In this paper, the crystallization behaviour of amorphous Cu56Zr7Ti37alloy using thermal electrical resistivity (TER) and differential scanning calorimetry (DSC) studies has been described. Isochronal TER and DSC measurements indicate that crystallization occurs in two stages. Isothermal crystallization studies of the alloy by TER show that the kinetics conforms to Johnson-Mehl-Avrami model. Avrami exponents derived from kinetics, between 1.1 and 1.2, imply that the crystallization processes are diffusion controlled with near zero nucleation. Activation energy has been found to increase with the transformed volume fraction. A plausible explanation has been presented by separating the contributions due to nucleation and crystal growth towards total activation energy. © 2011 The Chinese Society for Metals.