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Abstract

We prove that, analogous to the Hilbert–Kunz density function, (used for studying the

Hilbert–Kunz multiplicity, the leading coefficient of the Hibert–Kunz function), there

exists a β-density function gR,m : [0,∞) −→ R, where (R, m) is the homogeneous

coordinate ring associated with the toric pair (X , D), such that

∫ ∞

0

gR,m(x)dx = β(R, m),

where β(R, m) is the second coefficient of the Hilbert–Kunz function for (R, m), as

constructed by Huneke–McDermott–Monsky. Moreover, we prove, (1) the function

gR,m : [0,∞) −→ R is compactly supported and is continuous except at finitely

many points, (2) the function gR,m is multiplicative for the Segre products with the

expression involving the first two coefficients of the Hilbert polynomials of the rings

involved. Here we also prove and use a result (which is a refined version of a result

by Henk–Linke) on the boundedness of the coefficients of rational Ehrhart quasi-

polynomials of convex rational polytopes.
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1 Introduction

Let R be a Noetherian ring of dimension d and prime characteristic p, and let I ⊂ R

be an ideal such that ℓ(R/I ) < ∞. Let M be a finitely generated R-module. Then the

Hilbert–Kunz function of M with respect to I is defined by

HK(M, I )(n) = ℓ(M/I [q]M)

where q = pn , the ideal I [q] = nth Frobenius power of I , and ℓ(M/I [q]M) denotes

the length of the R-module M/I [q]M . The limit

limn→∞
ℓ(M/I [pn ]M)

qd

exists (see [14]) and is called the Hilbert–Kunz multiplicity of M with respect to the

ideal I (denoted by eH K (M, I )). Thus H K (M, I )(n) = eH K (M, I )qd + O(qd−1).

The Hilbert–Kunz multiplicity has been studied by many people since then.

In 2004, Huneke–McDermott–Monsky ([9]) proved the existence of a second coef-

ficient for the Hilbert–Kunz function:

Theorem 1 (Theorem 1 of [9]) Let R be an excellent normal Noetherian ring of

dimension d and characteristic p and let I ⊂ R be an ideal such that ℓ(R/I ) < ∞.

Let M be a finitely generated R-module. Then there exists a real number β(M, I ) such

that

HK(M, I )(n) = eH K (M, I )qd + β(M, I )qd−1 + O(qd−2).

They also found a relation with the divisor class group. This invariant was further

studied by Kurano [10], and he proved there that β(M, I ) = 0 if R is Q-Gorenstein ring

and M is a Noetherian R-module of finite projective dimension. Later the above theo-

rem of Huneke–McDermott–Monsky was generalised from normal rings to the rings

satisfying (R1) condition by Chan–Kurano in [2] (also independently by Hochster-Yao

in [8]). Later Bruns-Gubeladze in [1] have proved that HK function is a quasi-

polynomial and gave another proof of the existence of the constant second coefficient

β(R, m) for a normal affine monoid.

In order to study eH K (R, I ), when R is a standard graded ring (dim R ≥ 2) and

I is a homogeneous ideal of finite colength, the second author (in [18]) has defined

the notion of Hilbert–Kunz density function, and obtained its relation with the HK

multiplicity (stated in this paper as Theorem 5): The HK density function is a compactly

supported continuous function fR,I : [0,∞) −→ R≥0 such that

eH K (R, I ) =

∫ ∞

0

fR,I (x)dx .

Moreover, there exists a sequence of functions { fn(R, I ) : [0,∞) −→ R≥0}n given

by

fn(R, I )(x) =
1

qd−1
ℓ(R/I [q])⌊xq⌋
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such that fn converges uniformly to fR,I .

The existence of a uniformly converging sequence makes the density function a

more refined invariant (compared to eH K ) in the graded situation, and a useful tool, e.g.,

in suggesting a simpler approach to the HK multiplicity in characteristic 0 (see [20]),

in studying the asymptotic growth of eH K (R, mk) as k → ∞ (see [19]). Applying

the theory of HK density functions to projective toric varieties (denoted here as toric

pairs (X , D)), one obtains (Theorem 6.3 of [13]) an algebraic characterisation of the

tiling property of the associated polytopes PD (in the ambient lattice) in terms of such

asymptotic behaviour of eH K .

In the light of Theorem 5, one can speculate whether there exists a similar ‘β-density

function’ gR,m : [0,∞) → R such that

∫ ∞

0

gR,m(x) dx = β(R, I ),

which may similarly refine the β-invariant of [9] in the graded case.

We find that this is indeed true for a projectively normal toric pair (X , D), i.e., X a

projectively normal toric variety over an algebraically closed field K of characteristic

p > 0, with a very ample T -Cartier divisor D. Let R be the homogeneous coordinate

ring of X , with respect to the embedding given by the very ample line bundle OX (D),

and let m be the homogeneous maximal ideal of R. We also use the notation rVold to

denote the d-dimensional relative volume function (see Definition 47).

We construct such a β-density function gR,m as a limit of a ‘uniformly’ converging

sequence of functions {gn : [0,∞) −→ R}n∈N, which are given by

gn(λ) =
1

qd−2

(

ℓ(R/m[q])⌊λq⌋ − f̃n(λ)qd−1
)

, (1)

where f̃n(λ) = fR,m(⌊λq⌋/q) and fR,m denotes the HK density function for (R, m).

From the construction, it follows that gn is a compactly supported function.

Recall that given a toric pair (X , D), of dimension d − 1, there is a convex lattice

polytope PD , a convex polyhedral cone CD and a bounded body PD as in Notations 4

(such a bounded body was introduced by Eto (see [5]), in order to study the HK

multiplicity for a toric ring, and he proved there that eH K is the relative volume of

such a body). In [13], it was shown that the HK density function at λ is the relative

volume of the {z = λ} slice of PD . Here we prove that β-density function at λ is

expressible in terms of the relative volume of the {z = λ} slice of the boundary,

∂(PD), of PD .

In this paper, the following is the main result.

Theorem 2 (Main Theorem) Let (R, m) be the homogeneous coordinate ring of

dimension d ≥ 3, associated to the toric pair (X , D). Then there exists a finite set

v(PD) ⊆ R≥0 such that, for any compact set V ⊆ R≥0\v(PD), the sequence {gn|V }n

converges uniformly to gR,m|V , where gR,m : R≥0\v(PD) −→ R is a continuous

function given by

gR,m(λ) = rVold−2 (∂(PD) ∩ ∂(CD) ∩ {z = λ}) −
rVold−2 (∂(PD) ∩ {z = λ})

2
.
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Moreover, for q = pn , we have

∫ ∞

0

gn(λ)dλ =

∫ ∞

0

gR,m(λ)dλ + O

(

1

q

)

and

∫ ∞

0

f̃n(λ)dλ

=

∫ ∞

0

fR,m(λ)dλ + O

(

1

q2

)

.

As a consequence, we get the following

Corollary 3 With the notations as above for a projectively normal toric pair (X , D),

we have

β(R, m) =

∫ ∞

0

gR,m(λ)dλ = rVold−1 (∂(PD) ∩ ∂(CD)) −
rVold−1 (∂(PD))

2

and the Hilbert–Kunz function of R with respect to the maximal ideal m is given by

HK(R, m)(q) = eH K (R, m)qd + β(R, m)qd−1 + O(qd−2).

Note that we can write

gn(λ) = #(qPD ∩ {z = ⌊λq⌋})/qd−2 − (q) fR,m(⌊λq⌋/q),

where # denotes the number of lattice points.

We show in Sect. 3 that P D = (∪ j Pj )\(∪ j,ν E jν ), where Pj and E jν are certain

rational convex polytopes with proper intersections. Then by applying the theory of

Ehrhart quasi-polynomials and exhibiting that (in the case of a toric pair), the second

coefficients of relevant Ehrhart quasi-polynomials are constant, we deduce that for x ∈

S = {m/pn | m, n ∈ N}\v(PD), the sequence {gn(x)}n is convergent and converges

pointwise to gR,m. However, we still know neither the existence of limn→∞ gn(x), for

every x ∈ [0,∞) (or for all x except at finite number of points), nor that this limit is

a continuous function. On the other hand, for λn := ⌊λq⌋/q ∈ S, we have

gn(λ) = gR,m(λn) + c̃(λn)/q,

where c̃(λn) involves coefficients of Ehrhart quasi-polynomials of facets of Pj ∩{z =

λn}. Therefore, to achieve a ‘uniform convergence’, we needed to prove the following:

Theorem 30 For a rational convex polytope P, where Pλ := P ∩ {z = λ} and its

Ehrhart quasi-polynomial is given by

i(Pλ, q) =

dim(P)
∑

i=0

Ci (Pλ, q)q i , if λq ∈ Z≥0,

there exist constant c̃i (P) such that every |Ci (Pλ, q)| ≤ c̃i (P), for all qλ ∈ Z≥0 and

q = pn .
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We prove the result using the theory of lattice points in non-negative rational

Minkowski sums. In fact we prove a general result about convex rational polytopes:

Recall that, for rational convex polytopes P1, P2 ⊂ Rd with dim (P1 + P2) = d, a

well-known result of McMullen implies that the function Q(P1, P2;−) : Q2
≥0 −→ Z,

given by Q(P1, P2, ; r) = #((r1 P1 + r2 P2) ∩ Zd) is a quasi-polynomial of degree d

(called the rational Ehrhart quasi-polynomial), i.e., we have

Q(P1, P2, ; r) =
∑

(l1,l2)∈Z2
≥0,l1+l2≤d

pl1,l2(r)r
l1
1 r

l2
2

such that (1) for some (τ1, τ2) ∈ Q2
>0 we have that pl1,l2(r1, r2) = pl1,l2(r1 + τ1, r2 +

τ2), for every r = (r1, r2) ∈ Q2
≥0 and (2) pl1,d−l1(r) is independent of r.

Here we prove:

Theorem 28 There exists a decomposition (0, τ1] × (0, τ2] =
⊔n

i=1 Wi , where Wi

are locally closed subsets of R2
>0 and, for each (l1, l2) ∈ Z2

≥0, there exists a set of

polynomials { f i
l1,l2

: Wi −→ Q}}i such that

pl1,l2(r) = f i
l1,l2

(r), for every r ∈ Wi ∩ Q2
>0.

In particular, for all r ∈ Q2
>0, there exist constants Cl1,l2 such that

|pl1,l2(r)| ≤ Cl1,l2 , and pl1,d−l1(r) = Cl1,d−l1 .

The proof of Theorem 28 is a refinement of the proof of Theorem 1.3 of Henk–Linke

([7]), where they have proved (in our context) that the coefficients pl1,l2(−,−) are

polynomials on the interior of the 2-cells in R2, induced by the hyperplane arrangement

(given by the support functions of P1 and P2). Since such cells do not cover R2 (or

(0, τ1]× (0, τ2]), and the complement contains line segments, the boundedness of the

coefficients pl1,l2(−,−) cannot be directly obtained from the result of [7].

Note that their result was proved for Minkowski sums of any finite number of

polytopes, which can also be easily refined using similar methods (see Remark 29).

The similar result for rational Ehrhart quasi-polynomial for a single polytope was in

an earlier paper of Linke (see Theorem 1.2, Corollary 1.5 and Theorem 1.6 of [11]).

Now the uniform convergence of the sequence {gn|V }n∈N to g|V , for any compact

set V of [0,∞)\v(PD) is straightforward. Using the fact that the HK density func-

tion fR,m is compactly supported, continuous, and (in this toric case) is a piecewise

polynomial function, we deduce that

∫ ∞

0

f̃n(λ)dλ =

∫ ∞

0

fR,m(λ)dλ + O(1/q2).

This and the similar approximation of the integral of the function gR,m by the integrals

of the functions gn , as in the result stated above, implies that
∫

gR,m(λ)dλ is the second

coefficient of the HK function of (R, m).

123



322 Journal of Algebraic Combinatorics (2020) 51:317–351

The paper is arranged as follows.

In Sect. 2, we recall notations and known results about projective toric varieties,

including a brief review of the density function, treated in detail in [13].

In Sect. 3, we deal with the results about facets of the compact body P D , for a toric

pair (X , D).

Section 4 is an independent section on rational convex polytopes. Here we study the

coefficients of the (multivariate) rational Ehrhart quasi-polynomial and prove they take

only finitely many polynomial values. Now, for a polytope P and Pλ = P∩{z = λ}, we

relate the coefficients of the quasi-polynomial i(Pλ, n), for all λ ∈ R≥0 such that λn ∈

Z, with the coefficients of a fixed rational Ehrhart quasi-polynomial of Minkowski sum

of two polytopes. In particular, we get a uniform bound on the coefficients of such

i(Pλ, n), which is important for the proof in Sect. 5.

In Sect. 5 we present the main result about the β-density function.

In Sect. 6 we prove that the β-density function is a multiplicative function for Segre

products of toric pairs. Here we also compute the β-density functions for (P2,−K ),

(Fa, cD1 + d D2), where −K is the anticanonical divisor on P2, and where D1 and

D2 are a natural basis for the T -Cartier divisors of the Hirzebruch surface Fa . In

particular, one can compute the second coefficient of the Hilbert–Kunz function of the

Segre products of (P2,−K ), (Fa, cD1 + d D2) and other toric pairs of surfaces.

2 Hilbert–Kunz density function on projective toric varieties

Throughout the paper, we work over an algebraically closed field K with char p > 0

and follow the notations from [6]. Let N be a lattice (which is isomorphic to Zn) and let

M = Hom(N , Z) denote the dual lattice with a dual pairing 〈 , 〉. Let T = Spec(K [M])

be the torus with character lattice M . Let X(�) be a complete toric variety over K

with fan � ⊂ NR. We recall that the T -stable irreducible subvarieties of codimension

1 of X(�) correspond to one-dimensional cones (which are edges/rays of �) of �.

If τ1, . . . , τn denote the edges of the fan �, then these divisors are the orbit closures

Di = V (τi ). Let vi be the first lattice point along the edge τi . A very ample T -Cartier

divisor D =
∑

i ai Di (note that ai are integers) determines a convex lattice polytope

in MR defined by

PD = {u ∈ MR | 〈u, vi 〉 ≥ −ai for all i } (2)

and the induced embedding of X(�) in Pr−1 is given by

φ = φD : X(�) → Pr−1, x �→ (χu1(x) : · · · : χur (x)),

where PD ∩ M = {u1, u2, . . . , ur }. For (X(�), D) and PD as above, consider the

cone σ in N × Z whose dual σ∨ is the cone over PD × 1 in M × Z. Then the

affine variety Uσ corresponding to the cone σ is the affine cone of X(�) in Ar
K .

Therefore, the homogeneous coordinate ring of X(�) (with respect to this embedding)

is K [χ (u1,1), . . . , χ (ur ,1)]. Note that there is an isomorphism of graded rings (see

Proposition 1.1.9, [3])
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K [Y1, . . . , Yr ]

I
≃ K [χ (u1,1), . . . , χ (ur ,1)] =: R, (3)

where the kernel I is generated by the binomials of the form

Y
a1

1 Y
a2

2 · · · Y ar
r − Y

b1

1 Y
b2

2 · · · Y br
r

where a1, . . . , ar , b1, . . . , br are non-negative integers satisfying the equations

a1u1 + · · · + ar ur = b1u1 + · · · + br ur and a1 + · · · + ar = b1 + · · · + br .

Note that due to this isomorphism, we can consider R = K [S] as a standard graded

ring, where deg χ (ui ,1) = 1.

Throughout this section, we use the following

Notations 4 1. A toric pair (X , D) means X is a projective toric variety over a field

K of characteristic p > 0, with a very ample T -Cartier divisor D. A toric pair is

projectively normal if its coordinate ring (with respect to the embedding given by

D) is integrally closed domain.

2. The polytope PD or PX ,D is the lattice polytope associated with the given toric

pair (X , D) (as in (2)).

3. fR,m = HKd(R, m) is the HK density function of R with respect to the ideal m,

where R is the associated graded ring with the graded maximal ideal m (as in (3)).

4. Let CD denote the convex rational polyhedral cone spanned by PD ×1 in MR ×R.

5. Let

PD = {p ∈ CD | p /∈ (u, 1) + CD, for every u ∈ PD ∩ M}.

6. For a set A ⊂ MR ≃ Rd , we denote

A ∩ {z = λ} := A ∩ {(x, λ) | x ∈ Rd−1}.

Theorem 5 (Theorem 1.1 in [18]) Let R be a standard graded Noetherian ring of

dimension d ≥ 2 over an algebraically closed field K of characteristic p > 0, and let

I ⊂ R be a homogeneous ideal such that ℓ(R/I ) < ∞. For n ∈ N and q = pn , let

fn(R, I ) : [0,∞) −→ [0,∞) be defined as

fn(R, I )(x) =
1

qd−1
ℓ(R/I [q])⌊xq⌋

(here ℓ(R/I [q])⌊xq⌋ denote the dimension of the K -vector space (R/I [q])⌊xq⌋).

Then { fn(R, I )}n converges uniformly to a compactly supported continuous function

fR,I : [0,∞) −→ [0,∞), where fR,I (x) = limn→∞ fn(R, I )(x) and

eH K (R, I ) =

∫ ∞

0

fR,I (x) dx .
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We recall Theorem (1.1) from [13]:

Theorem 6 Let (X , D) be a toric pair with associated ring (R, m), and PD , CD , PD

as in Notations 4. Then the Hilbert–Kunz density function of (R, m) is given by the

sectional volume of P D , i.e.

fR,m(λ) = rVold−1(P D ∩ {z = λ}), for λ ∈ [0,∞).

Moreover, fR,m is given by a piecewise polynomial function.

3 The boundary ofPD

Recall that (Notations 4) associated with a given toric pair (X , D), we have a convex

polytope PD , a convex polyherdral cone CD and a bounded set PD ⊂ Rd . In [13],

we had written a decomposition CD = ∪ j F j , where F ′
j s are d-dimensional cones

such that, each Pj := F j ∩ P D is a convex rational polytope and is a closure of

P ′
j := F j ∩ PD . To study the boundary of PD we need a set of lemmas about the

facets of P ′
j s. We also assume without loss of generality that d ≥ 3, as d = 2

corresponds to (P1,OP1(n)), for n ≥ 1, which is easy to handle directly.

Notations 7 1. L(PD) = PD ∩ M = the (finite) set of lattice points of PD .

2. For a convex polytope Q, let v(Q) = {vertices of Q} and F(Q) = {facets of Q}.

3. A(F) = the affine hull of F in Rd , for a set F ⊆ Rd . Recall that affine hull of a

set S ⊆ Rn is the smallest affine set containing S, i .e.A(S) = {
∑m

i=1 ai si | m ∈

N, si ∈ S, ai ∈ R,
∑m

i=1 ai = 1}.

4. For a polytope F , dim F := dim A(F).

5. F j ∈ {d-dimensional cones}, which is the closure of a connected component of

CD\ ∪iu Hiu , where the hyperplanes Hiu are given by

Hiu = the affine hull of {(vik, 1), (u, 1), (0) | vik ∈ v(C0i ), u ∈ PD ∩ M},

where C0i ∈ {(d − 3) dimensional faces of PD} and 0 is the origin of Rd .

6. For a subset A ⊆ CD , we denote

(a) ∂C A = boundary of A in the subspace topology of CD (thinking of CD ⊂ Rd

) and

(b) ∂(A) = the boundary of A in Rd .

In particular ∂C A ⊆ ∂(A).

7. For u ∈ L(PD), let Cu = (u, 1) + CD and let

P ′
j = F j ∩ ∩u∈L(PD)((u, 1) + CD)c = F j ∩ ∩u∈L(PD)[CD\Cu],

which is a convex set (Lemma 4.5 of [13]).

8. Let Pj = F j ∩ ∩u∈L(PD)(CD\Cu) the convex rational polytope which is the clo-

sure of P ′
j in CD (which equals the closure in Rd ).
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Therefore,

PD = ∪s
j=1 P ′

j and P D = ∪s
j=1 Pj ,

where P1, . . . , Ps are distinct polytopes, whose interiors are disjoint.

Note that

Pj = F j\ ∪u∈L(PD) Cu = ∩u∈L(PD)F j\Cu .

Lemma 8 For each Pj as in Notations 7, we have

1. Pj = P ′
j ⊔
(

∪u∈L(PD)

{

∂C (Cu) ∩ Pj

})

.

2. For any u ∈ L(PD), we have ∂C (Cu) ∩ Pj = ∪{F ′|F ′∈F(Cu), F ′�∂(CD)}F ′ ∩ Pj .

Proof (1) We only need to prove that Pj ⊆ P ′
j

⊔

u

{

∂C (Cu) ∩ Pj

}

, as the other way

inclusion is obvious.

Let us denote PD = ∩u∈PD∩Zd−1 [CD\Cu] by U . Then P ′
j = F j ∩ U and Pj =

F j ∩ U . It is easy to check that F j ∩ U ⊆ (F j ∩ U ) ∪ (∂CU ∩ F j ∩ U ). Now

∂CU ⊆ ∪u∂C (Cu) �⇒ (∂CU ) ∩ F j ∩ U ⊆ ∪u∈L(PD)

{

∂C (Cu) ∩ Pj

}

.

This proves Assertion (1).

(2) We leave this to the reader. This proves lemma.

Lemma 9 For any facet F ∈ F(Pj ), we have one and only one of the following

possibilities:

1. F ⊂ F ji , for some facet F ji ∈ F(F j ): (i) In this case F = A(F ji )∩ Pj = F ji ∩ Pj

and

(i i) dim
[

A(F) ∩ (∪u∈L(PD)∂C (Cu) ∩ Pj )
]

≤ d − 2.

2. F ⊂ Fuν , for some facet Fuν ∈ F(Cu) and u ∈ L(PD). In this case F =

Pj ∩ Fuν = Pj ∩ A(Fuν ), where Fuν � ∂(CD).

Proof Note P ′
j = F j ∩

(

∩u∈L(PD) [CD\Cu]
)

. Therefore,

F ⊂ ∂(Pj ) ⊆ ∂(F j ) ∪ ∪u∈L(PD)∂[Cu] = ∪F ji
∈F(F j )F ji ∪ ∪u∈L(PD) ∪Fuν ∈F(Cu) Fuν .

This implies d −1 = dim F = max{dim(F ji ∩ F), dim(Fuν ∩ F)} ji ,uν . Hence at least

one of the sets, F ji ∩ F or Fuν ∩ F , for some ji or uν , is of dimension d − 1. This

implies either A(F) = A(F ji ) or A(F) = A(Fuν ).

(1) Let F ∈ F(Pj ) such that F ⊆ A(F ji ), for some ji . Then F = Pj ∩ A(F ji ) =

Pj ∩ F j ∩ A(F ji ) = Pj ∩ F ji . In particular F ⊆ F ji . This proves Assertion (1) (i).

Suppose given F ∈ F(Pj ) such that F ⊆ A(F ji ) and for some u ∈ L(PD),

dim
[

A(F) ∩ (∂C (Cu) ∩ Pj )
]

= d − 1. Then dim (A(F) ∩ Fuν ∩ Pj ) = d − 1,
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for some Fuν ∈ F(Cu) such that Fuν � ∂(CD). Then A(F) = A(Fuν ) = A(F ji ),

where A(F ji ) is a hyperplane passing through the origin 0 of Rd , and therefore,

A(F) is a vector subspace of Rd . Also Fuν = (u, 1) + F ′, for some F ′ ∈ F(CD).

Therefore, A(F) = (u, 1)+ A(F ′). Hence (u, 1)+y = 0, for some y ∈ A(F ′), which

implies A(F) = A(F ′). Therefore, Fuν ⊆ A(F) ∩ CD = F ′ ⊆ ∂(CD), which is a

contradiction. This implies (1) (ii) and hence the first assertion.

(2) We first prove the following

Claim For any F j and for a facet F ′′ ∈ F(Cu), where u ∈ L(PD), if F ′′ ∩ Fo
j �= φ,

then F ′′ ∩ F j = A(F ′′) ∩ F j , where Fo
j = F j\∂(F j ).

Proof of the Claim Recall (see Lemma 4.5 of [13]) that F j\Cu is a convex set, for any

u ∈ L(PD).

If (A(F ′′)∩ F j )\F ′′∩ F j �= φ, then there exists x ∈ (∂ F ′′)∩ Fo
j and an open set (in

Rd ) Bx ⊆ Fo
j such that Bx ∩ Cu ∩ Fo

j �= φ. Hence there is another facet F ′ ∈ F(Cu)

such that F ′ ∩ Fo
j �= φ (x ∈ ∂(F ′) ∩ Fo

j ).

Note that dim(F ′∩Fo
j ) = dim (F ′′∩Fo

j ) = d−1 and dim (F ′∩F ′′) ≤ d−2. Hence

we choose x1 ∈ F ′′ ∩ Fo
j and x2 ∈ F ′ ∩ Fo

j such that x1 �= x2. Then t x1 + (1− t)x2 ⊆

F j ∩ Cu , for 0 ≤ t ≤ 1. Now we can also choose small enough neighourhoods

(open in Rd ) Bx1 and Bx2 of x1 and x2, respectively, which are contained in F j . Let

L be the affine line through x1 and x2. Now, the line segment of L with end points

x ′
1 ∈ Bx1 ∩ L ∩ Cc

u and x ′
2 ∈ Bx2 ∩ L ∩ Cc

u , passes through Cu , which contradicts the

convexity property of F j\Cu . Hence the claim.

Suppose F ∈ F(Pj ) such that F � A(F ji ), for any F ji ∈ F(F j ). Then there

exists Fuν ∈ F(Cu), for some u ∈ L(PD), such that dim (F ∩ Fuν ) = d − 1. This

implies A(F) = A(Fuν ), and therefore, Fuν � A(F ji ), for any F ji . On the other

hand F ∩ Fuν ⊆ F j . Hence Fuν ∩ Fo
j �= φ, which implies, by the above claim that

A(Fuν ) ∩ F j = Fuν ∩ F j . Therefore,

F ⊆ A(Fuν ) ∩ Pj ∩ F j = Fuν ∩ F j ∩ Pj = Fuν ∩ Pj ⊆ F .

Moreover, by definition F ∩ Fuν ⊂ Pj\P ′
j , and therefore, by Lemma 8, Fuν �

∂(CD). This proves the second assertion and hence the lemma. ⊓⊔

Lemma 10 If Pi �= Pj , then dim(Pi ∩ Pj ) ≤ d −1. Moreover, if dim(Pi ∩ Pj ) = d −1,

then Pi ∩ Pj ∈ F(Pi ) ∩ F(Pj ), that is, Pi and Pj meet along a common facet.

Proof We know Pi ∩ Pj ⊆ Fi ∩ F j , where dim (Fi ∩ F j ) ≤ d −1. If dim (Pi ∩ Pj ) =

d−1, then Fi ∩F j ∈ F(Fi )∩F(F j ). Let F = Fi ∩F j ; then Fi ∩ A(F) = F j ∩ A(F) =

F . But Pi = Fi ∩ U and Pj = F j ∩ U . Therefore, Pi ∩ A(F) = Fi ∩ U ∩ A(F) =

Fi ∩ U ∩ A(F) = F ∩ U = Pj ∩ A(F). This proves the lemma. ⊓⊔

Lemma 11

(1) ∂(PD) = ∪{F∈F(Pj )|F �=Pi ∩Pj }F . In particular

(2) ∂(PD) =
⋃

{F∈F(CD)} F ∩ P D ∪
⋃

{F∈F(Cu),u∈L(PD)} F ∩ P D.
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Proof Note ∂(PD) = ∂(P D) ⊆ ∪ j ∪F∈F(Pj ) F . Moreover, ∪ j,ν E jν ⊆ ∂(PD), where

{E jν} = {F ∈ F(Pj ) | F ⊆ F ′, F ′ ∈ F(Cu), u ∈ L(PD)} ⊆ P D ∩ P
c
D ⊆ ∂(PD).

(4)

Let V = ∪F {F | F ∈ F(Pj ), F �= Pi ∩ Pj , for any j}. Then ∪ j,ν E jν ⊆ V (see

Lemma 9). Therefore, ∂(PD)\V ⊆ ∪F {F | F = Pi ∩ Pj }. If ∂(PD)\V �= φ, then

there exists (d −1)-dimensional open ball Bd−1 ⊆ ∂PD ∩ Pi ∩ Pj , for some Pi �= Pj .

Therefore, Pi\V and Pj\V are nonempty open sets of Pi and Pj , respectively. Hence,

we can choose an open set Bd such that

Bd = [Bd ∩ (Pi\V )] ∪ [Bd ∩ (Pj\V )] ∪ [Bd ∩ (Pi ∩ Pj )],

where Bd ∩ Pi ∩ Pj ⊆ Bd−1. Since Bd−1 ⊆ Pi ∩ Pj , we have Bd−1 ∩ P D
c

= φ,

which implies Bd−1 ∩ ∂(PD) = φ, hence a contradiction. Therefore, ∂(PD) = V .

This proves Assertion (1). Now

∂(PD) =
⋃

{F∈F(Pj ), F⊆A(F j ), F �=Pi ∩Pj }

F ∪
⋃

j,ν

{E jν}

=
⋃

{F∈F(CD)}

F ∩ P D ∪
⋃

{F∈F(Cu),u∈L(PD)}

F ∩ P D.

This proves the lemma. ⊓⊔

Notations 12 In the rest of the paper, for a bounded set Q ⊂ Rd and for n, m ∈ N,

we define

i(Q, n, m) := #(nQ ∩ {z = m} ∩ Zd), (5)

where z is the d th coordinate function on Rd .

Remark 13 From Lemma 8, it follows that

Pj = P ′
j

⊔

(∪γ E jγ ), where {E jγ } = {F ∈ F(Pj )}{F⊆F ′, F ′∈F(Cu), u∈L(PD)}

and E jν � ∂ (CD). Note, E jγ ∩ P ′
i = φ, for every i , as P ′

i ⊆ ∪u∈L(PD)CD\Cu . In

particular,

i(PD, n, m) = i(∪ j P ′
j , n, m) = i(∪ j Pj , n, m) − i(∪ jγ E jγ , n, m).

Therefore, we have

i(PD, n, m) =
∑

j

i(Pj , n, m) −
∑

j<k

i(Pj ∩ Pk, n, m) (6)

−
∑

j,γ

i(E jγ , n, m) +
∑

α∈I1

ǫαi(Q′
α, n, m),
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where {Q′
α}α∈I1 runs over a certain finite set of polytopes of dimension ≤ d −1: either

Q′
α = Pj1 ∩ · · · ∩ Pjl , for distinct P ′

ji
s, where l ≥ 3, or Q′

α = E j1γ1 ∩ · · · ∩ E jlγl
, for

distinct E ′
ji γi

s, and l ≥ 2. Note that ǫα ∈ {1,−1}, depending on α ∈ I1.

Lemma 14 Let Q be a convex polytope such that Q ⊆ F, for some facet F ∈ F(Pj ),

where 1 ≤ j ≤ s. Then dim(Q ∩ {z = λ}) ≤ d − 2, for all λ ∈ R≥0. Moreover

1. if dim(Q) ≤ d−2, then dim(Q∩{z = λ}) = d−2, at the most for one λ ∈ R≥0, i.e.

in that case dim(Q) = dim(Q ∩ {z = λ}) = d − 2 and A(Q) = A(Q ∩ {z = λ}),

i.e. Q lies in the hyperplane {z = λ}.

2. If dim(Q) = d − 1, then [A(Q) ∩ {z = m}] ∩ Zd �= φ, for every m ∈ Z.

3. If dim(Q∩{z = λ}) = d−2, for some λ ∈ R>0, then [A(nQ)∩{z = m}]∩Zd �= φ,

whenever n, m ∈ Z>0 such that m/n = λ.

Proof By definition, Q ⊆ F , for some F ∈ F(F j ) or, for some F ∈ F(Cu) and

u ∈ L(PD). But such hyperplanes are transversal to the hyperplane {z = 0}. Hence

dim Q ∩ {z = λ} ≤ d − 2, for every λ ∈ R≥0.

(1) Suppose dim(Q ∩ {z = λ0}) = d − 2, for some λ0 ∈ R≥0. Then

A(Q) = A(Q ∩ {z = λ0}) = A(Q) ∩ {z = λ0}.

Therefore, Q ⊆ A(Q ∩ {z = λ0}) and Q ∩ {z = λ} = φ, for λ �= λ0. Hence

dim Q ∩ {z = λ} = d − 2, at the most at one point.

(2) By Lemma 9, we have Q ⊆ A(F), where F ∈ F(F j ) or F ∈ F(Cu).

Case (1) Let F be a facet of F j for some F j . Then F ⊆ Hiu for some hyperplane

Hiu (as given in Notations 7) (5)) and A(Q) = A(F) = Hiu . Hence, for m ∈ Z, we

have A(Q) ∩ {z = m} = Hiu ∩ {z = m}, where it is easy to check that m(u, 1) ∈

Hiu ∩ {z = m} ∩ Zd .

Case (2) If F is a facet of (u, 1) + CD , then F = (u, 1) + F ′, for some facet F ′ of

CD . Now F ′ is a cone over a facet F ′′ of PD . Hence there exist a subset of vertices

{u j } ⊂ Zd−1 of PD such that A(Q) = A(F) = {(u, 1) +
∑

j α j (u j , 1) | α j ∈ R}.

Now it is easy to check that (u, 1) + (m − 1)(u j , 1) ∈ A(F) ∩ {z = m} ∩ Zd .

(3) With the notations as in (2), we have A(nQ ∩ {z = nλ}) = A(nQ) ∩ {z =

nλ} = A(nF) ∩ {z = nλ}. Now, for F ∈ F(Fi ), one can check that nλ(u, 1) ∈

A(nF) ∩ {z = nλ} ∩ Zd , and for F ∈ F(Cu) for some u ∈ L(PD) one can check

n(u, 1) + (λ − 1)n(u j , 1) ∈ A(nF) ∩ {z = nλ} ∩ Zd . This completes the proof of the

lemma. ⊓⊔

4 Ehrhart quasi-polynomial for rational convex polytope

In this section, we mainly deal with the Ehrhart’s theory of lattice points inside rational

convex polytopes. Recall that, if Zd is the integral lattice in d-dimensional Euclidean

space Rd , then a convex polytope P ⊂ Rd is called integral (rational), if all its vertices

have integral (rational) coordinates.

Definition 15 For a rational polytope P , the smallest number ρ ∈ Q>0 such that ρ P

is an integral polytope is called the rational denominator of P , and is denote by τ(P).
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Furthermore, the rational i-index τi (P) of P is the smallest number ρ ∈ Q>0 such that

for each i-dimensional face F of P the affine space ρ A(F) contains integral points.

Here A(F) denotes the affine hull of F .

The following classical result is due to Ehrhart ([4]) and McMullen ([12]).

Theorem 16 Let P ⊂ Rd be a rational polytope. Then i(P,−) : Z≥0 → Z≥0, given

by

i(P, n) := #(n P ∩ Zd) =

dim(P)
∑

i=0

Ci (P, n)ni , for n ∈ Z≥0,

is a quasi-polynomial of degree dimP, i.e., for every i , the coefficient Ci (P, n) is

periodic in n of period τi (P), and CdimP (P, n) is not identically zero (in fact is

= rVoldimP (P), if A(P) contains an integral point).

Moreover if P◦ denotes the interior of P in the affine span of P, then i(P◦, n) =

#(n P◦ ∩ Zd) = (−1)dim(P)i(P,−n). In particular, A(F) ∩ Zd �= φ, for every F ∈

F(P) implies

Cdim(P)−1(P, n) = (1/2)
∑

F∈F(P)

rVoldim(P)−1(F).

Here note that, since i(P, n) is a quasi-polynomial, it can be defined for all n ∈ Z.

McMullen has generalised Theorem 16 for the rational Minkowski sum of finitely

many polytopes P1, . . . , Pk ⊂ Rd . Throughout this section, we use the following

notations and definition from the literature.

Notations 17 1. For r = (r1, . . . , rk) ∈ Rk and l = (l1, . . . , lk) ∈ Zk
≥0, we denote

∏k
i=1 r

li
i by rl and

∑

i li by |l|.

2. The Hadamard product r⊙s of two rational vectors r, s ∈ Qk is the coordinate-wise

product r ⊙ s = (r1s1, . . . , rksk).

With these notations, McMullen’s result (see comments on page 2 of [7]) on the

Ehrhart quasi-polynomial of a Minkowski sum of rational polytopes can be stated as

follows.

Theorem 18 Let P1, . . . , Pk ⊂ Rd be rational polytopes. Then the function

Q(P1, . . . , Pk,−) : Qk
≥0 → N given by

Q(P1, . . . , Pk, r) = #

(

∑

i

ri Pi ∩ Zd

)

, for r = (r1, . . . , rk) ∈ Qk
≥0

is a rational quasi-polynomial of degree dim(P1 + · · · + Pk) with period τ =

(τ (P1), . . . , τ (Pk)), i.e., Q(P1, . . . , Pk, r) =
∑

|l|≤d pl(r)r
l, where pl : Qk

≥0 → Q
is a periodic function with period τi = τ(Pi ) in the i th argument, i = 1, . . . , k, and

pl(r) is nonzero positive constant for some l ∈ Zk
≥0 with |l| = dim(P1 + · · · + Pk).
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Proof See Theorem 7 of [12]. ⊓⊔

Definition 19 Q(P1, . . . , Pk,−) is called the rational Ehrhart quasi-polynomial of the

rational polytopes P1, . . . , Pk , and the lth coefficient of Q(P1, . . . , Pk,−) is denoted

by Ql(P1, . . . , Pk,−).

In 2011, Linke has proved (see Theorem 1.2, Corollary 1.5 and Theorem 1.6 of

[11]) the following result about the coefficients of rational Ehrhart quasi-polynomial

of a rational polytope.

Theorem 20 Let P ⊂ Rd be a rational polytope of dimension d with rational Ehrhart

quasi-polynomial

i(P, r) := #(r P ∩ Zd) =

dim(P)
∑

i=0

Ci (P, r)r i , where r ∈ Q≥0.

Then (1) there exist 0 = r0 < r1 < · · · < rl = τ(P), such that Ci (P,−) is a

polynomial of degree d − i on (rm−1, rm), for each m = 1, . . . , l and i = 0, . . . , d.

(2) The reciprocity theorem is true for rational dilates and for all dimension, i.e.

for all r ∈ Q≥0, i(P, r) = (−1)dim(P)i(P,−r). In particular Cd(P, r) = Vold(P),

for all r ∈ Q>0, and, in addition, if Cd−1(P, r) is independent of r > 0, then

Cd−1(P, r) = (1/2)
∑

F∈F(P) rVold−1(F).

Later, the above theorem was generalised for Minkowski sum of polytopes by Henk

and Linke in their paper [7, Theorem 1.3].

We recall briefly some important points relevant to the statement of Theorem 1.3

of [7].

For a polytope P ⊂ Rd , let h(P,−) : Rd → R be its support function, i.e.

h(P, v) = max{〈v, x〉 : x ∈ P}. A hyperplane H(P, v) := {x ∈ Rd | 〈x, v〉 =

h(P, v)}, for v ∈ Rd\{0} is called a supporting hyperplane of P . If P is full-

dimensional, i.e. dim(P) = d, then each facet F of P is given by a unique supporting

hyperplane HF = {x ∈ Rd | 〈x, aF 〉 = bF }, where (aF , bF ) ∈ Rd × R is unique up

to multiplication by a positive real number. Let H−
F = {x ∈ Rd | 〈x, aF 〉 ≤ bF }, Let

P ⊂ Rd be a full-dimensional lattice polytope; the hyperplane representation of P is

P =
⋂

F∈F(P)

H−
F =

⋂

F∈F(P)

{x ∈ Rd | 〈x, aF 〉 ≤ bF }

where the intersection runs over all facets F of P . We call aF/||aF || the outer unit

normal of the facet F of P .

Let P1, . . . , Pk ⊂ Rd be rational polytopes with dim(P1 + · · · + Pk) = d. Let

v1, . . . , vm ∈ Zd , be the outer normals of the facets of the rational polytope P1 +

. . . + Pk . Observe that for all r ∈ Rk
>0 the facets of the polytope r1 P1 + . . . + rk Pk

have the same outer normals v1, . . . , vm . For details about support function and face

decomposition of Minkowski sum, see [15]. Now, for r ∈ Rk
>0 and z ∈ Zd we know

z ∈
∑k

i=1 ri Pi if and only if 〈z, v j 〉 ≤
∑k

i=1 ri h(Pi , v j ) for 1 ≤ j ≤ m. Thus
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Q(P1, . . . , Pk, r) is a constant function on the interior of the k-dimensional cells

induced by the hyperplane arrangement

{

{

r ∈ Rk
>0 :

k
∑

i=1

ri h(Pi , v j ) = 〈z, v j 〉
}

: z ∈ Zd , j = 1, . . . , m

}

. (7)

Let S be the interior of a fixed k-dimensional cell given by this section. Then

Q(P1, . . . , Pk,−) is constant on S.

The result of Henk–Linke (Theorem 1.3) can be stated as follows:

Theorem 21 Let P1, . . . , Pk ⊂ Rd be rational polytopes with dim(P1 +· · ·+ Pk) = d

and let l ∈ Zk
≥0 with |l| ≤ d. Then Ql(P1, . . . , Pk,−) is a piecewise polynomial

function of degree at most d−|l| on open k-cells given by the hyperplane arrangements

as in (7).

Here we consider the case with k = 2. By Theorem 18, Q(P1, P2,−) is a

quasi-polynomial of degree dim(P1 + P2) with period τ = (τ1, τ2). The hyperplane

arrangement in (7) can be rewritten as

{

{

r ∈ R2
>0 : r1h(P1, v j ) + r2h(P2, v j ) = 〈z, v j 〉

}

: z ∈ Zd , j = 1, . . . , m
}

(8)

and Q(P1, P2,−) is constant on each open 2-cell in the complement of these lines.

Notations 22 1. For z ∈ Zd , and 1 ≤ j ≤ m, we denote the line

L j (z) =
{

r ∈ R2 : r1h(P1, v j ) + r2h(P2, v j ) = 〈z, v j 〉
}

.

the positive halfspace L j (z)
+ =

{

r ∈ R2 : r1h(P1, v j ) + r2h(P2, v j ) ≥ 〈z, v j 〉
}

and the positive open halfspace L j (z)
+◦ the interior of L j (z)

+, i.e.,

L j (z)
+◦ =

{

r ∈ R2 : r1h(P1, v j ) + r2h(P2, v j ) > 〈z, v j 〉
}

.

Similarly, one defines L j (z)
− and L j (z)

−◦ for z ∈ Zd and for j = 1, . . . , m.

2. Denote the period rectangle T = (0, τ1]×(0, τ2], where (τ1, τ2) = (τ (P1), τ (P2))

∈ Q2
>0.

3. Note that for each j ∈ {1, . . . , m}, there can be only finitely many L j (z) inter-

secting the period rectangle T , as v j ∈ Zd .

4. R2
>0 is the disjoint union of locally closed sets, namely

R2
>0 =

⎛

⎝

⋃

S∈C̃P

S

⎞

⎠ ∪

⎛

⎝

⋃

I∈ ĨP

I

⎞

⎠ ∪ T0, (9)

where C̃P = the set of open 2-cells obtained by the hyperplane arrangement as

given in (8), the set

T0 = {L j (z) ∩ L i (z
′) ∩ R2

>0 | L j (z) �= L i (z
′), for all z, z′ ∈ Zd and 1 ≤ i, j ≤ m}
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is a discrete set of points and

ĨP = the connected components of R2
>0\

⎡

⎣

⎛

⎝

⋃

S∈C̃P

S

⎞

⎠ ∪ T0

⎤

⎦

is the set of open intervals. In particular, for any I ∈ ĨP , there exists a unique line

L j0(z0) such that I is a connected component of

[L j0(z0)\{L j0(z0) ∩ L j (z) | L j0(z0) �= L j (z), 1 ≤ j ≤ m, z ∈ Zd}] ∩ R2
>0.

Definition 23 For given I ∈ ĨP , we associate (the unique) SI ∈ C̃P as follows: By

definition I ⊂ L j (z), for a unique line L j (z) (as in Notation 22) in R2. Then SI is the

unique cell in C̃P such that I ⊂ S I , the closure of SI in R2
>0 and SI ⊂ L j (z)

+o.

Lemma 24 Given (I , SI ) ∈ ĨP × C̃P , we have

SI ⊂ L jl (zil )
+ ⇐⇒ I ⊂ L jl (zil )

+.

Moreover, if L j0(zi0) is the line containing I , then for L jl (zil ) �= L j0(zi0), we have

SI ⊂ L jl (zil )
+ ⇐⇒ SI ⊂ L jl (zil )

+o ⇐⇒ I ⊂ L jl (zil )
+o ⇐⇒ I ⊂ L jl (zil )

+.

Proof It is easy to check.

Lemma 25 Given S ∈ C̃P , Q(P1, P2, s) = constant for all s ∈ S.

Given (I , SI ) ∈ ĨP × C̃P

Q(P1, P2, s) = constant for all s ∈ SI ∪ I .

Proof It is easy to check.

Lemma 26 Let u = (u1, u2) ∈ Z2
≥0 and let T = (0 × τ1] × (0 × τ2] be as in

Notations 22. Then,

1. for given S ∈ C̃P , we have Q(P1, P2, s) = constant, for all s ∈ S ∩ T + u ⊙ τ

and,

2. for given (I , SI ) ∈ ĨP × C̃P , we have Q(P1, P2, s) = constant, for all s ∈

(SI ∪ I ) ∩ T + u ⊙ τ.

Proof For (u1, u2) ∈ Z2
≥0, the polytope u1τ1 P1 + u2τ2 P2 is an integral polytope.

Therefore, for every facet F j of (this polytope) with the outer normal v j , we can

choose z̃ j ∈ F j ∩ Zd such that h(u1τ1 P1 + u2τ2 P2, v j ) = 〈z̃ j , v j 〉. Now, it is easy to

check that, for every 1 ≤ j ≤ m,

L j (z + z̃ j ) = L j (z) + u ⊙ τ, L j (z + z̃ j )
+o = L j (z)

+o + u ⊙ τ,
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and

L j (z + z̃ j )
−o = L j (z)

−o + u ⊙ τ.

A given S ∈ C̃P can be written as

S =
[

∩
s1

μ=0 L jμ(ziμ)+◦
]

∩
[

∩
s2

ν=1Llν (zkν )
−◦
]

∩ R2
>0,

for some ziμ , zkν ∈ Zd and 1 ≤ jμ, lν ≤ m.

Therefore,

S + u ⊙ τ =
[

∩
s1
μ=0 L jμ(ziμ)+◦ + u ⊙ τ

]

∩
[

∩
s2
ν=1Llν (zkν

)−◦ + u ⊙ τ
]

∩
[

R2
>0 + u ⊙ τ

]

,

=
[

∩
s1
μ=0 L jμ(ziμ + z̃ jμ)+◦

]

∩
[

∩
s2
ν=1Llν (zkν

+ z̃lν )
−◦] ∩

[

R2
>0 + u ⊙ τ

]

.

Note that, for any z ∈ Zd and 1 ≤ j ≤ m, if S ∈ C̃P , then we have L j (z− z̃ j )∩S = φ,

since L j (z − z̃ j ) is one of the lines in the hyperplane arrangement 7. This implies

L j (z) ∩ (S + u ⊙ τ) = (L j (z − z̃ j ) ∩ S) + u ⊙ τ = φ. Hence S + u ⊙ τ ⊆ S1, for

some S1 ∈ C̃P .

Therefore, by Lemma 25,

Q(P1, P2, s) = constant for all s ∈ (S + u ⊙ τ) ∩ (T + u ⊙ τ) = (S ∩ T ) + u ⊙ τ.

This proves Assertion (1).

Note that I ∈ ĨP if and only if I ⊂ L j0(z0), some 1 ≤ j0 ≤ m and z0 ∈ Zd , such

that I is a connected component of

(L j0(z0)\{L j0(z0) ∩ L j (z) | z ∈ Zd , 1 ≤ j ≤ m and L j (z) �= L j0(z0)}) ∩ R2
>0.

This implies that I + u ⊙ τ is a connected component of

[

{L j0(z0 + z̃ j0)\{L j0(z0 + z̃ j0) ∩ L j (z + z̃ j ) | z ∈ Zd , 1 ≤ j ≤ m,

and

L j0(z0 + z̃ j0) �= L j (z + z̃ j )}
]

∩ R2
>0.

Hence I + u ⊙ τ ∈ ĨP . One can easily check (from Lemma 24) that SI + u ⊙ τ =

SI+u⊙τ . Hence,

(SI+u⊙τ ∪ (I + u ⊙ τ)) ∩ (T + u ⊙ τ) = ((SI ∪ I ) ∩ T ) + u ⊙ τ.

Now, by Lemma 25,

Q(P1, P2, s) = constant for all s ∈ ((SI ∪ I ) ∩ T ) + u ⊙ τ.
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This completes the proof of the lemma. ⊓⊔

In the proof of the next lemma, we imitate the arguments given in the proof of

Lemma 2.2 and Lemma 2.3 of [7].

Lemma 27 Let p : Q2
>0 −→ Q be a rational quasi-polynomial of degree n ≥ 1 with

period τ = (τ1, τ2) ∈ Q2
>0 and constant leading coefficients, i.e.,

p(r) =
∑

l1+l2≤n

pl1,l2(r)r
l1
1 r

l2
2 , where r = (r1, r2) ∈ Q2

>0, (10)

such that

1. pl1,l2(r) ∈ Q is constant for all (l1, l2) ∈ Z2
≥0 with l1 + l2 = n, and for every

r ∈ Q2
>0,

2. pl1,l2 : Q2
>0 −→ Q are periodic functions with period τ = (τ1, τ2) for all

(l1, l2) ∈ Z2
≥0 with l1 + l2 < n.

Let E ⊆ R2
>0 be a subset of R2, such that, for every u ∈ Z2

≥0, there exists cu ∈ Q
with

p(r + u ⊙ τ) = cu for all r ∈ E ∩ Q2. (11)

Then for all (l1, l2) ∈ Z2
≥0 with l1+l2 ≤ n, the coefficient function pl1,l2 : E∩Q2

>0 −→

Q is a polynomial of degree at most n − (l1 + l2).

Proof We prove the lemma by induction on deg(p) = n. For n = 1 and for r ∈ E∩Q2,

we have

c0 = p(r) = p0,0(r) + p(1,0)(r)r1 + p(0,1)(r)r2. (12)

Therefore, p0,0 : E ∩Q2 −→ Q is a polynomial of degree ≤ 1 (if p(1,0) = p(0,1) = 0

then p(0,0) = constant).

Now let n ≥ 2.

Let

q(r) = p(r + e2 ⊙ τ) − p(r) = p(r1, r2 + τ2) − p(r1, r2).

Then, for r ∈ E ∩ Q2
>0, and u ∈ Z2

≥0, we have

q(r + u ⊙ τ) = p(r + (u + e2) ⊙ τ) − p(r + u ⊙ τ) = cu+e2
− cu.

Next we show that q is a quasi-polynomial of degree n − 1 and of period τ with

constant leading coefficients. Now, for every r ∈ Q2
≥0,

q(r) = p(r1, r2 + τ2) − p(r1, r2)

=
∑

l2 �=0, l1+l2≤n

pl1,l2(r)r
l1
1

[

τ
l2
2 +

(

l2

1

)

τ
l2−1
2 r2 + · · · +

(

l2

l2 − 1

)

τ2r
l2−1
2

]
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=
∑

l1,l2≥0, l1+l2≤n−1

ql1,l2(r)r
l1
1 r

l2
2 ,

where

ql1,l2(r) = pl1,l2+1(r)c1(l1, l2)+ pl1,l2+2(r)c2(l1, l2)+· · ·+ pl1,n−l1(r)cn−l1−l2(l1, l2)

(13)

and ci (l1, l2) are positive constants. Therefore, ql1,l2 : Q2
>0 −→ Q are periodic

functions with period (τ1, τ2) and, for every r ∈ Q2
>0,

ql1,n−1−l1(r) = pl1,n−l1(r)c1(l1, l2) = Cl1 = a constant, for every 0 ≤ l1 ≤ n − 1.

Therefore, by induction hypothesis, ql1,l2 : E ∩Q2
>0 −→ Q is a polynomial of degree

at most n − 1 − l1 − l2, for all (l1, l2) ∈ Z2
≥0 such that l1 + l2 ≤ n − 1. By (13)

and descending induction on (l1, l2), we deduce that pl1,l2+1(r) : E ∩ Q2 −→ Q is a

polynomial of degree at most n − (l1 + l2 + 1). Similarly, by considering the function

q ′(r1, r2) = p(r1 + τ1, r2) − p(r1, r2), we deduce that pl1+1,l2(r) : E −→ Q is a

polynomial of degree at most n − (l1 + l2 + 1). Now, the function p0,0 : Q2
≥0 −→ Q

is given by

p0,0(r) = c0 −
∑

(0,0) �=(l1,l2)∈Z2
≥0,l1+l1≤n

pl1,l2(r)r
l1
1 r

l2
2

and hence p0,0 : E ∩Q2
>0 −→ Q is a polynomial of degree at most n. This completes

the proof of the lemma. ⊓⊔

Theorem 28 Let P1, P2 ⊂ Rd be two rational convex polytopes such that dim(P1+P2)

= d. Let Q(P1, P2;−) : Q2
≥0 −→ Q be the rational quasi-polynomial of degree d,

given by

Q(P1, P2, ; r) = #((r1 P1 + r2 P2) ∩ Zd) =
∑

(l1,l2)∈Z2
≥0

pl1,l2(r)r
l1
1 r

l2
2 .

Then there is a finite set S̃ consisting of locally closed, bounded subsets of R2
>0,

and a finite set of polynomials

{ f U
l1,l2

: U −→ Q | U ∈ S̃, (l1, l2) ∈ Z2
≥0, l1 + l2 ≤ n},

such that

1. R2
>0 = ∪

U∈S̃
∪u∈Z2

≥0
(U + u ⊙ τ) and

pl1,l2(r) = f U
l1,l2

(r), for every r ∈ U ∈ S̃.
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2. In particular, there exist non-negative constants Cl1,l2 such that for all r ∈ Q2
>0,

|pl1,l2(r)| ≤ Cl1,l2 , and pl1,d−l1(r) = Cl1,d−l1 .

Proof Let

S̃ = {(SI ∪ I ) ∩ T | SI ∈ C̃P , I ∈ ĨP (SI ∪ I ) ∩ T �= φ} ∪ {T0 ∩ T }.

Since T0 is a discrete set of points, the set T0 ∩ T = a finite set of points.

By Lemmas 26 and 27, for every U ∈ S̃ there is a set of polynomials,

{ f U
l1,l2

: U −→ Q | (l1, l2) ∈ Z2
≥0, l1 + l2 ≤ n},

such that pl1,l2(r) = f U
l1,l2

(r), for every r ∈ U .

Now since each pl1,l2 : Q2
>0 −→ Q is a periodic function of period τ = (τ1, τ2),

we can choose Cl1,l2 = max{| f U
l1,l2

(r)| | r ∈ U , U ∈ S̃}. This proves the theorem. ⊓⊔

Remark 29 Theorem 28 can be generalised to the Minkowski sum of any finite number

of polytopes, say P1, P2, . . . , Pn in Rd where dim(P1 + · · · + Pn) = d: For this we

express Rd
>0 as the disjoint union of locally closed sets, namely

Rd
>0 =

⎛

⎝

⋃

S∈C̃n

S

⎞

⎠ ∪

⎛

⎝

⋃

S∈C̃n−1

S

⎞

⎠ ∪ · · ·

⎛

⎝

⋃

S∈C̃1

S

⎞

⎠ ∪ S0,

where C̃k denotes the set of k-cells obtained by the hyperplane arrangements as given

in (7). For z ∈ Zd , and 1 ≤ j ≤ m, let H j (z) denote the hyperplane

H j (z) =
{

r ∈ Rn :

n
∑

i=1

ri h(Pi , v j ) = 〈z, v j 〉
}

,

where v1, . . . , vm ∈ Zd are the outer normals of the facets of the rational polytope

P1 + . . . + Pn . Similarly define the positive halfspace H j (z)
+ and positive open

halfspace H j (z)
+◦ (as in Notations 22 (1)). Now, given any I ∈ C̃k , there exists a

unique cell SI ∈ C̃n such that I ⊆ S I , the closure of SI in Rd
>0, and

SI ⊆ H j1(z1)
+o ∩ H j2(z2)

+o ∩ · · · ∩ H jn−k
(zn−k)

+o,

where I ⊆ H j1(z1) ∩ H j2(z2) ∩ · · · ∩ H jn−k
(zn−k). Now one can check that

Q(P1, . . . , Pn, s) = constant for all s ∈ SI ∪ I and hence the proof follows imi-

tating the rest of the arguments.

Theorem 30 Let P be a convex rational polytope in Rd = Rd−1 × R of dimension d

and let
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i(Pλ, n) =

dim(Pλ)
∑

i=0

Ci (Pλ, n)ni , for n ∈ Z≥0,

be the Ehrhart quasi-polynomial for Pλ := P ∩ {z = λ} ⊂ Rd−1 × {λ}, for λ ∈ Q≥0.

Then there are constants, independent of n, c̃i (P) and c̃d−1(Pλ) such that for 0 ≤ i ≤

d − 1,

|Ci (Pλ, n)| ≤ c̃i (P), and Cd−1(Pλ, n) = c̃d−1(Pλ) provided λn ∈ Z≥0.

Proof We say a polytope P satisfies (⋆) condition if all the vertices of P lie in the

union of two hyperplanes {z = a1} ∪ {z = a2}, for some rational numbers a1 < a2.

First we prove the theorem for P with the additional (⋆) condition.

Let P1 = P ∩ {z = a1} and P2 = P ∩ {z = a2}. Then

P1 = convex hull{(v1, a1), . . . , (vm, a1)} and

P2 = convex hull{(w1, a2), . . . , (ws, a2)},

for a set of some rational points {vi , w j }i, j ⊂ Rd−1.

Note that, for λ ∈ [a1, a2], there is a decomposition as a Minkowski sum

P ∩ {z = λ} = rλ P1 + r ′
λ P2, where rλ =

a2 − λ

a2 − a1
, r ′

λ =
λ − a1

a2 − a1
.

Let P̃1 = convex hull of {v1, . . . , vm} and P̃2 = convex hull {w1, . . . , ws}. Note

that dim(P̃1 + P̃2) = d − 1, as there exists an isometric map P̃1 + P̃2 −→ P1 + P2

given by

∑

i

λi vi +
∑

j

μ j w j �→

⎛

⎝

∑

i

λi vi +
∑

j

μ j w j , a1 + a2

⎞

⎠

=

(

∑

i

λi vi , a1

)

+

⎛

⎝

∑

j

μ j w j , a2

⎞

⎠

and therefore, dim(P1 + P2) = dim(2(P ∩ {z = a1 + a2/2})) = d − 1. Hence, by

Theorem 28, we have

Q(P̃1, P̃2, r) := #((r1 P̃1+r2 P̃2)∩Zd−1) =
∑

l1+l2≤d−1

pl1,l2(r)r
l1
1 r

l2
2 , for r ∈ Q2

≥0,

(14)

where, there exist constants Cl1,l2 and Cl1 such that

|pl1,l2(r)| ≤ Cl1,l2 and pl1,d−1−l1(r) = Cl1 for all r ∈ Q2
>0.

123



338 Journal of Algebraic Combinatorics (2020) 51:317–351

If λn ∈ Z>0, then one can check that

i(P ∩ {z = λ}, n) = #((rλn P1 + r ′
λn P2) ∩ Zd) = #((rλn P̃1 + r ′

λn P̃2) ∩ Zd−1).

Therefore, by (14),

i(P ∩ {z = λ}, n) =
∑

l1+l2≤d−1

pl1,l2(rλn, r ′
λn)r

l1
λ r ′

λ
l2 nl1+l2 =

d−1
∑

i=0

Ci (Pλ, n)ni ,

where

Ci (Pλ, n) =
∑

l1+l2=i

pl1,l2(rλn, r ′
λn)r

l1
λ r ′

λ
l2 .

Now a1 < λ < a2 and n ∈ Z>0 implies (rλn, r ′
λn) ∈ Q2

>0, and therefore, by

Theorem 28 and Theorem 20, there exist constants c′
i (P) and c′

d−1(Pλ) such that

|Ci (Pλ, n)| ≤ c′
i (P) and Cd−1(Pλ, n) = c′

d−1(Pλ) = rVold−1(Pλ) (see Definition 47

for a discussion on the relative volume rVold−1).

Now c̃i (P) := max{c′
i (P), Ci (Pa1 , n), Ci (Pa2 , n)}, is finite, by the theory of

Ehrhart polynomials for the rational polytopes Pa1 and Pa2 . Moreover, Cd−1(Pai
, n)

is constant (= 0, if dim(Pai
) < d − 1).

This proves the theorem for a rational polytope P which satisfies the condition (⋆).

Consider the projection π : Rd −→ R to the last coordinate. Let b1 < b2 < · · · <

bl , where bi are the images of the vertices of the polytope P . Now P
bm+1

bm
:= P∩{bm ≤

z ≤ bm+1} satisfy the condition (⋆). Hence the proof of the theorem follows by taking

c̃i (P) = max{c̃i (P
bm+1

bm
) | 1 ≤ m ≤ l − 1} and c̃d−1(Pλ) = c̃d−1((P

bm+1

bm
)λ),

if λ ∈ [bm, bm+1]. ⊓⊔

5 Main theorem

We now resume the study of Eto’s set PD , and the decompositions PD = ∪s
j=1 P ′

j

and P D = ∪s
j=1 Pj , as discussed in Sect. 3. We will make use of properties of relative

volumes, recalled in “Appendix” (see Lemmas 48 and 49).

Notations 31 1. F(Q) = {the facets of Q} and v(Q) = {the vertices of Q}, where

Q is a convex polytope.

2. Let v(PD) := ∪s
j=1π(v(Pj )), where π : Rd −→ R is the projection given

by projecting to the last coordinate z and the set π(v(Pj )) = {ρ j1 , . . . , ρ jm },

with ρ j1 < ρ j2 < · · · < ρ jm j
.

3. Let S = {m/q | q = pn, m, n ∈ Z≥0}\v(PD).
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Lemma 32 Let Pj be a convex polytope as given in Notations 7 (8). Let

i(Pj , n, λ) = i(Pjλ, n) =

dim(Pjλ)
∑

i=0

Ci (Pjλ, n)ni for n ∈ Z≥0

be the Ehrhart quasi-polynomial for Pjλ = Pj ∩ {z = λ}, for λ ∈ R≥0. Then for

λ ∈ S and qλ ∈ Z, we have

1.
∑s

j=1 Cd−1(Pjλ, q) = fR,m(λ).

2. Cd−2(Pjλ, q) = 1
2

∑

F̃∈F(Pj )
rVold−2(F̃ ∩ {z = λ}).

3. For every i ≤ d − 3, we have |Ci (Pjλ, q)| ≤ c̃i (Pj ) for some constants c̃i (Pj )

independent of λ ∈ S.

Proof Let λ = m0/q0 and q ≥ q0. Then qλ ∈ Z.

(1) By Theorem 1.1 of [13], for any λ ∈ R, we have fR,m(λ) = Vold−1(PD ∩{z = λ}).

Also, by the proof of Theorem 1.1 of [13] (see the proof of the claim there), we have

Cd−1(Pjλ, q) = Cd−1(Pjλ) = rVold−1(Pjλ)

and
∑

j rVold−1(Pjλ) = Vold−1(PD ∩ {z = λ}).

(2) Case (a): If λ ∈ (ρ j1, ρ jm j
), where {ρ j1 , . . . , ρ jm j

} = π(v(Pj )) (as in Nota-

tions 31), then dimPjλ = d − 1. Note that the set of facets of Pjλ

F(Pjλ) = {F̃ ∩ {z = λ} | F̃ ∈ F(Pj ), dim F̃ ∩ {z = λ} = d − 2}.

By Lemma 14 (3), for any F ∈ F(Pjλ), we have A(q0 F ∩ {z = m0}) ∩ Zd �= φ.

Hence, for all q ≥ q0, Theorem 16 implies

Cd−2

(

q0 Pjλ,
q

q0

)

=
∑

F∈F(Pjλ)

rVold−2(q0 Fλ)

2
=

qd−2
0

2

∑

F∈F(Pjλ)

rVold−2(Fλ).

Moreover rVold−2(F̃ ∩ {z = λ}) = 0 if dim(F̃ ∩ {z = λ}) < d − 2.

(2) Case (b): For λ /∈ [ρ j1 , ρ jm j
] we know i(Pjλ, q) = 0, for all q.

(3) follows by Theorem 30. This proves the lemma. ⊓⊔

Lemma 33 Let Qα = Pi ∩ Pj or E jν (as in Notations 7 and Remark 13), where

Pi �= Pj . Let i(Qαλ, n)) =
∑d−2

i=0 Ci (Qαλ, n)ni be the Ehrhart quasi-polynomial for

Qαλ = Qα ∩ {z = λ} where λ ∈ Q≥0. Then, for λ ∈ S and qλ ∈ Z≥0, we have

1. Cd−2(Qαλ, q) = rVold−2(Qαλ). Moreover

2. (a) if dim(Qα) = d − 1, then |Ci (Qαλ, q)| ≤ c̃i (Qα), for every i ≤ d − 3, and

(b) if dim(Qα) ≤ d − 2, then i(Qαλ, q) ≤ Cαqd−3.

Proof Let λ = m0/q0 and let q ≥ q0.

123



340 Journal of Algebraic Combinatorics (2020) 51:317–351

(1) Case (a): If dim(Qαλ) = d −2, then by Lemma 14 (3), for qλ ∈ Z≥0, A(q0 Qαλ)∩

Zd = A(q0 Qα ∩ {z = m0}) ∩ Zd �= φ. Hence, by Theorem 16

Cd−2(q0 Qαλ, q/q0) = Cd−2(q0 Qαλ) = rVold−2(q0 Qαλ) = qd−2
0 rVold−2(Qαλ).

(15)

(1) Case (b): Let dim(Qαλ) < d − 2. By Lemma 49, for a convex rational poly-

tope Qα , there exists a constant Cα such that i(Qαλ, q) ≤ Cαqdim(Qαλ). Therefore

Cd−2(Qαλ, q) = 0 = rVold−2(Qαλ). This proves the first assertion.

(2) if dim(Qα) = d − 1, then by Lemma 48, there exists a map ϕα : Rd −→ Rd−1

and zα ∈ Zd−1 such that i(Qαλ, q) = i(ϕα(Qα)λ, q), where ϕα(Qα) is a d − 1-

dimensional polytope in Rd−1. Hence Assertion 2 (a) follows from Theorem 30. If

dim(Qα) ≤ d − 2, then Qα = Pi ∩ Pj , as dimE jν = d − 1 if E jν �= φ. Without

loss of generality we can assume that dim(Qα) ≥ 1. Since Qα is transversal to the

hyperplane {z = 0}, we have dim(Qαλ) < dim(Qα), for all λ. Hence, by Lemma 49,

we have Assertion (2) (b). This completes the proof of the lemma. ⊓⊔

Lemma 34 For Q′
α , where α ∈ I1, we have i(Q′

αλ, q) = c̃′
α(λ)qd−3, where |c̃′

α(λ)| <

c̃α , for all λ ∈ Q≥0.

Proof Note that dim(Q′
α) ≤ d−2, forα ∈ I1. Hence, by Lemma 14 (1), if dim(Q′

αλ) =

d−2, for some λ ∈ R≥0, then λ ∈ v(PD). Therefore λ ∈ S implies dim(Q′
αλ) ≤ d−3.

Hence the proof follows by Lemma 49. ⊓⊔

Definition 35 For a pair (R, m), where R is a standard graded ring of dimension d,

we define

(1) a sequence of functions gn : [0,∞) −→ R, given by

gn(λ) = gn(⌊λq⌋/q) =
1

qd−2

(

ℓ(R/m[q])⌊λq⌋ − f n(λ)qd−1
)

,

where fR,m is the HK density function for (R, m) (see Theorem 5) and f n(λ) :=

fR,m(
⌊λq⌋

q
).

(2) We also define the β density function gR,m : [0,∞) −→ R, given by

gR,m(λ) =
∑

{F∈F(Pj ),F⊆∂(CD)} j

rVold−2

(

Fλ

)

2

−
∑

{F∈F(Pj ),F⊆F ′∈F(Cu),u∈L(PD)} j

rVold−2

(

Fλ

)

2
,

where Pj and v(PD) are as in Notations 7 and in Notations 31 and Fλ = F ∩{z = λ}.

Hence, by Lemma 11 (2),

gR,m(λ) = rVold−2 (∂(PD) ∩ ∂(CD) ∩ {z = λ}) −
rVold−2 (∂(PD) ∩ {z = λ})

2
.

(16)

123



Journal of Algebraic Combinatorics (2020) 51:317–351 341

Remark 36 By Lemma 48, for a facet F of Pj , there exists an invertible affine trans-

formation ϕF : A(F) −→ Rd−1 and eF = ϕ(z1) ∈ ϕ(A(F)) ∩ Zd−1 (let zF be

the coordinate corresponding to the basis vector eF , see Lemma 48) such that for

λ ∈ S = {m/pn | m, n ∈ Z≥0},

rVold−2(F ∩ {z = λ}) = Vold−2(ϕF (F) ∩ {zF = λ}).

Note that ∪ j {v(F) | F ∈ F(Pj )} ⊆ v(PD). Therefore, by Theorem 2.3 of [13], the

function ψF : [0,∞)\v(PD) −→ [0,∞) given by λ → Vold−2(ϕF (F) ∩ {zF = λ})

is continuous.

Thus the function gR,m is a compactly supported function and is continuous outside

the finite set v(PD). Moreover, by Lemma 3.4 of [13], gR,m is a piecewise polynomial

function.

Lemma 37 Let (X , D) (as in Notations 4) be a toric pair of dimension d − 1 ≥ 1 and

let (R, m) be the associated coordinate ring. If λ ∈ R≥0 and q = pn ∈ N are such

that λn := ⌊λq⌋/q ∈ S, then there exists a constant C̃PD
such that

gn(λ) = gR,m(λn) + c̃(λn)/q, where |c̃(λn)| ≤ C̃PD
.

Proof For a polytope P , we have i(P, q, λnq) = i(Pλn , q) and ℓ(R/m[q])λnq =

i((PD)λn , q), where, by Remark 13 (6), we have

i ((PD)λn
, q) =

∑

j

i
(

(Pj )λn , q
)

−
∑

j<k

i
(

(Pj ∩ Pk)λn , q
)

−
∑

j,γ

i
(

(E jγ )λn , q
)

+
∑

α∈I1

ǫαi
(

(Q′
α)λn , q

)

.

Now, by Lemma 32, for 1 ≤ j ≤ s, we have

i((Pj )λn , q) − rVold−1((Pj )λn )q
d−1 =

1

2

∑

{F∈F(Pj )}

rVold−2(Fλn )q
d−2 + c̃ j (λn)qd−3

=

⎡

⎣

∑

{F |F=Pi ∩Pj }i

rVold−2(Fλn )

2
+

∑

{F |F⊆∂(CD)}

rVold−2(Fλn )

2
+
∑

{ν}

rVold−2(E jν)λn

2

⎤

⎦ qd−2

+c̃ j (λn)qd−3,

where F ∈ F(Pj ) and |c̃ j (λn)| ≤ c̃ j , for some constant c j independent of λn .

Hence, by Lemma 32,

∑

j

i((Pj )λn , q) − fR,m(λn)qd−1

=

⎡

⎣

∑

{F=Pi ∩Pj |i< j}i, j

rVold−2(Fλn ) +
∑

{F |F⊆∂(CD )} j

rVold−2(Fλn )

2
+
∑

{ j,ν}

rVold−2(E jν)λn

2

⎤

⎦ qd−2

+
∑

j

c̃ j (λn)qd−3
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and by Lemma 33,

∑

i< j

i((Pi ∩ Pj )λn , q) =
∑

{F=Pi ∩Pj }i< j

rVold−2(Fλn )q
d−2 + c̃i j (λn)q

d−3,

where |c̃i j (λn)| ≤ c̃i j .

Now, by Lemmas 33 and 34, we have

1

qd−2
ℓ(

R

m[q]
)λnq − fR,m(λn)q =

∑

{F∈F(Pj ), F⊆∂(CD)} j

rVold−2(Fλn )

2

−
∑

{ j,ν}

rVold−2(E jν)λn

2
+

c̃(λn)

q
,

where |c̃(λn)| ≤ C̃PD
. Hence gn(λ) = gR,m(λn) + c̃(λn)/q, where |c̃(λn)| ≤ C̃PD

.

This implies the lemma. ⊓⊔

Remark 38 By construction, it follows that Support(gR,m)∪n Support(gn) ⊆ π(P D),

which is a compact set and where π : Rd → R is the projection as in Notations 31 (2).

Lemma 39 The function gR,m is a compactly supported function and is continuous on

[0,∞)\v(PD).

1. For any given compact set V ⊆ [0,∞)\v(PD), the sequence gn|V converges

uniformly to gR,m|V .

2.
∫∞

0 gn(λ)dλ =
∫∞

0 gR,m(λ)dλ + O(1/q).

Proof By Remark 36, the function gR,m is a compactly supported function and is

continuous outside v(PD).

(1) Let us fix a compact set V ⊆ [0,∞)\v(PD). We can assume V ⊆ [0, π(P D)]\v

(PD). Now, let [0, π(P D)]\v(PD) = ∪m
i=1(bi , bi+1), where gR,m|(bi ,bi+1) = �i , for

some polynomial function �i . We choose q0 = pn0 such that

V ⊆ ∪m
i=1[bi + 2/q0, bi+1 − 2/q0] ⊆ ∪m

i=1[bi , bi+1].

Now, q ≥ q0 and λ ∈ V ∩ (bi , bi+1) imply λn ∈ [bi + 1/q0, bi+1 − 1/q0]. Hence

|gR,m(λ) − gR,m(λn)| = |�i (λ) − �i (λn)| ≤ Ci/q,

where Ci is a constant determined by Pi and is independent of q. By Lemma 37, we

have |gn(λ) − gR,m(λ)| ≤ Ci/q + C̃PD
/q, for all λ ∈ V ∩ (bi , bi+1) and q ≥ q0.

Hence |gn(λ) − gR,m(λ)| ≤ c0/q, for alll λ ∈ V and q ≥ q0. This proves part (1) of

the lemma.

(2) Fix q0 = pn0 such that ∪m
i=1[bi +2/q0, bi+1 −2/q0] ⊆ ∪m

i=1[bi , bi+1]. For q =

pn , if q ≥ q0, then V1 := ∪m
i=1[bi +2/q, bi+1 −2/q] ⊆ ∪m

i=1[bi , bi+1]. Now, arguing

as above one can deduce that there is a constant c0 such that |gn(λ)−gR,m(λ)| ≤ c0/q,

for alll λ ∈ V1. Moreover μ([0, π(P D)\V1) ≤ 4m/q (here μ denotes the Lebesgue
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measure in R1). Note that all the functions gn and g are bounded with support in

[0, π(P D)]. Hence
∫ ∞

0

|gn(λ) − g(λ)|dλ ≤

∫

V1

|gn(λ) − g(λ)|dλ +

∫

[0,∞)\V1

|gn(λ) − g(λ)|dλ = O(1/q).

The same assertion follows for q < q0, by the boundedness of g and gn . This proves

the part (2) of the lemma, and hence the lemma. ⊓⊔

Lemma 40 Let f : [0,∞) → [0,∞) be a continuous compactly supported piecewise

polynomial function. For q = pn , let f̃n : [0,∞) −→ [0,∞) be the function given

by f̃n(x) = f (⌊qx⌋/q). Then, for all q = pn , we have

∫ ∞

0

f̃n(x) dx =

∫ ∞

0

f (x) dx + O
(

1/q2
)

.

Proof We assume the following claim for the moment.

Claim If P(x) ∈ R[x] is a polynomial function and P̃n(x) := P(⌊qx⌋/q), then

∫ A

0

[P(x) − P̃n(x)]dx = P(A)/2q + O(1/q2).

Now, since f is a compactly supported piecewise polynomial continuous function,

there exist 0 = b0 < b1 < . . . < bν+1 and polynomials �0(x), . . . , �ν(x) ∈ R[x]

such that f |[bi ,bi+1]= �i (x) and Support( f ) ⊆ [b0, bν+1] and f (b0) = f (bν+1)=0.

Now

∫∞
0 f (x)dx −

∫∞
0 f̃n(x)dx =

∫∞
0

(

f (x) − f̃n(x)
)

dx

=
∑ν

i=0

∫ bi+1

bi
(�i (x) − (�̃i )n(x))dx −

∫ bi +
1
q

bi
( f̃n(x) − (�̃i )n(x))dx

=
∑ν

i=0

[

∫ bi+1

0 (�i (x) − (�̃i )n(x))dx −
∫ bi

0 (�i (x) − (�̃i )n(x))dx
]

+ O
(

1
q2

)

,

where (�̃i )n(x) = �i (⌊qx⌋/q). Therefore, by the above claim

∫ ∞

0

[ f (x) − f̃n(x)]dx =

ν
∑

i=0

[

�i (bi+1)

2q
−

�i (bi )

2q

]

+ O

(

1

q2

)

=

ν
∑

i=0

[

f (bi+1)

2q
−

f (bi )

2q

]

+ O(
1

q2
) = O

(

1

q2

)

.

Proof of the Claim We can assume without loss of generality that P(x) = x l , for some

l ≥ 1. Note that there is q0 = pn0 such that, for any q ≥ q0, there is l0 such that

l0/q ≤ A < (l0 + 1)/q. Then

∫ A

0

(P(x) − P̃n(x))dx =

∫ l0/q

0

(P(x) − P̃n(x))dx + O(1/q2),
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as the inequalities (A − l0/q) ≤ 1/q and l ≥ 1 implies |
∫ A

l0/q
(P(x) − P̃n(x))dx | =

O(1/q2). It is also obvious that P(A)/2q + O(1/q2) = P(l0/q)/2q + O(1/q2).

Now, if m ∈ Z≥0 then

∫ m+1
q

m
q

(P(x) − P̃n(x))dx =

∫ m+1
q

m
q

(x l − (m/q)l)dx

=

∫ m+1
q

m
q

[

l−1
∑

i=0

(

l

i

)

(m/q)i (x − m/q)l−i

]

dx

=

∫ 1/q

0

[

l−1
∑

i=0

(

l

i

)

(m/q)i (t)l−i

]

dt =

l−1
∑

i=0

(

l

i

)

(m/q)i 1

(l − i + 1)(ql−i+1)
.

Now
∑q A

m=0 mi/ql+1 = Ai+1/ql−i (i + 1) + O(1/ql−i+1). This implies

∫ A

0

(P(x) − P̃n(x))dx =

q A−1
∑

i=0

∫ m+1/q

m/q

(P(x) − P̃n(x))dx

=

l−1
∑

i=0

[(

l

i

)

1

(l − i + 1)(i + 1)

Ai+1

ql−i
+ O(1/ql−i+1)

]

=
Al

2q
+ · · · +

A2

2ql−1
+

A

(l + 1)ql
+ O(1/q2) = P(A)/2q + O(1/q2).

This proves the claim and hence the lemma. ⊓⊔

Proof (Proof of the Main Theorem) Now the proof follows by putting together Defi-

nition 35 (16), Lemma 39 and taking f = fR,m in Lemma 40. ⊓⊔

Proof (Proof of the Corollary 3) Let gR,m and gn denote the function as given in

Definition 35.

The formula for the integral of gR,m follows from the definition of gR,m and Fubini’s

theorem.

For q = pn and for the function f̃n given by f̃n(x) = fR,m(⌊qx⌋/q), we have

∫ ∞

0

gn(λ)dλ =
1

qd−2

∫ ∞

0

(

ℓ
(

(R/m[q])⌊qλ⌋

)

− f̃n(λ)qd−1
)

dλ

=
1

qd−2

(

∞
∑

m=0

∫ m+1
q

m
q

ℓ
(

(R/m[q])⌊qλ⌋

)

− qd−1

∫

f̃n(λ)dλ

)

=
1

qd−2

(

∞
∑

m=0

1

q
ℓ
(

(R/m[q])m

)

− qd−1

∫

f̃n(λ)dλ

)

.
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By Lemma 40,

∫ ∞

0

gn(λ)dλ =
ℓ(R/m[q])

qd−1
− q

∫ ∞

0

fR,m(λ)dλ + O(1/q).

hence by Theorem 1.1 of [T2] and part (2) of Lemma 39,

∫ ∞

0

gR,m(λ)dλ + O(1/q) =
ℓ(R/m[q])

qd−1
− (q)eH K (R, m) + O(1/q)

which implies

ℓ(R/m[q]) = eH K (R, m)qd + qd−1

∫ ∞

0

gR,m(λ)dλ + O(qd−2).

This gives the corollary. ⊓⊔

Remark 41 Since ∂PD and ∂PD ∩ ∂CD consist of rational d − 1 dimensional convex

polytopes, the number β(R, m) (the volume of the integral) is a rational number and

also is independent of the characteristic. We note that the above argument gives a

direct proof of the result of [9] in our particular situation, for the graded ring R.

However, the assertion that β(R, m) is a constant and rational has been proved earlier

by Bruns–Gubeladze in [1], for any normal affine monoid.

It is an interesting problem to extend the computations here to the case of R-

modules, and to determine the homomorphism Cl(R) −→ R of [9] in this toric case.

6 Some properties and examples

Definition 42 Let R be a Noetherian standard graded ring of dimension d ≥ 2 with

the maximal homogeneous ideal m. Let ℓ(Rn) = e0(R,m)
(d−1)! nd−1 + ẽ1(R, m)nd−2 +

· · · + ẽd−1(R, m) be the Hilbert polynomial of (R, m). We define the Hilbert density

function FR : [0,∞) −→ [0,∞), of R as

FR(λ) =
e0(R, m)

(d − 1)!
λd−1 = lim

n→∞
Fn(λ) :=

1

qd−1
ℓ(R⌊qλ⌋).

Similarly, we can define the second Hilbert density function G R : [0,∞) −→ R as

G R(λ) = ẽ1(R, m)λd−2 = lim
n→∞

Gn(λ) :=
1

qd−2

(

ℓ(R⌊qλ⌋) − FR

(

⌊qλ⌋

q

))

.

Remark 43 Let R and S be two Noetherian standard graded rings over an algebraically

closed field K of dimension d ≥ 2 and d ′ ≥ 2 with homogenous maximal ideals m

and n, respectively. Then, using the Kunneth formula for sheaf cohomology, it is easy

to see

ẽ1(R#S, m#n) =
e0(R, m)

(d − 1)!
ẽ1(R, m) +

e0(S, n)

(d ′ − 1)!
ẽ1(S, n).
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Hence we have G R#S = G R FS + GS FR .

Proposition 44 Let (R, m) and (S, n) be two Noetherian standard graded rings over

an algebraically closed field K (of characteristic p > 0) of dimension d ≥ 2 and

d ′ ≥ 2, associated with the toric pairs (X , D) and (Y , D′), respectively. Then we

have,

G R#S − gR#S,m#n =
(

G R − gR,m

) (

FS − fS,n

)

+
(

GS − gS,n

) (

FR − fR,m

)

.

Here the functions gR,m and gS,n denote the β-density functions for the pairs (R, m)

and (S, n), respectively. The function gR#S,m#n denotes the β-density function for the

pair (R#S, m#n).

Proof Let λ ∈ [0,∞). For n ∈ N and q = pn , we write m = ⌊qλ⌋. Then for the

Noetherian standard graded ring R#S with homogenous maximal ideal m#n, we have

gn(λ) =
1

qd+d ′−3

(

ℓ
(

R#S/(m#n)[q]
)

m
− fR#S,m#n(m/q)qd+d ′−2

)

.

By Proposition 2.17, [18], we have

gn(λ) =
1

qd+d ′−3

[

ℓ(Rm)ℓ(S/n[q])m + ℓ(Sm)ℓ(R/m[q])m − ℓ(R/m[q])mℓ(S/n[q])m

]

−
[

FR(m/q) fS,n(m/q) + FS(m/q) fR,m(m/q) − fR,m(m/q) fS,n(m/q)
]

q.

= �n(λ) + �n(λ) + ξn(λ),

where

�n(λ) =
1

qd+d ′−3

[

ℓ(Rm)ℓ(S/n[q])m − FR(m/q) fS,n(m/q)qd+d ′−2
]

,

�n(λ) =
1

qd+d ′−3

[

ℓ(Sm)ℓ(R/m[q])m − FS(m/q) fR,m(m/q)qd+d ′−2
]

and

ξn(λ) = −
1

qd+d ′−3

[

ℓ(R/m[q])mℓ(S/n[q])m − fR,m(m/q) fS,n(m/q)qd+d ′−2
]

.

We have

�n(λ) =
1

qd+d ′−3

[

ℓ(Rm)ℓ(S/n[q])m − FR(m/q) fS,n(m/q)qd+d ′−2
]

=
1

qd−1
ℓ(Rm) ×

1

qd ′−2

[

(ℓ(S/n[q])m − fS,n(m/q)qd ′−1)
]

+ fS,n(m/q) ×
1

qd−2

[

ℓ(Rm) − FR(m/q)qd−1
]

.

Thus limn→∞ �n(λ) = FR(λ)gS,n(λ) + fS,n(λ)G R(λ). Similarly limn→∞ �n(λ) =

FS(λ)gR,m(λ) + fR,m(λ)GS(λ) and limn→∞ ξn(λ) = fR,m(λ)gS,n(λ) + fS,n(λ)

gR,m(λ). This implies,
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gR#S,m#n = FRgS,n + fS,nG R + FSgR,m + fR,mGS + fR,mgS,n + fS,ngR,m.

By Remark 43, we have

G R#S − gR#S,m#n = (G R − gR,m)(FS − fS,n) + (GS − gS,n)(FR − fR,m).

⊓⊔

Example 45 Consider the toric pair (P2,−K ), where −K is the anticanonical divisor

of P2, and let (R, m) be the associated coordinate ring with the homogeneous maximal

ideal m. The Hilbert–Kunz function of (R, m) is HK(R, m)(q) = q3 + O(q). For

λ ∈ R≥0 and for q = pn , let fn(R, m) and fR,m be as in given in Theorem 5 and gn

and gR,m be as in Definition 35. A simple calculation shows

fn(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
2q2 (m + 2)(m + 1) if 0 ≤ λ < 1,

1
2q2 ((m + 2)(m + 1) − 3(m − q + 2)(m − q + 1)) if 1 ≤ λ < 2,

1
2q2 [(m + 2)(m + 1) − 3(m − q + 2)(m − q + 1)

+3(m − 2q + 2)(m − 2q + 1)] if 1 ≤ λ < 2.

Hence

fR,m(λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
λ2 if 0 ≤ λ < 1,

1
2
λ2 − 3

2
(λ − 1)2 if 1 ≤ λ < 2,

1
2
λ2 − 3

2
(λ − 1)2 + 3

2
(λ − 2)2 if 1 ≤ λ < 2.

gn(λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
q

(

3
2

m + 1
)

if 0 ≤ λ < 1,

1
q

(

−3m + 9
2
q − 2

)

if 1 ≤ λ < 2,

1
q

(

3
2

m − 9
2
q + 1

)

if 1 ≤ λ < 2,

gR,m(λ) =

⎧

⎪

⎨

⎪

⎩

3
2
λ if 0 ≤ λ < 1,

−3λ + 9
2

if 1 ≤ λ < 2,
3
2
λ − 9

2
if 2 ≤ λ < 3,

and
∫∞

0 gR,m(λ) dλ = 0 .

Example 46 We compute the β-density function for the Hirzebruch surface X = Fa

with parameter a ∈ N, which is a ruled surface over P1
K , where K is a field of

characteristic p > 0. See [17] for a detailed description of the surface as a toric

variety. The T -Cartier divisors are given by Di = V (vi ), i = 1, 2, 3, 4, where v1 =

e1, v2 = e2, v3 = −e1 + ae2, v4 = −e2 and V (vi ) denotes the T -orbit closure

corresponding to the cone generated by vi . We know the Picard group is generated
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by {Di : i = 1, 2, 3, 4} over Z. One can check the only relations in Pic(X) can be

described by D3 ∼ D1 and D2 ∼ D4 − aD1. Therefore Pic(X) = ZD1 ⊕ ZD4. One

can use standard method of toric geometry to see that D = cD1 + d D4 is ample if

and only if a, c > 0. Then PD = {(x, y) ∈ MR | x ≥ −c, y ≤ d, x ≤ ay} and

α2 = Vol(PD) = cd + ad2

2
. For a detailed analysis of Hilbert–Kunz function and

Hilbert–Kunz density function of Fa , see [17]. In the following we use results from

[17] to calculate { fn(R, m)} and fR,m in order to describe the β-density function. One

can also use the computations from Example 7.2 of [13].

If c ≥ d, then fR,m(q) = (∗), where

(∗) = q3

(

c +
ad

2

)[

d

3
+

(d + 1)d

6c(ad + c)
+

1

2
+

1

6d

]

+ q2

(

(c +
ad

2
)(d + 1)

[

1

4c
+

1

4(ad + c)
−

d

2c(ad + c)
−

1

2d

]

+
d + 1

2

)

+ O(q)

and if c < d then fR,m(q) =

(∗) + q3d

(

c +
(d + 1)a

2

)(

(a + 1)3

6a(ad + c)
−

1

6ac
−

a

6d
−

1

2d
+

c

6d2

)

− q2d

(

c +
(d + 1)a

2

)[

(a + 2)(a + 1)3

4a(c + ad)
+

a − 2

4ac
−

a + 2

4d
−

1

d
+

c

2d2

]

+ O(q).

An easy but tedious calculation shows that, for c ≥ d

gR,m(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

c + ad
2

+ d
)

λ if 0 ≤ λ < 1

−
(

c + ad
2

+ d
)

(

cd + ad2

2
+ c + ad

2
+ d

)

λ

+
(

c + ad
2

+ d
)

(d + 1)
(

c + ad
2

+ 1
)

if 1 ≤ λ < 1 + 1
c+ad

d(d + 1) − d
(

c + ad
2

+ d
)

λ

+
(

c + ad
2

)

(d + 1)
(

1
2

− 1
a

)

(c + 1 − cλ) if 1 + 1
c+ad

≤ λ < 1 + 1
c

d(d + 1) − d
(

c + ad
2

+ d
)

λ if 1 + 1
c

≤ λ < 1 + 1
d
,

and for c ≤ d

gR,m(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

c + ad
2

+ d
)

λ if 0 ≤ λ < 1

−
(

c + ad
2

+ d
)

(

cd + ad2

2
+ c + ad

2
+ d

)

λ

+
(

c + ad
2

+ d
)

(d + 1)
(

c + ad
2

+ 1
)

if 1 ≤ λ < 1 + 1
c+ad

d(d + 1) − d
(

c + ad
2

+ d
)

λ

+
(

c + ad
2

)

(d + 1)
(

1
2

− 1
a

)

(c + 1 − cλ) if 1 + 1
c+ad

≤ λ < 1 + 1
d

(

c + ad
2

)

(d + 1)
(

1
2

− 1
a

)

(c + 1 − cλ)

+d
(

c + ad
2

+ a
2

) (

c + ad
2

+ d
)

(λ − 1)

−d
(

2 + a
2

) (

c + ad
2

+ a
2

)

if 1 + 1
d

≤ λ < 1 + a+1
ad+c

c
(

1
2

− 1
a

)

(c + 1 − cλ) if 1 + a+1
ad+c

≤ λ < 1
c
.
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Appendix A

We recall the following notion of relative volume for a convex polytope, given by R.

Stanley ([16, see page 238]).

Definition 47 Let Q ⊂ Rd be an integral convex polytope of dimension m. Let A(Q)

be the affine span of Q. Then A(Q) ∩ Zd is an abelian group of rank m. Choose an

invertible affine transformation ϕ : A(Q) −→ Rm such that ϕ(A(Q) ∩ Zd) = Zm .

Then the image ϕ(Q) of Q is an integral polytope and relative volume of Q is defined

to be volume of ϕ(Q).

If Q is an m-dimensional rational polytope, then there is n > 0 such that nQ is

an integral polytope. We define rVolm(Q) := rVolm(nQ)/nm and rVolm1(Q) := 0 if

m1 > m.

Moreover, if Q = ∪i Qi , is a finite union of d ′-dimensional convex ratio-

nal polytopes Qi such that dim(Qi ∩ Q j ) < d ′, for Qi �= Q j , then we define

rVold ′ Q =
∑

i rVold ′ Qi and rVold ′′ Q = 0, if d ′′ > d ′. One can show that rVold ′ Q is

independent of the choice of the finite decomposition Q = ∪i Qi .

Lemma 48 Let F be a rational convex polytope of dimension d −1 in Rd satisfying the

following: A(F) ∩ {z = i} ∩ Zd �= φ, for every i ∈ Z, where A(F) denotes the affine

hull of the polytope F, and z is the coordinate function on Rd . Let ϕ : A(F) −→ Rd−1

be an invertible affine transformation such that ϕ(A(F) ∩ Zd) = Zd−1.

Then there is z1 ∈ A(F)∩{z = 1}∩Zd and {x1, . . . , xd−2} ∈ A(F)∩{z = 0}∩Zd

such that {ϕ(x1), . . . , ϕ(xd−2), ϕ(z1)} is a basis of Rd−1 and

rVold−2 (F ∩ {z = i}) = Vold−2 (ϕ(F) ∩ π−1
ϕ {i}),

where πϕ : Rd−1 = ϕ(A(F)) −→ R is the map given by
∑

λiϕ(xi ) + λd−1ϕ(z1) →

λd−1.

Proof Reduction By hypothesis, we can choose x0 ∈ A(F) ∩ Zd . Let y0 = ϕ(x0).

Let ψx0 : Rd −→ Rd and ψ ′
−y0

: Rd−1 −→ Rd−1 denote the translation maps

given by the elements x0 and −y0, respectively. Then replacing ϕ by ψ ′
−y0

◦ ϕ ◦ ψx0 :

A(F) − x0 −→ Rd−1 and A(F) by A(F) − x0., we can assume that ϕ is a linear

transformation and A(F) is a R-vector space. Let Vn = A(F) ∩ {z = n}, and then V0

is a d − 1-dimensional vector subspace. We choose z1 ∈ V1.

Claim (1) Vn = V0 + nz1 and (2) ϕ(Vn) = ϕ(A(F)) ∩ π−1
ϕ {n}. There exists a basis

{ϕ(x1), . . . , ϕ(xd−2), ϕ(z1)} ∈ Zd−1 of ϕ(A(F)).

Proof of the Claim (1) Let x1, . . . , xd−2 be a set of generators of the free abelian

group V0 ∩ Zd . Then {x1, . . . , xd−2} is a vector space basis for V0. Therefore

{ϕ(x1), . . . , ϕ(xd−2), ϕ(z1)} is a basis for ϕ(A(F)) = Rd−1. Hence ϕ(A(F)) =
∑

i Rϕ(xi ) + Rϕ(z1). It is obvious that V0 + nz1 ⊆ Vn . Let y ∈ Vn , and then

y =
∑

i λi xi +λ0z1. Comparing the (d −1)th coordinate we get λ0 = n and therefore

y ∈ V0 + nz1. (b) Let y ∈ Vn = V0 + nz1. Then y = (
∑

i λi xi ) + nz1. This implies

ϕ(Vn) =
∑

i Rϕ(xi ) + Rϕ(z1) ⊆ ϕ(A(F)) ∩ π−1
ϕ {n}. This proves the claim.
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Since ϕ(Vn) = (
∑

i Rϕ(xi ))+nϕ(z1) and Vn ∩Zd =
∑d−2

i=1 Zxi +ϕ(z1), we have

ϕ(Vn ∩ Zd) ⊆ ϕ(Vn) ∩ Zd−1. Now

ϕ(A(F) ∩ Zd) = ∪nϕ(Vn ∩ Zd) ⊆ ∪n(ϕ(Vn) ∩ Zd−1) ⊆ ϕ(A(F) ∩ Zd−1),

This implies ϕ(Vn ∩ Zd) = ϕ(Vn) ∩ Zd−1, for all n ∈ Z. Hence rVold−2(Vn) =

Vold−2ϕ(Vn) = Vold−2[ϕ(A(F)) ∩ π−1
ϕ {n}]. This proves the lemma. ⊓⊔

Lemma 49 If Q is a convex rational polytope in Rd and Qλ = Q∩{z = λ}, for λ ∈ R,

then there is a constant CQ (independent of λ) such that i(Qλ, n) = cλ(n)ndim Qλ

with |cλ(n)| ≤ CQ .

Proof For λ ∈ R, let dλ = dim(Qλ). Let Pλ be an integral dλ-dimensional cube with

length of each side = cλ and Qλ ⊆ Pλ. Then i(Qλ, n) ≤ i(Pλ, n) ≤ c
dλ

λ ndλ . Since

Q is a bounded set, there exists a constant C ′
Q such that, for any λ we can choose Pλ

with |cλ| ≤ C ′
Q . Hence the lemma follows by taking CQ = (C ′

Q)dim(Q). ⊓⊔
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254, 616–618 (1962)

5. Eto, K.: Multiplicity and Hilbert–Kunz multiplicity of monoid rings. Tokyo J. Math. 25(2), 241–245

(2002)

6. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, The William H. Roever

Lectures in Geometry, vol. 131. Princeton University Press, Princeton (1993)

7. Henk, M., Linke, E.: Note on the coefficients of rational Ehrhart quasi-polynomials of Minkowski-

sums. Online J. Anal. Comb. 10, 12 pp (2015)

8. Hochster, M., Yao, Y.: Second coefficients of Hilbert–Kunz functions for domains. Preliminary preprint

available at http://www.math.lsa.umich.edu/~hochster/hk.pdf

9. Huneke, C., McDermott, M.A., Monsky, P.: Hilbert–Kunz functions for normal rings. Math. Res. Lett.

11, 539–546 (2004)

10. Kurano, K.: The singular Riemann–Roch theorem and Hilbert–Kunz functions. J. Algebra 304, 487–

499 (2006)

11. Linke, E.: Rational Ehrhart quasi-polynomials. J. Combin. Theory Ser. A 118(7), 1966–1978 (2011)

12. McMullen, P.: Lattice invariant valuations on rational polytopes. Arch. Math. 31, 509–516 (1978/1979)

13. Mondal, M., Trivedi, V.: Hilbert-Kunz density function and asymptotic Hilbert-Kunz multiplicity for

projective toric varieties. J. Algebra 520, 479–516 (2019)

14. Monsky, P.: The Hilbert–Kunz function. Math. Ann. 263(1), 43–49 (1983)

15. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press,

Cambridge (2013)

16. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

17. Trivedi, V.: Hilbert–Kunz functions of a Hirzebruch surface. J. Algebra 457, 405–430 (2016)

18. Trivedi, V.: Hilbert-Kunz density function and Hilbert-Kunz multiplicity. Trans. Amer. Math. Soc.

370(12), 8403–8428 (2018)

19. Trivedi, V.: Asymptotic Hilbert–Kunz multiplicity. J. Algebra 492, 498–523 (2017)

123

http://www.math.lsa.umich.edu/~hochster/hk.pdf


Journal of Algebraic Combinatorics (2020) 51:317–351 351

20. Trivedi, V.: Towards Hilbert–Kunz multiplicity in characteristic 0. Nagoya Math. J., 1–43 (2018).

https://doi.org/10.1017/nmj.2018.7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

https://doi.org/10.1017/nmj.2018.7

	Density function for the second coefficient of the Hilbert–Kunz function on projective toric varieties
	Abstract
	1 Introduction
	2 Hilbert–Kunz density function on projective toric varieties
	3 The boundary of mathcalPD
	4 Ehrhart quasi-polynomial for rational convex polytope
	5 Main theorem
	6 Some properties and examples
	Appendix A
	References


