shapes

(See text for details)

gesture itself) can switch the system to a different task. The

system tries to recognize a particular hand shape when it

detects an epoch change. For our system, we use a contour-

based shape recognition strategy [11] for verifying particu-

lar hand shapes. Figure 8 depicts the system verifying two

particular hand shapes: an open hand, and a closed hand.

We present some preliminary results with our

eigenspace-based gesture recognition system. In the

sequence of Figure 1, the system starts with the eigenspace

corresponding to an open hand. The eigenspace recon-

struction error starts changing drastically at frame number

75 (corresponding to the upper threshold 	 �), and doesn’t

change much thereafter. This represents a transition from

the open hand to the closed hand. Figure 5 shows the result

with another gesture, performed by another individual.

The gesture starts from the same start shape, goes to the

closed hand pose, and ends up at the thumbs-up sign. Here

again, each epoch is triggered by a drastic change in the

eigenspace reconstruction error. The system re-initializes

itself with a fresh eigenspace corresponding to the closest

static shape in its database during each such change.

3.1. A Simple Application: A 3-D Mouse

This section describes a simple application of some of the

ideas presented in the preceding sections – a 3-D mouse.

The motivation behind this is to have a hand (moving in 3-D

space) substituting for a mouse (without extracting any 3-D

positional information). The first image in Figure 9 shows

an example of such a setup: a camera is looking down on

a table, where the user moves his or her hand. The other

frames of Figure 9 show screen snaps of the program in ex-

ecution. The left window shows what the camera sees. On

the right, we show the hand, segmented out from the im-

age. For each such segmented out hand, we use the follow-

ing heuristic to compute the position of the virtual mouse

pointer. We consider the two eigenvalues corresponding to

the hand shape, and find out the principal axis of the hand

shape. We use this to compute the position of the extreme

tip of the fingers. This is where we place the virtual mouse

pointer. If the ratio of the eigenvalues is greater than a

threshold, we consider it to be a pointing gesture, and in-

terpret it to be a mouse click. This system is on-line, and

implemented on a 700 MHz machine running Linux.
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Figure 9: A simple application: a 3-D mouse. The first

figure shows the setup with a camera looking at a table lit

by a table lamp. The rest are some sample screen shots.

4. Conclusions

In this paper, we propose a novel gesture-based interface

formulation. Our on-line predictive EigenTracker tracks the

moving hand across frames in cluttered and non-stationary

backgrounds. We also propose a representation scheme for

gestures which fits in with the predictive EigenTracker. The

paper shows the results of experiments with our system, in

support of the proposed methodologies.

Appendix: CONDENSATION and

EigenTracking

The CONDENSATION algorithm [6] represents the state

conditional density by a sample set of � states, �� � �����
and a corresponding set of weights �� � ���

�
�, � � �	� ��.

The algorithm makes use of the principle of factored sam-

pling. The CONDENSATION algorithm needs:

1. a model for the system state �,

2. a state dynamics model � ���������, and

3. a model for an observation �: � �������

An eigenspace approach involves using pixel data from

images, rather than extracting features from them. Such an

approach involves treating images (or sub-images) as vec-

tors, and constructing the corresponding eigenspace. An

advantage of this approach is the encoding of all available

data about the appearance of an object (present in the im-

ages). An EigenTracker uses an eigenspace for tracking the

movement of an object across frames, based on appearance

information. An EigenTracking approach [2] involves esti-

mating the view of the object (using the eigenspace), as well

as the transformation that takes this view into the given im-

age (modeled as a 2-D affine transformation). Black and

Jepson pose the problem as finding affine transformation

coefficients � (� ��� �� �� �� �� ��℄
� ) and the eigenspace

reconstruction coefficients , such that the robust error func-

tion between the parameterized image and the reconstructed

one is minimum, for all pixel positions  � �� �℄� :

��� ������ ���� � ��� ��� � ��℄��� �� (1)

Here, ���� �� � ������ � ��� is a robust error function,

and � is a scale parameter. The 2-D affine transformation is

given by

��� �� �

�
��
��

�
�

�
�� ��
�� ��

�
 (2)
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