Header menu link for other important links
Detecting medley of iris spoofing attacks using DESIST
N. Kohli, D. Yadav, , , A. Noore
Published in Institute of Electrical and Electronics Engineers Inc.
Human iris is considered a reliable and accurate modality for biometric recognition due to its unique texture information. However, similar to other biometric modalities, iris recognition systems are also vulnerable to presentation attacks (commonly called spoofing) that attempt to conceal or impersonate identity. Examples of typical iris spoofing attacks are printed iris images, textured contact lenses, and synthetic creation of iris images. It is critical to note that majority of the algorithms proposed in the literature are trained to handle a specific type of spoofing attack. These algorithms usually perform very well on that particular attack. However, in real-world applications, an attacker may perform different spoofing attacks. In such a case, the problem becomes more challenging due to inherent variations in different attacks. In this paper, we focus on a medley of iris spoofing attacks and present a unified framework for detecting such attacks. We propose a novel structural and textural feature based iris spoofing detection framework (DESIST). Multi-order dense Zernike moments are calculated across the iris image which encode variations in structure of the iris image. Local Binary Pattern with Variance (LBPV) is utilized for representing textural changes in a spoofed iris image. The highest classification accuracy of 82.20% is observed by the proposed framework for detecting normal and spoofed iris images on a combined iris spoofing database. © 2016 IEEE.