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Previous studies have shown that classical trajectory simulations often give accurate results for short-

time intramolecular and unimolecular dynamics, particularly for initial non-random energy distribu-

tions. To obtain such agreement between experiment and simulation, the appropriate distributions

must be sampled to choose initial coordinates and momenta for the ensemble of trajectories. If a

molecule’s classical phase space is sampled randomly, its initial decomposition will give the classi-

cal anharmonic microcanonical (RRKM) unimolecular rate constant for its decomposition. For the

work presented here, classical trajectory simulations of the unimolecular decomposition of quantum

and classical microcanonical ensembles, at the same fixed total energy, are compared. In contrast

to the classical microcanonical ensemble, the quantum microcanonical ensemble does not sample

the phase space randomly. The simulations were performed for CH4, C2H5, and Cl−---CH3Br us-

ing both analytic potential energy surfaces and direct dynamics methods. Previous studies identi-

fied intrinsic RRKM dynamics for CH4 and C2H5, but intrinsic non-RRKM dynamics for Cl−---

CH3Br. Rate constants calculated from trajectories obtained by the time propagation of the classi-

cal and quantum microcanonical ensembles are compared with the corresponding harmonic RRKM

estimates to obtain anharmonic corrections to the RRKM rate constants. The relevance and accu-

racy of the classical trajectory simulation of the quantum microcanonical ensemble, for obtaining

the quantum anharmonic RRKM rate constant, is discussed. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4714219]

I. INTRODUCTION

Classical trajectory simulations are widely used to study

the intramolecular and unimolecular dynamics of highly vi-

brationally excited molecules.1–8 Pathways and bottlenecks

for intramolecular vibrational energy redistribution (IVR)

may be investigated.4, 5, 9 Of specific interest is identifying

and understanding molecular properties which restrict the in-

tramolecular flow of vibrational energy,10–13 and initial rates

of IVR may be compared with experiment.14–16 A unimolec-

ular rate constant determined from a simulation may be com-

pared with the prediction of RRKM theory.1, 8

A direct comparison with RRKM theory may be made by

sampling the classical phase space randomly and simulating

the unimolecular decomposition of a classical microcanonical

ensemble of states.1, 2 The quantity of interest is the lifetime

distribution P(t), i.e.,

P (t) = −
1

N (0)

dN(t)

dt
, (1)

where N(t) is the number of molecules, i.e., phase space

points, remaining versus time. The t = 0 rate constant for this

microcanonical ensemble is that of classical RRKM theory.17

The assumption of RRKM theory is that as a result of rapid

IVR this ensemble is maintained as the molecule decomposes,

and at any time the molecule’s unimolecular rate constant is

that of classical RRKM theory. The molecule then decom-

poses exponentially with a rate constant given by classical

RRKM theory and the lifetime distribution is

P (t) = ke−kt . (2)

Here P(0) = k = kRRKM. This type of dynamics is referred to

as intrinsic RRKM behavior.3

The contrasting dynamics is intrinsic non-RRKM behav-

ior for which the unimolecular decay of the initial micro-

canonical ensemble is non-exponential.3 The t = 0 rate con-

stant will be that of classical RRKM theory, since there is a

microcanonical ensemble at this time. However, the ensuing

short time decomposition will have a rate constant longer than

that of RRKM theory18 and the rate constant for the long time

decomposition will be smaller than that of RRKM theory. The

complete non-exponential decomposition may be quite com-

plex with multiple time scales,19 i.e.,

N (t)

N (0)
=

∑

i
fie

−ki t . (3)

There is considerable interest in understanding classi-

cal phase space structures which lead to intrinsic non-RRKM

dynamics.9, 18, 20, 21

In comparing classical unimolecular rate constants with

experimental and/or quantum values it is meaningful to sep-

arately consider molecules with intrinsic RRKM and non-

RRKM dynamics. For intrinsic RRKM dynamics, an im-

portant consideration is that the chaotic classical dynamics

does not conserve zero-point energy (ZPE). Thus, the bar-

rier for the microcanonical ensemble of trajectories is the

0021-9606/2012/136(18)/184110/9/$30.00 © 2012 American Institute of Physics136, 184110-1
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classical barrier. In contrast, the quantum barrier, which in-

cludes ZPE, is much larger, and except for very high ener-

gies and/or small molecules the classical microcanonical uni-

molecular rate is larger than the quantum values.22 For small

molecules the ZPE is small and, if the classical dynamics

is intrinsically RRKM, there is good agreement between the

classical and quantum rate constants. Quantum state specific

unimolecular resonance rate constants have been calculated

for HO2 (Ref. 23) and NO2 (Ref. 24) dissociation, whose

classical unimolecular dynamics is ergodic, and the classical

RRKM rate constant is in good agreement with the average of

these state specific rate constants for a small energy interval

E → �E. For larger molecules with low barriers classi-

cal dynamics gives an accurate quantum microcanonical rate

constant,25, 26 but if there is a substantial barrier the classical

and quantum microcanonical rate constants only agree at high

energies.27

If the classical dynamics is intrinsically non-RRKM, re-

lationships between the classical and quantum dynamics are

more complex and depend on the structure of the classi-

cal phase space.22 A small molecule decomposes via iso-

lated resonance states and for intrinsic non-RRKM dynam-

ics, the molecule’s phase space will consist of different types

of trajectories including chaotic, quasiperiodic, and vague

tori.17, 22 Resonance states corresponding to quasiperiodic tra-

jectories are trapped in the molecule’s phase space and will

not dissociate.28 In contrast, quantum mechanically the reso-

nance state will “tunnel”29 to products and have a finite life-

time. Trajectories may give accurate lifetimes for short-lived

resonances, which correspond to classical chaotic motion as

discussed above for HO2 and NO2. The correspondence be-

tween classical and quantum dynamics for classical motion

intermediate between chaotic and quasiperiodic, e.g., vague

tori, is less certain.17

The classical dynamics of the initial decomposition for a

non-randomly excited molecule may be in accord with exper-

iment. ZPE flow may be unimportant at these short times and

the classical dynamics may recover the short-time vibrational

adiabaticity. An illustration of this is the comparison of the

classical dynamics of benzene C–H overtone states.14–16 Clas-

sical dynamics describes the initial decay of the overtone state

and, thus, gives an accurate linewidth for the overtone absorp-

tion transition.15, 16 An example of good agreement between

classical and experimental rate constants for both intrinsic

non-RRKM dynamics and non-random excitation is decom-

position of the Cl−---CH3Cl ion-dipole complex.30 There is

very slow IVR between the three intermolecular modes of

the complex and the nine CH3Cl intramolecular modes.31

Thus, complexes formed by Cl− + CH3Cl dissociate in ac-

cord with RRKM theory, but with only 3 active degrees of

freedom and behaving like a small molecule.32 The resulting

classical unimolecular rate constant is in very good agreement

with experiment.33 Another example is the stereochemical

unimolecular dynamics of trimethylene following different

non-random initial excitations.25, 26 Classical trajectories and

quantum dynamics give results in very good agreement.

In the work presented here comparison between classical

and quantum unimolecular dynamics are extended by con-

sidering the decomposition of both classical and quantum34

microcanonical ensembles. Classical trajectories are used to

propagate the time evolution of each ensemble. In previ-

ous work,35, 36 quantum ensembles have been used to study

the unimolecular decomposition of non-randomly excited

molecules. The remainder of this article is organized as fol-

lows. Section II compares the classical and quantum RRKM

theories for the decomposition of microcanonical ensembles.

Section III describes the potential energy surfaces and chem-

ical dynamics methodology used for the current calculations.

The results are described in Sec. IV. The article ends with a

discussion.

II. COMPARISON OF CLASSICAL AND QUANTUM
RRKM THEORY

The RRKM unimolecular rate constant is derived using

the concept of a transition state (TS) dividing surface in phase

space and classical statistical mechanics,17, 37 and may be ex-

pressed as

k(E) =
N ‡(E − E0)

hρ(E)
, (4)

where N‡(E) is the sum of states at the TS and ρ(E) is the den-

sity of states for the dissociating molecule. For completeness,

the rate constant is also a function of angular momentum J,

i.e., k(E, J). However, to simplify the notation and, since only

J = 0 is considered here, the rate constant is expressed as k(E).

The quantum RRKM rate constant results from replacing the

classical N‡(E) and ρ(E) with their quantum counterparts.

As illustrated by Figure 1, classical and quantum RRKM

theory have different representations of the reaction ener-

getics. For the quantum RRKM calculation, E is the reac-

tant energy above the zero-point level, i.e., ER, and the TS’s

energy E-E0 is E‡. For the classical RRKM calculation, E

is the total energy Etotal = ER + ER
ZP and the TS’s energy

is E
‡
total = E‡ + E

‡
ZP . For ER ≫ ER

ZP the quantum RRKM

k(E) approaches the classical RRKM k(E). This may be il-

lustrated by comparing the classical and quantum harmonic

density of states ρ(E). The classical ρc(E) is dNc(E)/dE and

given by17

ρc(E) =
Es−1

[

(s − 1)!
∏s

i=1 hνi

] , (5)

FIG. 1. Schematic representation of the energy level diagram showing the

classical and quantum energies.
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FIG. 2. Comparison of classical and quantum vibrational densities of state,

ρ(E), for CH4 and C2H5 versus energy.

where s is the number of vibrational modes and the ν i their

frequencies. The quantum ρq(E) is found by enumerating the

quantum number of states38 at E and E+�E, and forming the

finite difference

ρq(E) =
[Nq(E + �E) − Nq(E)]

�E
. (6)

The classical and quantum ρ(E) are compared in

Figure 2 for CH4 and C2H5, two of the molecules consid-

ered here. The densities of states are plotted versus Etotal and

ρq(E) is zero until Etotal is greater than ER
ZP . The quantum

ρq(E) approaches the classical ρc(E) for large Etotal. This con-

curs with the classical-quantum correspondence of statistical

mechanics.39 For high temperatures (i.e., energies), with re-

spect to the spacings of the vibrational energy levels, the en-

ergy levels may be treated as continuous. Thus, at high tem-

peratures the quantum harmonic oscillator partition function

Qq =
∏s

i=1

1

1 − e−hνi/kBT
(7)

becomes the classical partition function

Qc =
∏s

i=1

kBT

hνi

=

∫ ∞

0

ρc(E)e−E/kBT dE. (8)

At high energies the quantum ρq(E) and classical ρc(E)

becomes equivalent and the quantum density of states is given

by the classical expression for Etotal = ER + ER
ZP . Thus, the

zero-point energy contributes to the density of states for the

high energy limit. This is the “semi-classical” model of Mar-

cus and Rice.40 Rabinovitch and co-workers41, 42 amended

this model so that a classical-like expression represents ρq(E)

for all energies. It is known as the Whitten-Rabinovitch

semiempirical approximation42 and given by

ρq(E) =

(

ER + aER
ZP

)s−1

(s − 1)!
∏s

i=1 hνi

, (9)

where the factor a is a function of the reduced energy

ER/ER
ZP and increases from zero at ER = 0 to unity at high

ER to give the Marcus-Rice expression. The approach of the

quantum RRKM k(E) to the classical RRKM k(E), at high en-

ergy, has been shown in previous work.27

III. POTENTIAL ENERGY SURFACES
AND RRKM CALCULATIONS

In this work, unimolecular decomposition of the pre-

reaction ion-dipole complex Cl−---CH3Br in the familiar SN2

reaction

Cl− + CH3Br ↔ Cl−- - -CH3Br

↔ ClCH3- - -Br− → ClCH3 + Br−, (10)

and the unimolecular decompositions of CH4 and C2H5 are

considered. Unimolecular decomposition of Cl−---CH3Br is

intrinsically non-RRKM,43 while the CH4 (Ref. 44) and C2H5

(Refs. 27 and 52) decompositions are intrinsically RRKM

processes. Analytic potential energy functions were used

to study Cl−---CH3Br and CH4 dissociation, while direct

dynamics45 was used to study C2H5 dissociation. The analytic

potential energy surface (PES) for the Cl−---CH3Br SN2 reac-

tion was developed by using ab initio calculations to modify46

the analytic PES previously developed for the Cl−+ CH3Cl

SN2 reaction.47 The analytic PES for CH4 dissociation is the

modified44, 48 Duchovic-Hase-Schlegel analytic potential en-

ergy function.49

The PES used for the C2H5 → H + C2H4 direct dynam-

ics calculations is the one given by UHF/4-31G theory. This

is the electronic structure theory used to develop an analytic

potential energy function for the C2H5 system,50–52 which is

used in chemical dynamics simulations.27, 53, 54

To compare with the chemical dynamics simulations, har-

monic RRKM unimolecular rate constants were calculated55

using the same PESs as used for the simulations. Variational

transition states were found for CH4 → H + CH3 and Cl−

---CH3Br → Cl− + CH3Br dissociation, since these disso-

ciations do not have saddle points. Vibrational frequencies

were found versus the intrinsic reaction co-ordinate56, 57 for

each of these dissociations. These information was then used

to find their vibrational variational TSs.58 This model gives

accurate TSs for the CH4 ↔ H + CH3 and Cl−---CH3Br

↔ Cl− + CH3Br reactive systems.44, 46

The RRKM calculations for C2H5 → H + C2H4 were

performed as described previously.59, 60 The internal rotation

barrier for C2H5 is quite low and this motion was treated as

a free rotor with a symmetry number of 6. However, for the

TS the internal rotation is a torsion, with a high barrier and a

high frequency of 1185 cm−1, and was treated as a vibration.

It is of interest that there are no substantial changes in the

RRKM rate constants if the C2H5 internal rotation is treated

as a vibration with its 119 cm−1 frequency instead of as a free

rotor. The ratio of the classical RRKM rate constants with

the C2H5 internal rotation treated as a free rotor instead of as

a vibrator is 1.03, 0.97, 0.92, 0.84, and 0.75 for the respec-

tive total energies considered here of 80, 90, 100, 120, and

150 kcal/mol.

IV. METHODOLOGY OF THE CHEMICAL
DYNAMICS SIMULATIONS

The chemical dynamics simulations were performed with

the computer program VENUS61, 62 and with VENUS cou-

pled to the electronic structure theory software package
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NWChem.63, 64 The analytic potential energy functions for

Cl−---CH3Br and CH4 are in VENUS, and the UHF/4-31G

PES used for the C2H5 direct dynamics was obtained from

NWChem.

Fixed total energy, with Trot = 300 K (Erot = 3RT/2), ini-

tial conditions were chosen for the trajectories by sampling

classical and quantum microcanonical ensembles,34, 36, 65

using standard algorithms in VENUS. For the classical mi-

crocanonical sampling the classical phase space is sampled

randomly, so that the t = 0 rate constant is the classical mi-

crocanonical (i.e., RRKM) rate constant. Quasiclassical sam-

pling of the quantum microcanonical ensemble is performed

for the same total energy E as for the classical microcanoni-

cal sampling, with the decomposing molecule’s normal mode

energy levels sampled randomly within the energy interval E

→ E + �E; with �E = 100 cm−1. Thus, the classical phase

space at energy E is not sampled randomly for the quantum

microcanonical ensemble.

For quasiclassical sampling of a microcanonical ensem-

ble, a molecule consisting of s quantum harmonic oscillators

has total energy

E =

s
∑

i=1

Ei + EZPE, (11)

where Ei = nihν i are the individual oscillator energies. A state

n (n1, n2, . . . , ns) is chosen at random in the energy interval E

→ E + �E. This is done by sampling the following relative

probability oscillator j has energy Ej after energies have been

randomly chosen for oscillators 1,2, . . . , j − 1:

ρs−j

(

E −
∑j

i=1 Ei

)

ρs−j

(

E −
∑j−1

i=1 Ei

)
. (12)

Here ρs-j is the density of states for the remaining un-

sampled s-j oscillators. Ej is sampled randomly between zero

and E −
∑j−1

i=1 Ei . The denominator is for the most probable

value of Ej, which is zero. Complete details of the sampling

algorithm are given in Ref. 34.

Ensembles of trajectories were calculated at different to-

tal energies E for both the classical and quantum microcanon-

ical sampling. The trajectory ensembles were propagated to

25 ps, or until unimolecular dissociation occurred, using a

6th-order symplectic integrator.66, 67 The results are discussed

in Sec. V.

V. RESULTS

A. Intrinsic RRKM dynamics

Previous chemical dynamics simulations have shown

that the classical unimolecular dynamics of C2H5 → H

+ C2H4 and CH4 → H + CH3 dissociation are intrinsically

RRKM.27, 44, 53 In this section, the unimolecular decomposi-

tion of their classical and quantum microcanonical ensembles

are compared.

FIG. 3. Lifetime distributions N(t)/N(0), for CH4 → H + CH3 dissociation,

resulting from classical trajectory simulations of initial classical and quantum

microcanonical ensembles.

1. CH4 → H + CH3 dissociation

The unimolecular dissociation of CH4 was studied at en-

ergies Etotal of 120, 125, 130, 135, 140, and 150 kcal/mol.

ER
ZP = 29.2 kcal/mol and the classical CH4 → H + CH3

bond dissociation energy is 109.46 kcal/mol, for the analytic

potential used for the simulations.48, 49 Plots of N(t)/N(0) ver-

sus t are given in Figure 3 for the classical and quantum mi-

crocanonical ensembles. The plots for the classical ensembles

are exponential with rate constant k(E) and this rate constant

is in excellent agreement with that for the initial classical mi-

crocanonical ensemble; i.e., P(0) in Eq. (2). Thus, as found

previously,44 the classical dissociation of CH4 is intrinsically

RRKM.

As shown in Figure 3 plots of the N(t)/N(0) distributions

for the quantum microcanonical ensemble are also exponen-

tial and in excellent agreement with the distributions for the

classical microcanonical ensemble. The rate constants k(E)

for the classical and quantum distributions are compared in

Table I. They are very similar, with a largest difference for

a 6% smaller quantum rate constant for the lowest Etotal of

120 kcal/mol. Since the quantum microcanonical ensemble

excites methane’s classical phase space non-randomly, the

initial short-time decomposition for this ensemble was care-

fully studied to see if its rate constant might be different, e.g.,

smaller, than that for the overall exponential decomposition.

However, this was found not to be the case and the initial de-

composition rate was the same as that for longer times. Ap-

parently, the initial non-random classical phase space distri-

bution for the quantum microcanonical ensemble is rapidly

converted to a random classical phase space distribution by

efficient IVR.

The trajectory rate constants, for the classical and

quantum microcanonical ensembles, are compared with
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TABLE I. Comparison of trajectory and harmonic RRKM classical and

quantum rate constants for CH4 → H + CH3 dissociation.a

Trajectoryb Harmonic RRKM

Etotal
c kc kq kc kq

120 1.06 × 10−3 1.01 × 10−3 2.66 × 10−3 . . . d

125 7.16 × 10−3 6.97 × 10−3 2.33 × 10−2 . . .

130 2.69 × 10−2 2.61 × 10−2 9.74 × 10−2 . . .

135 7.09 × 10−2 7.07 × 10−2 2.92 × 10−1 1.63 × 10−2

140 1.49 × 10−1 1.52 × 10−1 6.74 × 10−1 1.19 × 10−1

150 4.89 × 10−1 4.69 × 10−1 2.34 7.26 × 10−1

aThe classical and quantum rate constants are kc and kq, respectively, and in unit of ps−1.
bThe trajectory rate constants are those for the exponential fits to the N(t)/N(0) distribu-

tions, Figure 3, determined for the classical and quantum microcanonical ensembles.
cEnergy is in unit of kcal/mol.
dThe total energy is less than the energy needed for CH4 to decompose with ZPE at the

TS.

classical and quantum harmonic RRKM rate constants in Ta-

ble I. For Etotal of 130 kcal/mol and less, the total energy is

less than the energy of the H + CH3 products, including ZPE.

Thus, the quantum RRKM rate constants are zero. At Etotal

= 135 kcal/mol the ratio of the classical and quantum har-

monic RRKM rate constants is 18, while at the highest energy

of 150 kcal/mol it is substantially smaller and 3. The classical

harmonic RRKM rate constants are larger than those deter-

mined from the trajectory simulations. For the classical cal-

culations the ratio of the trajectory and harmonic RRKM rate

constants, i.e., ktraj(E)/kRRKM(E), is the anharmonic correction

fanh(E) to the harmonic RRKM unimolecular rate constant.68

The resulting values of fanh(E) are in the range of 0.39–0.21

and are similar to 0.42 found previously44 for the similar

PES at E = 127 kcal/mol. The previous study44 used the

stiff Morse function for the C–H stretch potential,58, 69 while

the current work used the standard Morse function for this

potential.

2. C2H5 → H + C2H4 dissociation

The calculations for C2H5 dissociation were performed

by direct dynamics at the UHF/4-31G level of theory. The

distribution N(t)/N(0) was determined for Etotal in the range of

80–150 kcal/mol and the results are plotted in Figure 4. The

classical dissociation energy is 43.5 kcal/mol and the quan-

tum mechanical dissociation threshold, without tunneling, re-

quires ZPE in the TS and is 78.2 kcal/mol.

As shown in Figure 4 the N(t)/N(0) distribution is ex-

ponential for both the classical and quantum ensembles at

the higher Etotal energies of 120 and 150 kcal/mol. The k(E)

rate constants for the exponential fits are listed in Table II

and there is good agreement between the values for the clas-

sical and quantum ensembles. For the lower Etotal energies

of 80–100 kcal/mol the classical N(t)/N(0) remains exponen-

tial, but for the quantum ensemble this distribution becomes

non-exponential and has an initial decay smaller than that for

the classical ensemble. The non-exponential N(t)/N(0) are fit

by Eq. (3) with two exponentials and the fitting parameters

are listed in Table III. The non-exponential characteristics of

these N(t)/N(0) are small. For the Etotal of 80 and 90 kcal/mol

the rate constants for the two exponentials are similar. For

FIG. 4. Lifetime distributions N(t)/N(0), for C2H5 → H + C2H4 dissoci-

ation, resulting from classical trajectory simulations of initial classical and

quantum microcanonical ensembles.

Etotal = 100 kcal/mol, the exponential with the small rate con-

stant makes only a 0.009 contribution to N(t)/N(0).

The rate constants, for the initial classical and quantum

microcanonical ensembles, are listed in Table II for Etotal

= 80–100 kcal/mol. The rate constant for the classical

TABLE II. Comparison of trajectory and harmonic RRKM classical and

quantum rate constants for C2H5 → H + C2H4 dissociation.a

Trajectoryb Harmonic RRKM

Etotal
c kc kq kc kq

80 5.33 × 10−3 4.87 × 10−3 3.33 × 10−3 3.82 × 10−5

90 2.23 × 10−2 1.76 × 10−2 2.16 × 10−2 4.68 × 10−3

100 6.59 × 10−2 5.89 × 10−2 8.28 × 10−2 3.98 × 10−2

120 3.18 × 10−1 3.19 × 10−1 5.13 × 10−1 4.33 × 10−1

150 1.49 1.41 2.66 2.88

aThe classical and quantum rate constants are kc and kq, respectively, and in unit of ps−1.
bThe kq trajectory rate constants for Etotal of 120 and 150 kcal/mol and the kc trajectory

rate constants are those for the exponential fits to the N(t)/N(0) distributions, Figure 4,

determined for the quantum and classical microcanonical ensembles. The trajectory kq

rate constants for Etotal of 80–100 kcal/mol were determined from the non-exponential

fits to N(t)/N(0), Eqs. (3) and (13).
cEnergy is in unit of kcal/mol.
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TABLE III. Eq. (3) fitting parameters for the non-exponential N(t)/N(0).a

Etotal f1 f2 f3 k1 k2 k3

C2H5, Quantum microcanonical

80 0.890 0.110 . . . 0.005 0.003 . . .

90 0.090 0.910 . . . 0.019 0.017 . . .

100 0.990 0.009 . . . 0.059 0.011 . . .

Cl−---CH3Br, Classical microcanonical

30 0.229 0.379 0.391 0.426 0.045 0.021

35 0.236 0.231 0.533 0.804 0.182 0.044

40 0.389 0.238 0.373 0.817 0.174 0.062

45 0.306 0.318 0.376 1.335 0.381 0.095

50 0.059 0.529 0.411 20.87 0.915 0.144

60 0.108 0.599 0.293 20.51 1.042 0.216

Cl−---CH3Br, Quantum microcanonical

30 0.019 0.166 0.815 0.458 0.081 0.025

35 0.122 0.327 0.551 0.518 0.094 0.038

40 0.242 0.434 0.325 0.758 0.109 0.058

45 0.266 0.215 0.519 1.082 0.402 0.103

50 0.057 0.437 0.506 17.72 0.873 0.149

60 0.090 0.639 0.270 21.55 0.931 0.196

aThe sum of f1, f2, and f3 is set to unity in the fitting, the k’s are in unit of ps−1, and Etotal

is in unit of kcal/mol.

ensemble is that for its exponential N(t)/N(0). The rate

constant for the non-exponential N(t)/N(0), of the quantum

microcanonical ensemble, is given by P(0) of the lifetime dis-

tribution, Eq. (2), which is

k(E) =
∑

i

fiki . (13)

For Etotal of 80–100 kcal/mol the microcanonical rate

constant for the quantum ensemble is smaller than that for

the classical ensemble.

The trajectory rate constants for the classical and

quantum microcanonical ensembles are compared with the

harmonic RRKM values in Table II for the Etotal of

80–150 kcal/mol. The ratio of the classical and quan-

tum trajectory rate constants, i.e., kc(E)/kq(E), is small

and ranges from 1.00 to 1.27. It is similar for the

low and high energies. For the classical and quantum

RRKM rate constants this ratio decreases substantially

from 87 to 0.92 as the energy is increased from 80 to

150 kcal/mol. The ratio fanh(E) = ktraj(E)/kRRKM(E) for the

classical calculations decreases from 1.62 to 0.56 as the en-

ergy is increased from 80 to 150 kcal/mol. A value for the

anharmonic correction larger than unity is interesting and

unusual.17 For the quantum microcanonical ensemble it is

uncertain whether ktraj(E)/kRRKM(E) identifies an anharmonic

correction (see Sec. VI). Nevertheless, this ratio varies from

127 to 0.49 as the energy is increased.

In previous work the classical anharmonic microcanon-

ical rate constant, for C2H5 → H + C2H4 dissociation at

100 kcal/mol, was determined from a trajectory simulation27

based on an analytic PES fit to UHF/4-31G calculations.51

This rate constant is 1.4 × 1011 s−1 in comparison to the clas-

sical harmonic RRKM value of 7.3 × 1011 s−1,70 which cor-

responds to an anharmonic correction factor fanh of 0.2. In

comparison, for the current study at 100 kcal/mol fanh is 0.8

TABLE IV. Comparison of trajectory and harmonic RRKM classical and

quantum rate constants for the unimolecular decomposition of Cl−---

CH3Br.a

Trajectoryb Harmonic RRKMc

Etotal
d kc kq kc kq

30 1.23 × 10−1 4.30 × 10−2 7.28×10−1 . . . e

35 2.55 × 10−1 1.15 × 10−1 1.26 1.19 × 10−1

40 3.82 × 10−1 2.49 × 10−1 1.52 5.92 × 10−1

45 5.65 × 10−1 4.28 × 10−1 1.72 1.18

50 1.79 1.47 1.89 1.44

60 2.89 2.59 2.16 1.81

aThe classical and quantum rate constants are kc and kq, respectively, and in unit of ps−1.
bThe trajectory RRKM rate constants are found by Eq. (13).
cHarmonic RRKM rate constants are the sum of rate constants for the two paths, viz.,

Cl−---CH3Br decomposition to Cl−+ CH3Br and isomerization to ClCH3---Br−.
dEnergy is in unit of kcal/mol.
eThe total energy is less than the energy needed for Cl−---CH3Br to decompose with

ZPE at the TS.

as shown in Table II. Thus, this analytic PES has substantially

more anharmonicity than does the actual UHF/4-31G PES. In

addition, the TS for the analytic PES is substantially “looser”

than that for the UHF/4-31G PES, giving rise to a harmonic

RRKM rate constant approximately ten times larger for the

former.

B. Intrinsic non-RRKM dynamics

The calculations for Cl−---CH3Br were performed us-

ing an analytic PES46 and for Etotal of 30–60 kcal/mol.

This species may dissociate to Cl−+ CH3Br or isomer-

ize to ClCH3---Br− with classical thresholds of 10.74 and

7.83 kcal/mol, respectively. Including ZPE for the CH3Br

product and the [Cl--CH3--Br]− central barrier, the quantum

Etotal respective thresholds are 34.44 and 31.73 kcal/mol.

Previous simulations and experiments have shown

that the decomposition of Cl−---CH3Br is expected to

be intrinsically non-RRKM with non-exponential N(t)/N(0)

distributions.30–33, 43, 71, 72 As shown in Figure 5, this is indeed

the finding for both the classical and quantum initial micro-

canonical ensembles. At the lower energies the initial decay

of N(t)/N(0) is slower for the quantum ensemble, while at the

highest energy the decay of the classical and quantum ensem-

bles are similar. The fits to the N(t)/N(0), shown in Figure 5,

were made with a sum of three exponentials and the fitting

parameters for Eq. (3) are listed in Table III. The variation in

the ki rate constants for a particular fit is as large as two or-

ders of magnitude. The initial rate constants for the classical

and quantum microcanonical ensembles are the microcanon-

ical values given by Eq. (13) and are listed in Table IV. For

the lower Etotal, the rate constant for the quantum ensemble

is substantially smaller than that for the classical ensemble,

while for the higher Etotal the rate constants for the two ensem-

bles are similar; i.e., findings consistent with the N(t)/N(0) for

the classical and quantum ensembles.

The harmonic RRKM rate constants for Cl−---CH3Br de-

composition are listed in Table IV, where they are compared

with the trajectory rate constants. Cl−---CH3Br decomposes

to both Cl−+ CH3Br and ClCH3---Br− and the RRKM rate
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FIG. 5. Lifetime distributions N(t)/N(0), for the unimolecular decomposi-

tion of Cl−---CH3Br, resulting from classical trajectory simulations of initial

classical and quantum microcanonical ensembles.

constants are the sum of the rate constants for these two paths.

For the lower energies both the classical and quantum RRKM

rate constants are larger than the respective trajectory rate

constants for the classical and quantum microcanonical en-

sembles. However, for the highest energy of 60 kcal/mol the

trajectory rate constants are larger. The ratio ktraj(E)/kRRKM(E)

for the classical calculation ranges from 0.17 to 1.34 and

gives the anharmonic correction fanh(E) to classical harmonic

RRKM rate constant. For the quantum calculations this ratio

varies from 0.36 to 1.43.

The anharmonic correction fanh(E) to the RRKM rate

constant is related to the ratios of anharmonic (anh) and har-

monic (h) TS sums of states and reactant densities of state and

is given by N
�=

anh(E-E0)/N
�=

h (E-E0) divided by ρanh(E)/ρh(E).68

For E near the threshold the anharmonic correction for the

TS sum of states is expected to be small,17, 68 so that fanh(E)

is approximated by ρh(E)/ρanh(E). The lower energy, 30–

40 kcal/mol, values of 0.17–0.25 for the classical fanh(E)

may approximate ρh(E)/ρanh(E). These values for fanh(E) are

similar to the classical ρh(E)/ρanh(E) ratios of ∼0.5 found

previously30 for the Cl−---CH3Cl complex for energies of 35–

37 kcal/mol, assuming the CH3Cl vibrational modes are har-

monic oscillators. Including anharmonicity in these modes is

expected to lower the fanh(E) and make it closer to the cur-

rent trajectory values. As the energy is increased the N
�=

anh(E-

Eo)/N
�=

h (E-E0) term is expected to exceed unity and become

important. The values of ∼1.0 and larger for the Cl−---

CH3Br fanh(E), at the higher energies, are consistent with this

expectation.

For the RRKM calculations, the quantum rate constant is

smaller than the classical rate constant, a relationship that is

mirrored by the trajectory calculations for the quantum and

classical microcanonical ensembles. The Etotal of 30 kcal/mol
is less than the energies of 34.44 and 31.73 kcal/mol for

the quantum harmonic thresholds to form Cl− + CH3Br and

CH3Cl + Br−, and it is of interest that the trajectory rate con-

stant for the quantum microcanonical ensemble is not zero

in contrast to the harmonic RRKM rate constant. The anhar-

monic thresholds will be lower than the above values, and the

anharmonic threshold for forming CH3Cl + Br− may be less

than 30 kcal/mol. However, both Cl− + CH3Br and CH3Cl

+ Br− were formed in the 30 kcal/mol simulations, and the

anharmonic threshold for forming Cl− + CH3Br is expected

to exceed this energy.

For Etotal of 35 kcal/mol the ratio of the classical and

quantum rate constants, kc/kq, is 2.22 and 10.6 from the tra-

jectory and harmonic RRKM calculations, respectively. Using

anharmonic thresholds in the RRKM calculation will lower

the RRKM ratio and make it closer to the trajectory ratio.

For the Etotal of 40–60 kcal/mol, the trajectory and harmonic

RRKM kc/kq ratios are in overall good agreement.

VI. DISCUSSION

Previous studies, for Cl− + CH3Cl ↔ Cl−---

CH3Cl,30–33, 72 trimethylene isomerization,25, 26 and relaxation

of the C–H stretch overtone state in benzene,14–16 have shown

that classical dynamics often gives accurate short-time

unimolecular and intramolecular dynamics for randomly

prepared molecular states. The question addressed here is

if classical chemical dynamics gives an accurate quantum

microcanonical unimolecular rate constant for an initial

quantum microcanonical ensemble of states. Quasiclassical

sampling is performed for the quantum microcanonical

ensemble. The unimolecular reactions considered are CH4

→ H + CH3, C2H5 → H + C2H4, and decomposition of

the ion-dipole complex Cl−---CH3Br to Cl− + CH3Br and

ClCH3---Br−.

In contrast to a classical microcanonical ensemble, the

phase space is not sampled randomly by a quantum micro-

canonical ensemble. For the latter, there is ZPE in each de-

gree of freedom and states are populated randomly in the

energy interval E → �E, instead of sampling points at ran-

dom on a constant energy shell as is done for the classical

microcanonical ensemble. As a result of these differences, the

classical microcanonical rate constant is larger than the quan-

tum microcanonical rate constant. This may be understood

by considering the classical expression for the unimolecular

rate constant as an average flux moving past the TS towards

products,73 i.e.,

k(E) =

∫

. . .
∫

q̇1dq1 . . . dq3ndp1 . . . dp3nδ(q1 − q
‡
1)δ(E − H )

∫

. . .
∫

dq1 . . . dq3ndp1 . . . dp3nδ(E − H )
. (14)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.255.6.125 On: Wed, 10 Dec 2014 22:42:53



184110-8 P. Manikandan and W. L. Hase J. Chem. Phys. 136, 184110 (2012)

Without the constraint of having ZPE in the modes or-

thogonal to the reaction coordinate, the average value of the

reaction coordinate velocity (momentum) will be larger for

the classical microcanonical ensemble than for the quantum

microcanonical ensemble.

A classical simulation of an initial microcanonical en-

semble of states is expected to give an accurate quantum me-

chanical microcanonical rate constant if tunneling is unim-

portant and if the initial classical dynamics is vibrationally

adiabatic. With the latter, the trajectories will retain ZPE in

the modes orthogonal to the reaction coordinate motion as the

trajectories cross the TS to form products. This is the nature of

the dynamics Heller74, 75 had in mind for his frozen gaussians,

i.e., short-time vibrationally adiabatic dynamics. The vibra-

tionally adiabatic dynamics is not only required for the TS,76

but also for the excited molecule as it approaches the TS.

However, if instead there is extensive coupling between the

vibrational modes, leading to rapid IVR and chaotic dynam-

ics, ZPEs will not be conserved in accessing the TS and the

classical chemical dynamics rate constant for the initial quan-

tum microcanonical ensemble is expected to be the classical

microcanonical rate constant.

Different unimolecular dynamics are found for the classi-

cal trajectory simulations of the initial quantum microcanon-

ical ensembles for CH4, C2H5 and Cl−---CH3Br. For CH4

dissociation, the classical simulation of the quantum micro-

canonical ensemble gives a rate constant identical to that

found for the classical microcanonical ensemble. The quan-

tum microcanonical ensemble decays in accord with ergodic

dynamics and the prediction of classical RRKM theory. The

results for C2H5 dissociation are mixed. As shown in Figure 4,

for the lower energies of 80, 90, and 100 kcal/mol the classi-

cal simulation of the quantum microcanonical ensemble gives

a rate constant smaller than that obtained from the classical

microcanonical ensemble, the result expected by RRKM the-

ory. However, as given in Table II, the initial rate constant

for the quantum microcanonical ensemble is decidedly greater

than that of quantum harmonic RRKM theory. It is doubtful

that these differences can be explained by anharmonic effects.

Thus, at these lower energies the classical simulation of the

quantum microcanonical ensemble recovers some but not all

of the dynamics predicted by quantum RRKM theory. For the

higher energies of 120 and 150 kcal/mol, the classical sim-

ulations of the quantum microcanonical ensembles give uni-

molecular dynamics in accord with the ergodic and RRKM

dynamics found for the classical microcanonical ensembles.

For the above two chemical systems, the classical dy-

namics is ergodic and in accord with the predictions of clas-

sical RRKM theory. In contrast, for Cl−---CH3Br decom-

position the classical unimolecular dynamics is intrinsically

non-RRKM (Figure 5) and the classical simulation of a quan-

tum microcanonical ensemble for Cl−---CH3Br decomposi-

tion gives a rate constant which mimics the prediction of

RRKM theory (Table IV). At Etotal = 35 kcal/mol the tra-

jectory rate constant for the quantum mechanical ensemble is

approximately a factor of two too large as expected from an

anharmonic correction (i.e., kq(harmonic)/kq(anharmonic) is

expected to be ∼0.5 for the lower energies).30 However, this

correction does not include an anharmonic correction to the

ZPE barriers for Cl−---CH3Br decomposition, and this cor-

rection will increase the harmonic RRKM rate constant and

possibly bring it into agreement with the trajectory quantum

value. The lowest Etotal of 30 kcal/mol is expected to be less

than the anharmonic barrier for Cl−---CH3Br decomposition

to Cl− + CH3Br. Thus, this decomposition pathway observed

in the classical simulation of the quantum microcanonical en-

semble for this energy is in apparent disagreement with quan-

tum RRKM theory. However, for the remaining energies of

35–60 kcal/mol, the classical simulations of the quantum mi-

crocanonical ensembles give rate constants in good agreement

with the quantum RRKM values.

It should be noted that, though classical simulations of

the quantum microcanonical ensembles for CH4 and C2H5 do

not give rate constants in agreement with quantum RRKM

theory and presumably experiment, it is possible that classi-

cal simulations may give accurate short-time IVR and uni-

molecular rates for highly non-random initial states for these

molecules. This is a topic of interest for future investigations.

In contrast to the intrinsic RRKM dynamics found here

for C2H5 dissociation using UHF/4-31G direct dynamics,

other direct dynamics simulations of the intramolecular and

unimolecular dynamics of C2H5 (Refs. 77 and 78) suggest

that a fraction of the C2H5 phase space consists of vague

tori20 and quasiperiodic28 trajectories. The extent of this non-

RRKM behavior depends on the level of electronic structure

used for the direct dynamics.77 A 5 eV excitation energy was

investigated and it was found that ∼78% of a microcanoni-

cal ensemble of trajectories dissociates to H + C2H4 with a

single exponential and a rate constant consistent with RRKM

theory.77 However, the remaining long-lived trajectories have

motions consistent with vague tori and quasiperiodicity and

a low degree of ergodicity.78 These dynamics indicate that

C2H5 dissociation is intrinsically non-RRKM at high ener-

gies. It is suggested77 that these long-lived trajectories are pre-

pared when C2H5 is photoexcited79, 80 and explain observed

dissociation lifetimes which are several orders of magnitude

longer than those expected from RRKM theory. Such trajec-

tories are not present in the UHF/4-31G direct dynamics re-

ported here. The possible sensitivity of intramolecular dynam-

ics, and intrinsic RRKM and non-RRKM behavior, on the

electronic structure theory method used for the direct dynam-

ics simulation is quite intriguing. It is an important topic for

future intramolecular and unimolecular studies of C2H5 and

other molecules.

Finally, for future work it is of interest to sample the

normal mode momenta P and coordinates Q, for the quan-

tum microcanonical ensemble, in accord with their quantum

distributions.81 This sampling may be performed at a con-

stant energy, as recently described for sampling the Wigner

distribution for a molecule’s ZPE level.82 For the quasiclas-

sical sampling performed here, for state n, a fixed number of

quanta ni are added to the i-th normal mode and the classical

phase’s for the modes are chosen randomly. By sampling the

P and Q quantum distributions for a specific state n of the

molecule, there will not be a fixed ni for the i-th mode and,

instead, the average energy in the mode will equal that for

level ni.
82 It would also be of interest to sample the Husimi

distribution83 for the quantum microcanonical ensemble.
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