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Abstract

We study an impact of a random environment on lifetimes of coherent systems with

dependent components. There are two combined sources of this dependence. One results

from the dependence of the components of the coherent system operating in a deterministic

environment and the other is due to dependence of components of the system sharing the

same random environment. We provide different sets of sufficient conditions for the corre-

sponding stochastic comparisons and consider various scenarios, namely, (i) two different

(as a specific case, identical) coherent systems operate under the same random environ-

ment; (ii) two coherent systems operate under two different random environments; (iii) one

of the coherent systems operates under a random environment, whereas the other under a

deterministic one. Some examples are given to illustrate the proposed reasoning.
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1 Introduction and Preliminaries

Most often, the real-world populations of items are heterogeneous and the corresponding ho-

mogeneity can be considered as some approximation. There can be different reasons for hetero-
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geneity. For example, the items can be produced by different manufacturers and then mixed

by the user. It can happen with one manufacturer as well, as reliability characteristics of man-

ufactured items change with time depending on many factors (e.g. supplied material, human

factors, the production condition, etc.). Heterogeneity can be also induced by a random en-

vironment in which items are operating. This random environment can be modelled, e.g., by

the corresponding shock process (see, e.g., Cha and Finkelstein [8] and the references therein).

However, the simplest and sometimes the most effective way is to model it by the nonnegative

environmental random variable Θ that can affect the distribution of a lifetime X in a baseline

deterministic environment (denoted by FX(x)). Thus, conditional on a realization Θ = θ, the

corresponding distribution of X(θ) is FX(x|θ), where the most popular specific models are the

scale model FX(θx), the multiplicative and the additive frailty models written as θrX(x) and

rX(x) + θ, where rX(x) is the corresponding failure rate assuming that it exists. The most

common example of environment is a stress or load under which technical systems are oper-

ating (e.g., an electrical load). Some overall climate or nutrition parameters can also describe

environment for organisms. An effect of a random environment on various reliability indices was

intensively studied in the literature: see, e.g., Finkelstein [11], Petakos and Tsapelas [30], Ken-

zin and Frostig [16], Nakagawa [21], Persona et al. [29], Rȧde [33], and the references therein.

While describing the following baseline simplified scenarios to be considered in our paper in

a much more generality, we will use several basic stochastic orders to be defined for convenience

by Definition 1.1 at the end of this section.

(i) Consider two items (systems) with lifetimes X(Θ) and Y (Θ) (we will use later a slightly

different notation that is more appropriate for the multicomponent case), operating in

the same environment modelled by Θ and we are interested in stochastic comparisons of

these lifetimes. Note that they are dependent via the common environment. Obviously,

if we know that its impact is the same on both items (e.g., multiplicative frailty model),

then in order, e.g., X(Θ) ≤st Y (Θ) to hold, it is sufficient for this inequality to be true for

the baseline, deterministic environment, i.e., X ≤st Y as it will hold in each realization

of Θ. For a general case, we must just assume this property in each realization, i.e.,

X(θ) ≤st Y (θ), for all θ.

(ii) Let now one item (or two statistically identical items) operate in two environments Θ1

and Θ2 with the corresponding lifetimes X(Θ1) and X(Θ2). There is a number of simple,

meaningful results in the literature for the corresponding comparisons. For example, in

Finkelstein [12] and Shaked and Shantikumar [36], it is stated that if Θ1 ≤hr Θ2, then

X(Θ1) ≤hr X(Θ2) provided that the corresponding failure rate r(t|θ) is ordered in θ for

all t > 0.

(iii) The last general introductory setting to be considered is when two items with lifetimes

X(Θ1) and Y (Θ2), are operating in different environments modelled by Θ1 and Θ2, respec-
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tively. A specific case is when e.g., Θ2 is degenerate, meaning that the second environment

is deterministic.

The above scenarios are described with respect to comparisons of lifetimes of two items or sys-

tems with a black box description. However, our paper is dealing with these scenarios for the

multicomponent systems, namely, coherent systems that satisfy two basic requirements: each

component is important for operation of a system and the system lifetime should not decrease

if we replace any failed component by a ‘new’ one. This class of systems is rather wide and

includes, e.g., the k-out-of-n systems as a special case (Barlow and Prochan [5]).

Stochastic comparisons for k-out-of-n systems with independent components are extensively

studied in Pledger and Proschan [31], Proschan and Sethuraman [32], Balakrishnan and Zhao [4],

Hazra et al. [13], to name a few. The study of general coherent systems with independent

components were considered, e.g., in Esary and Proschan [10], Nanda et al. [22], Kochar et

al. [17], Belzunce et al. [6], Samaniego [34], Hazra and Nanda [14], Samaniego and Navarro [35],

Lindqvist et al. [18]. Stochastic ordering for coherent systems with dependent components is

discussed by Navarro and Rubio [27], Navarro et al. [23, 24, 25, 26]. An impact of a random

environment are studied through multivariate mixture models. Some references to name a few

are: Belzunce et al. [7], Misra and Misra [20], Bad́ia et al. [2], Balakrishnan et al. [3], and

Marshall and Olkin [19].

However, to the best of our knowledge, only one paper that we are aware of, is devoted to

stochastic comparisons of coherent systems with dependent components operating in different

random environments (Amini-Seresht et al. [1]). These authors provide some detailed sufficient

conditions for the lifetime of a coherent system operating under one (e.g., the more severe) en-

vironment to be smaller than that of this system operating under a milder environment. This

setting generalizes scenario (ii) above to the case of systems with dependent components. It

should be noted that there are two ‘combined’ sources of this dependence. One results from the

dependence of the components in the coherent system operating in a deterministic environment

and the other is due to the dependence of components of the system sharing the same random

environment.

Inspired by the work of these authors, we present solutions for some open problems for-

mulated in Amini-Seresht et al. [1]. We also generalize their results and present some new

comparisons which consider the settings (i) and (iii) applied to coherent systems with depen-

dent components. To be more specific, we provide different sets of sufficient conditions for one

system to dominate the other one with respect to different stochastic orders, namely, usual

stochastic order, hazard rate order, reversed hazard rate order and the likelihood ratio order.

It is worth mentioning that the above scenario (ii) considered in Amini-Seresht et al. [1] for

coherent systems can be viewed as a specific case of a more general scenario (iii). Moreover, our

methodology for obtaining relevant comparisons also differs from that discussed in their paper.

Lastly, although the case when e.g., Θ2 is degenerate, meaning that the second environment is

deterministic, is specific for scenario (iii), for technical reasons, it is convenient to consider it
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separately, which is done in Section 5.

After this introductory discussion, we can carry on with some basic facts to be used inten-

sively throughout the paper starting with the relevant, formal notation that is more convenient

for our multivariate setting. For an absolutely continuous random variable W , we denote

the probability density function (pdf) by fW (·), the cumulative distribution function (cdf) by

FW (·), the hazard rate function by rW (·), the reversed hazard rate function by r̃W (·) and the

survival/reliability function by F̄W (·).

Consider a coherent system with lifetime τ (X) formed by n dependent components with

the lifetime vector X = (X1,X2, . . . ,Xn). The dependency among components can be repre-

sented by the joint reliability function of X

F̄X(x1, x2, . . . , xn) = P (X1 > x1,X2 > x2, . . . ,Xn > xn)

= C
(

F̄X1(x1), F̄X2(x2), . . . , F̄Xn(xn)
)

,

where C(·, ·, . . . , ·) is a survival copula. In literature, many different types of survival copu-

las have been studied, for example, Farlie-Gumbel-Morgenstern (FGM) copula, Archimedean

copula, Clayton-Oakes (CO) copula, etc. For more discussion on this, we refer the reader to

Nelsen [28]. Based on the above representation, the following fundamental lemma (similar to

Theorem 2.1 of Navarro et al. [23]) can be formulated.

Lemma 1.1 Let τ (X) be the lifetime of a coherent system formed by n dependent components

with the lifetime vector X = (X1,X2, . . . ,Xn). Then the system’s reliability function can be

written as

F̄
τ(X)(x) = h

(

F̄X1(x), F̄X2(x), . . . , F̄Xn(x)
)

,

where h : [0, 1]n → [0, 1], called the domination (or dual distortion) function, depends on the

structure function φ(·) (see Barlow and Proschan [5] for definition) and on the survival copula

C of X1,X2, . . . ,Xn. Furthermore, h(·) is an increasing continuous function in [0, 1]n such that

h(0, 0, . . . , 0) = 0 and h(1, 1, . . . , 1) = 1. ✷

An example below illustrates the meaning of this lemma.

Example 1.1 Consider a coherent system with the lifetime τ (X) = min{X1,max{X2,X3}},

where X = (X1,X2,X3) is described by the FGM Copula (see Nelsen [28]). Then the minimal

path sets (see Barlow and Proschan [5]) of this system are given by P1 = {1, 2} and P2 = {1, 3}.

Consequently, its reliability function can be obtained as

F̄
τ(X)(x) = P ({XP1 > x} ∪ {XP2 > x})

= P (XP1 > x) + P (XP2 > x)− P (X{1,2,3} > x)

= F̄X(x, x, 0) + F̄X(x, 0, x) − F̄X(x, x, x)

= C
(

F̄X1(x), F̄X2(x), 1
)

+ C
(

F̄X1(x), 1, F̄X3(x)
)

+ C
(

F̄X1(x), F̄X2(x), F̄X3(x)
)

= h
(

F̄X1(x), F̄X2(x), F̄X3(x)
)

,
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where

h(p1, p2, p3) = C(p1, p2, 1) +C(p1, 1, p2)− C(p1, p2, p3)

= p1p2p3[1− x(1− p1)(1− p2)(1 − p3)], for pi ∈ (0, 1) and x ∈ [−1, 1].

Let τ (X(Θ)) be a random variable representing the lifetime of a coherent system τ (X) that

is operating under a random environment modeled by a random variable Θ with support Ω ⊆

[0,∞). For a given environment Θ = θ, let X(θ) = (X1(θ),X2(θ), . . . ,Xn(θ)) be the vector of

lifetimes of components, and h(·) be the domination function of τ (X(θ)). Further, let F̄Xi
(·|θ),

FXi
(·|θ) fXi

(·|θ) rXi
(·|θ) and r̃Xi

(·|θ) be the survival function, the cumulative distribution

function, the probability density function, the hazard rate function, and the reversed hazard

rate function describing Xi(θ), respectively, for i = 1, 2, . . . , n. Then the reliability function

describing τ (X(Θ)) can be expressed as the following mixture

F̄
τ(X(Θ))(x) = P (τ (X(Θ)) > x)

=

∫

Ω
h
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ), (1.1)

where the last equality holds due to Lemma 1.1. Further, its cumulative distribution function

is given by

F
τ(X(Θ))(x) =

∫

Ω

[

1− h
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)]

dFΘ(θ). (1.2)

If all Xi’s are identical, then (1.1) and (1.2) reduce to

F̄
τ(X(Θ))(x) =

∫

Ω
h
(

F̄X1(x|θ)
)

dFΘ(θ), (1.3)

and

F
τ(X(Θ))(x) =

∫

Ω

[

1− h
(

F̄X1(x|θ)
)]

dFΘ(θ). (1.4)

Stochastic orders are frequently used as an effective tool to compare the lifetimes of two

systems. Numerous stochastic orders are reported in the literature. Each of them has its

own merit. For example, the usual stochastic order compares two reliability functions, the

hazard rate order compares two hazard/failure rate functions, whereas the reversed hazard

rate order compares two reversed hazard rate functions. For exhaustive details see Shaked and

Shanthikumar [36]. For the sake of completeness, we define below stochastic orders that are

used in our paper.

Definition 1.1 Let X and Y be two absolutely continuous random variables with respective

supports (lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX and lY may

be negative infinity. Then, X is said to be smaller than Y in
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(a) likelihood ratio (lr) order, denoted as X ≤lr Y , if

fY (t)

fX(t)
is increasing in t ∈ (lX,uX) ∪ (lY,uY);

1. hazard rate (hr) order, denoted as X ≤hr Y , if

F̄Y (t)/F̄X(t) is increasing in t ∈ (−∞,max(uX,uY));

2. reversed hazard rate (rhr) order, denoted as X ≤rhr Y , if

FY (t)/FX (t) is increasing in t ∈ (min(lX, lY),∞);

3. usual stochastic (st) order, denoted as X ≤st Y , if

F̄X(t) ≤ F̄Y (t) for all t ∈ (−∞,∞).

Note that the following chain of implications holds among stochastic orders that are discussed

above.

X ≤lr Y =⇒ X ≤hr[rhr] Y =⇒ X ≤st Y.

The theory of totally positive functions has vast applications in different areas of approxi-

mation theory and related fields. An encyclopedic information on this topic could be found in

Karlin [15]. Below we give the definitions of TP2 and RR2 functions which will be used in our

paper.

Definition 1.2 Let X and Y be two linearly ordered sets. Then, a real-valued function κ(·, ·)

defined on X × Y, is said to be TP2 (resp. RR2) if

κ(x1, y1)κ(x2, y2) ≥ (resp. ≤) κ(x1, y2)κ(x2, y1),

for all x1 < x2 and y1 < y2. ✷

Throughout the paper, increasing and decreasing, as usual, mean non-decreasing and non-

increasing, respectively. All random variables considered in this paper are assumed to be

absolutely continuous and nonnegative. We use bold symbol to represent a vector. Further, we

use the acronym ‘iid’ for ‘independent and identically distributed’.

The rest of the paper is organized as follows. In Section 2, we formulate some useful lemmas

which are used in proving the main results. In Section 3, we consider two coherent systems that

operate in the same random environment. We provide some sufficient conditions for proving

that one coherent system dominates the other one with respect to different stochastic orders. In

Section 4, we study the same kind of comparisons under the assumption that different coherent

systems operate in different random environments. In Section 5, we assume that one of the

coherent systems operates in a random environment, whereas the other one in a deterministic

environment. The concluding remarks are given in Section 6.

To enhance the readability of the paper, all proofs of theorems, wherever given, are deferred

to the Appendix.
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2 Useful Lemmas

In this section we provide some lemmas which will intensively be used in proving the main

results. The first lemma describes the TP2/RR2 property of the integral of a function. The

proof could be done in the same line as in Lemma 2.1 of Dewan and Khaledi [9].

Lemma 2.1 Let φi(x, θ), i = 1, 2, be a nonnegative real valued function on R×X, where R is

the set of real numbers, and X ⊆ R. Suppose that the following conditions hold.

(i) For θ ∈ X, φ2(x, θ)/φ1(x, θ) is [increasing, increasing, decreasing, decreasing, respectively]

in x ∈ R;

(ii) For x ∈ R, φ2(x, θ)/φ1(x, θ) is [increasing, decreasing, decreasing, increasing, respectively]

in θ ∈ X;

(iii) Either φ1(x, θ) or φ2(x, θ) is [TP2, RR2, TP2, RR2, respectively] in (x, θ) ∈ R×X.

Then

si(x) =

∫

X

φi(x, θ)w(θ)dθ is [TP2, TP2, RR2, RR2, respectively ] in (x, i) ∈ R× {1, 2},

where w(·) is a continuous function with
∫

X
w(θ)dθ < ∞. ✷

In next four lemmas, we discuss some properties of the reliability functions of the k-out-

of-n and l-out-of-m systems. Lemma 2.2(i) and Lemma 2.4(i) are obtained in Esary and

Proschan [10], whereas Lemma 2.2(ii) and Lemma 2.4(ii) are obtained in Nanda et al. [22].

Further, Lemma 2.2(iii), Lemma 2.3, Lemma 2.5(i) and Lemma 2.6 are obtained in Belzunce

et al. [6]. Furthermore, Lemma 2.5(ii) and (iv) are obtained in Hazra and Nanda [14], whereas

Lemma 2.5(iii) and (v) could be proved in the same line as in Lemmas 5 and 7 of Hazra and

Nanda [14].

Lemma 2.2 Let hk:n(·) be the reliability function of the k-out-of-n system with iid components.

Then the following results hold.

(i) ph′k:n(p)/hk:n(p) is decreasing in p ∈ (0, 1);

(ii) (1− p)h′k:n(p)/(1 − hk:n(p)) is increasing in p ∈ (0, 1);

(iii) There exists some point µ ∈ (0, 1) such that

(a) ph′′k:n(p)/h
′
k:n(p) is decreasing and positive for all p ∈ (0, µ), and

(b) (1− p)h′′k:n(p)/h
′
k:n(p) is decreasing and negative for all p ∈ (µ, 1).

where µ = (k − 1)/(n − 1).

7



Lemma 2.3 Let hk:n(·) and hl:m(·) be the reliability functions of the k-out-of-n and the l-out-

of-m systems with iid components, respectively. Then, for l ≤ k and n− k ≤ m− l,

(i) hk:n(p) ≤ hl:m(p) for all p ∈ (0, 1);

(ii) hk:n(p)
hl:m(p) is increasing p ∈ (0, 1);

(iii) 1−hk:n(p)
1−hl:m(p) is increasing p ∈ (0, 1);

(iv)
h′

k:n(p)

h′

l:m(p) is increasing p ∈ (0, 1).

Lemma 2.4 Let hk:n(·) and hl:m(·) be the reliability functions of the k-out-of-n and of the l-

out-of-m systems with independent components, respectively. Then, for l ≤ k and n−k ≤ m− l,

(i)
n
∑

i=1

pi
hk:n(p)

∂hk:n(p)
∂pi

is decreasing in each pi ∈ (0, 1), for all i = 1, 2, . . . , n;

(ii)
n
∑

i=1

1−pi
1−hk:n(p)

∂hk:n(p)
∂pi

is increasing in each pi ∈ (0, 1), for all i = 1, 2, . . . , n.

Lemma 2.5 Let hk:n(·) and hl:m(·) be the reliability functions of the k-out-of-n and the l-out-

of-m systems with independent components, respectively. Then, for l ≤ k and n− k ≤ m− l,

(i) hk:n (p) ≤ hl:m (p);

(ii) 1
hk:n(p)

∂hk:n(p)
∂pi

≥ 1
hl:m(p)

∂hl:m(p)
∂pi

, for all i = 1, 2, . . . ,min{m,n};

(iii) 1
1−hk:n(p)

∂hk:n(p)
∂pi

≤ 1
1−hl:m(p)

∂hl:m(p)
∂pi

, for all i = 1, 2, . . . ,min{m,n};

(iv)
n
∑

i=1

pi
hk:n(p)

∂hk:n(p)
∂pi

≥
m
∑

i=1

pi
hl:m(p)

∂hl:m(p)
∂pi

;

(v)
n
∑

i=1

1−pi
1−hk:n(p)

∂hk:n(p)
∂pi

≤
m
∑

i=1

1−pi
1−hl:m(p)

∂hl:m(p)
∂pi

.

Lemma 2.6 Let hk:n(·) and hl:m(·) be the reliability functions of the k-out-of-n and the l-

out-of-m systems, respectively. Further, let Z = (Z1, Z2, . . . , Zn) and W = (W1,W2, . . . ,Wm)

be two sets of independent component lifetimes. Suppose that, for all i = 1, 2, . . . , n, and

j = 1, 2, . . . ,m, Zi ≤lr Wj. Then, for l ≤ k and n− k ≤ m− l,

∂hl:m(q)

∂qj

/∂hk:n(p)

∂pi
is increasing in x,

where pi = F̄Zi
(x) and qj = F̄Wj

(x).
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3 Two different coherent systems under the same random en-

vironment

In this section, we consider two coherent systems with lifetimes τ1 (X(Θ)) and τ2 (Y (Θ)) that

operate in the same random environment described by a random variable Θ with support Ω. For

a given (realization) environment Θ = θ, we denote the domination functions of τ1 (X(θ)) and

τ2 (Y (θ)) by h1(·) and h2(·), respectively. In what follows, we provide some sufficient conditions

for proving that one coherent system dominates the other one with respect to different stochastic

orders.

3.1 Systems with not necessarily identical components

In this subsection, we consider coherent systems that are formed by not necessarily identical

components.

In the following theorem, which proof is deferred to the Appendix, we compare two coherent

systems with respect to the usual stochastic order.

Theorem 3.1 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Suppose that the following conditions hold.

(i) h1(p1, p2, . . . , pn) ≤ h2(p1, p2, . . . , pm);

(ii) Xi(θ) ≤st Yi(θ) for all i = 1, 2, . . . ,min{m,n}.

Then τ1 (X(Θ)) ≤st τ2 (Y (Θ)). ✷

In the next theorem (see the Appendix for the proof), we show that under some sufficient

conditions τ2 (Y (Θ)) is larger than τ1 (X(Θ)) with respect to the hazard rate order.

Theorem 3.2 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes, where n ≥ m. Suppose that {(i), (ii), (iii)} or {(i), (ii), (iv)} holds.

(i) 1
h1(p)

∂h1(p)
∂pi

≥ 1
h2(p)

∂h2(p)
∂pi

, for all i = 1, 2, . . . ,m;

(ii) pi
h2(p)

∂h2(p)
∂pi

is decreasing in each pi, for all i = 1, 2, . . . ,m;

(iii) Xi(θ1) ≤hr Xi(θ2), Xj(θ) ≤hr Yj(θ), and Yj(θ2) ≤hr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m;

(iv) Xi(θ1) ≥hr Xi(θ2), Xj(θ) ≤hr Yj(θ), and Yj(θ2) ≥hr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Then τ1 (X(Θ)) ≤hr τ2 (Y (Θ)). ✷
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The following theorem shows that the same result as in Theorem 3.2 holds for the reversed

hazard rate order under some different set of sufficient conditions (see the Appendix for the

proof).

Theorem 3.3 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes, where m ≥ n. Suppose that {(i), (ii), (iii)} or {(i), (ii), (iv)} holds.

(i) 1
1−h1(p)

∂h1(p)
∂pi

≤ 1
1−h2(p)

∂h2(p)
∂pi

, for all i = 1, 2, . . . , n;

(ii) 1−pi
1−h1(p)

∂h1(p)
∂pi

is increasing in each pi, for all i = 1, 2, . . . , n;

(iii) Xi(θ1) ≤rhr Xi(θ2), Xi(θ) ≤rhr Yi(θ), and Yj(θ2) ≤rhr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m;

(iv) Xi(θ1) ≥rhr Xi(θ2), Xi(θ) ≤rhr Yi(θ), and Yj(θ2) ≥rhr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Then τ1 (X(Θ)) ≤rhr τ2 (Y (Θ)).

3.2 Systems with iid components

In this subsection we consider coherent systems of identical components. Obviously, this case

has its own value when compared with the general case of non-identical components. The

following theorem is analogous to Theorem 3.1, and the proof also immediately follows from it.

Theorem 3.4 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that the

following conditions hold.

(i) h1(p) ≤ h2(p) for all p ∈ (0, 1);

(ii) X1(θ) ≤st Y1(θ), for all θ ∈ Ω.

Then τ1 (X(Θ)) ≤st τ2 (Y (Θ)). ✷

In the next theorem we compare two coherent systems with respect to the hazard rate

order. The proof could be done in the same line as in Theorem 3.2.

Theorem 3.5 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are identical, and that the Yj’s are identical. Suppose that

{(i), (ii), (iii)} or {(i), (ii), (iv)} holds.

(i) h1(p)/h2(p) is increasing in p ∈ (0, 1);

(ii) ph′2(p)/h2(p) is decreasing in p ∈ (0, 1);

(iii) X1(θ1) ≤hr X1(θ2) ≤hr Y1(θ2) ≤hr Y1(θ1), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2;
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(iv) X1(θ2) ≤hr X1(θ1) ≤hr Y1(θ1) ≤hr Y1(θ2), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2.

Then τ1 (X(Θ)) ≤hr τ2 (Y (Θ)). ✷

In the following theorem we show that the same result as in Theorem 3.5 holds for the

reversed hazard rate order. The proof is similar to that of Theorem 3.3.

Theorem 3.6 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are identical, and that the Yj’s are identical. Suppose that

{(i), (ii), (iii)} or {(i), (ii), (iv)} holds.

(i) (1− h1(p))/(1 − h2(p)) is increasing in p ∈ (0, 1);

(ii) Either (1− p)h′1(p)/(1 − h1(p)) is increasing in p ∈ (0, 1);

(iii) X1(θ1) ≤rhr X1(θ2) ≤rhr Y1(θ2) ≤rhr Y1(θ1), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(iv) X1(θ2) ≤rhr X1(θ1) ≤rhr Y1(θ1) ≤rhr Y1(θ2), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2.

Then τ1 (X(Θ)) ≤rhr τ2 (Y (Θ)).

4 Different coherent systems under different random environ-

ments

In this section, we consider two coherent systems with lifetimes τ1 (X(Θ1)) and τ2 (Y (Θ2)),

where Θ1 and Θ2 are two random variables (with support Ω) that describe two different random

environments. For given environments Θ1 = θ and Θ2 = θ∗, we denote the domination functions

of τ1 (X(θ)) and τ2 (Y (θ∗)) by h1(·) and h2(·), respectively. We will compare τ1 (X(Θ1)) and

τ2 (Y (Θ2)) with respect to different stochastic orders. It should be noted that the results of this

section can be considered as generalizations of the corresponding results of Amini-Seresht et

al. [1] to the case when there are two different coherent systems (in Amini-Seresht et al. [1], the

case of one system (or of two identical systems) operating in two environments was discussed).

4.1 Systems with not necessarily identical components

In this subsection, we assume that coherent systems are formed by not necessarily identical

components.

In the following theorem, we show that under a set of sufficient conditions τ2 (Y (Θ2)) domi-

nates τ1 (X(Θ1)) with respect to the usual stochastic order. The proof follows from Theorem 3.1

of Amini-Seresht et al. [1] and our Theorem 3.1.

Theorem 4.1 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Suppose that {(i), (ii), (iv)} or {(i), (iii), (iv)} holds

11



(i) h1(p1, p2, . . . , pn) ≤ h2(p1, p2, . . . , pm);

(ii) Xi(θ1) ≤st Xi(θ2) and Xj(θ) ≤st Yj(θ) for all θ, θ1, θ2 ∈ Ω such that θ1 ≤ θ2, and for all

i = 1, 2, . . . , n and j = 1, 2, . . . ,min{m,n};

(iii) Yi(θ1) ≤st Yi(θ2) and Xj(θ) ≤st Yj(θ) for all θ, θ1, θ2 ∈ Ω such that θ1 ≤ θ2, and for all

i = 1, 2, . . . ,m and j = 1, 2, . . . ,min{m,n};

(iv) Θ1 ≤st Θ2.

Then τ1 (X(Θ1)) ≤st τ2 (Y (Θ2)). ✷

The following corollary follows from Theorem 4.1 by using Lemma 2.5(i).

Corollary 4.1 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are independent, and that the Yj’s are independent. Suppose

that the set of conditions {(ii), (iv)} or {(iii), (iv)} in Theorem 4.1 holds. Then

(i) τk:n (X(Θ1)) ≤st τl:n (Y (Θ2)) for l ≤ k;

(ii) τk:n (X(Θ1)) ≤st τk:m (Y (Θ2)) for n ≤ m;

(iii) τk:n (X(Θ1)) ≤st τk−r:n−r (Y (Θ2)) for r ≤ k;

(iv) τk:n (X(Θ1)) ≤st τl:m (Y (Θ2)) for l ≤ k and n− k ≤ m− l. ✷

Now we compare two coherent systems with respect to the hazard rate order. The proof

follows from Theorem 3.2 of Amini-Seresht et al. [1] and our Theorem 3.2.

Theorem 4.2 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes, where n ≥ m. Suppose that {(i), (ii), (iii), (v)} or {(i), (ii), (iv), (v)} holds.

(i) 1
h1(p)

∂h1(p)
∂pi

≥ 1
h2(p)

∂h2(p)
∂pi

, for all i = 1, 2, . . . ,m;

(ii) pi
h2(p)

∂h2(p)
∂pi

is decreasing in each pi, for all i = 1, 2, . . . ,m;

(iii) Xi(θ1) ≤hr Xi(θ2), Xj(θ) ≤hr Yj(θ), and Yj(θ2) ≤hr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m;

(iv) Xi(θ1) ≥hr Xi(θ2), Xj(θ) ≤hr Yj(θ), and Yj(θ2) ≥hr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m;

(v) Θ1 ≤hr Θ2.

Then τ1 (X(Θ1)) ≤hr τ2 (Y (Θ2)). ✷

Below we give an example that illustrates conditions (i) and (ii) of Theorem 4.2.
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Example 4.1 Consider two coherent systems with lifetimes τ1(X) = min{X1,X2, . . . ,Xn}

and τ2(Y ) = min{Y1, Y2, . . . , Yn−1}, where n is even. Further, let {X1,X2, . . . ,Xn} have the

Gumbel-Barnett copula given by

C(p1, p2, . . . , pn) =
n
∏

i=1

pie
−(α

∏n
j=1 ln pj), α > 0, and 0 < pi < 1 for i = 1, 2, . . . , n,

and {Y1, Y2, . . . , Yn−1} have the Gumbel-Barnett copula given by

C(p1, p2, . . . , pn−1) =

n−1
∏

i=1

pie
−(α

∏n−1
j=1 ln pj), α > 0, and 0 < pi < 1 for i = 1, 2, . . . , n− 1.

Then the domination functions of τ1(X) = min{X1,X2, . . . ,Xn} and τ2(Y ) = min{Y1, Y2, . . . , Yn−1}}

are respectively given by

h1(p) = C(p1, p2, . . . , pn)

and

h2(p) = C(p1, p2, . . . , pn−1).

Note that

1

h1 (p)

∂h1 (p)

∂pi
= 1− α

n
∏

j=1,
j 6=i

ln pj, for i = 1, 2, . . . , n, (4.1)

and

1

h2 (p)

∂h1 (p)

∂pi
= 1− α

n−1
∏

j=1,
j 6=i

ln pj, for i = 1, 2, . . . , (n− 1). (4.2)

On using (4.1) and (4.2),

1

h1 (p)

∂h1 (p)

∂pi
≥

1

h2 (p)

∂h2 (p)

∂pi
, for all i = 1, 2, . . . , (n − 1),

and
pi

h2 (p)

∂h2 (p)

∂pi
is decreasing in each pi, for all i = 1, 2, . . . , (n− 1).

✷

In the following theorem we provide a set of sufficient conditions for proving that τ2 (Y (Θ2))

is larger than τ1 (X(Θ1)) with respect to the reversed hazard rate order. The proof follows from

Theorem 3.3 of Amini-Seresht et al. [1] and Theorem 3.3.

Theorem 4.3 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes, where m ≥ n. Suppose that {(i), (ii), (iii), (v)} or {(i), (ii), (iv), (v)} holds.

(i) 1
1−h1(p)

∂h1(p)
∂pi

≤ 1
1−h2(p)

∂h2(p)
∂pi

, for all i = 1, 2, . . . , n;
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(ii) 1−pi
1−h1(p)

∂h1(p)
∂pi

is increasing in each pi, for all i = 1, 2, . . . , n;

(iii) Xi(θ1) ≤rhr Xi(θ2), Xi(θ) ≤rhr Yi(θ), and Yj(θ2) ≤rhr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m;

(iv) Xi(θ1) ≥rhr Xi(θ2), Xi(θ) ≤rhr Yi(θ), and Yj(θ2) ≥rhr Yj(θ1) for all θ, θ1, θ2 ∈ Ω such

that θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m;

(v) Θ1 ≤rhr Θ2.

Then τ1 (X(Θ1)) ≤rhr τ2 (Y (Θ2)).

4.2 Systems with iid components

In this subsection we compare two coherent systems that are formed by iid components. Obvi-

ously, it has its own value when compared with the general case of non-identical components.

We show that under a set of sufficient conditions τ2 (Y (Θ2)) is larger than τ1 (X(Θ1)) with

respect to the usual stochastic order. The proof follows from Theorem 3.1 of Amini-Seresht et

al. [1] and Theorem 3.4.

Theorem 4.4 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of compo-

nents’ lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that

{(i), (ii), (iv)} or {(i), (iii), (iv)} holds.

(i) h1(p) ≤ h2(p) for all p ∈ (0, 1);

(ii) X1(θ1) ≤st X1(θ2) and X1(θ) ≤st Y1(θ), for all θ, θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(iii) Y1(θ1) ≤st Y1(θ2) and X1(θ) ≤st Y1(θ), for all θ, θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(iv) Θ1 ≤st Θ2.

Then τ1 (X(Θ1)) ≤st τ2 (Y (Θ2)). ✷

The next corollary immediately follows from Theorem 4.4 by using Lemma 2.3.

Corollary 4.2 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that Xi’s are iid, and that the Yj’s are iid. Suppose that the set of conditions

{(ii), (iv)} or {(iii), (iv)} in Theorem 4.4 holds. Then

(i) τk:n (X(Θ1)) ≤st τl:n (Y (Θ2)) for l ≤ k;

(ii) τk:n (X(Θ1)) ≤st τk:m (Y (Θ2)) for n ≤ m;

(iii) τk:n (X(Θ1)) ≤st τk−r:n−r (Y (Θ2)) for r ≤ k;

(iv) τk:n (X(Θ1)) ≤st τl:m (Y (Θ2)) for l ≤ k and n− k ≤ m− l. ✷
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The next theorem discusses the same result as in the above theorem but with respect to

the hazard rate order. The proof follows from corollary 3.1 of Amini-Seresht et al. [1] and

Theorem 3.5.

Theorem 4.5 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of compo-

nents’ lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that

{(i), (ii), (iii), (v)} or {(i), (ii), (iv), (v)} holds.

(i) h1(p)/h2(p) is increasing in p ∈ (0, 1);

(ii) ph′2(p)/h2(p) is decreasing in p ∈ (0, 1);

(iii) X1(θ1) ≤hr X1(θ2) ≤hr Y1(θ2) ≤hr Y1(θ1), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(iv) X1(θ2) ≤hr X1(θ1) ≤hr Y1(θ1) ≤hr Y1(θ2), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(v) Θ1 ≤hr Θ2.

Then τ1 (X(Θ1)) ≤hr τ2 (Y (Θ2)). ✷

The following corollary follows from Theorem 4.5 by using Lemma 2.2(i) and Lemma 2.3(ii).

Corollary 4.3 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are iid, and that the Yj’s are iid. Suppose that the set of

conditions {(iii), (v)} or {(iv), (v)} in Theorem 4.5 holds. Then

(i) τk:n (X(Θ1)) ≤hr τl:n (Y (Θ2)) for l ≤ k;

(ii) τk:n (X(Θ1)) ≤hr τk:m (Y (Θ2)) for n ≤ m;

(iii) τk:n (X(Θ1)) ≤hr τk−r:n−r (Y (Θ2)) for r ≤ k;

(iv) τk:n (X(Θ1)) ≤hr τl:m (Y (Θ2)) for l ≤ k and n− k ≤ m− l. ✷

The example to follow illustrates conditions (i) and (ii) of Theorem 4.5.

Example 4.2 Consider two coherent systems with lifetimes τ1(X) = min{X1,X2,X3} and

τ2(Y ) = min{Y1,max{Y2, Y3}}, where both {X1,X2,X3} and {Y1, Y2, Y3} are homogeneous and

have the same FGM copula given by

C(p1, p2, p3) = p1p2p3(1 + x(1− p1)(1 − p2)(1− p3)), for x ∈ [−1, 1].

Then the domination functions of τ1(X) = min{X1,X2,X3} and τ2(Y ) = min{Y1,max{Y2, Y3}}

are given by

h1(p) = C(p, p, p) = p3(1 + x(1− p)3),
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and

h2(p) = 2C(p, p, 1) − C(p, p, p) = 2p2 − p3 − xp3(1− p)3,

respectively. Further, it could be verified that, for all x ∈ [−1, 1],

h1(p)

h2(p)
=

p3(1 + x(1− p)3)

2p2 − p3(1 + x(1− p)3)
is increasing in p ∈ (0, 1),

and

p
h′2(p)

h2(p)
=

4− 3(1 + x)p+ 12xp2 − 15xp3 + 6xp4

2− (1 + x)p+ 3xp2 − 3xp3 + xp4
is decreasing in p ∈ (0, 1),

and hence our claim is proved. ✷

In the next theorem, we prove the similar result as in Theorem 4.5, but for the reversed

hazard rate order. The proof follows from corollary 3.2 of Amini-Seresht et al. [1] and Theo-

rem 3.6.

Theorem 4.6 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are identical, and that the Yj’s are identical. Suppose that

{(i), (ii), (iii), (v)} or {(i), (ii), (iv), (v)} holds.

(i) (1− h1(p))/(1 − h2(p)) is increasing in p ∈ (0, 1);

(ii) (1− p)h′1(p)/(1 − h1(p)) is increasing in p ∈ (0, 1);

(iii) X1(θ1) ≤rhr X1(θ2) ≤rhr Y1(θ2) ≤rhr Y1(θ1), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(iv) X1(θ2) ≤rhr X1(θ1) ≤rhr Y1(θ1) ≤rhr Y1(θ2), for all θ1, θ2 ∈ Ω such that θ1 ≤ θ2;

(v) Θ1 ≤rhr Θ2.

Then τ1 (X(Θ1)) ≤rhr τ2 (Y (Θ2)). ✷

The next corollary follows from Theorem 4.6 by using Lemma 2.2(ii) and Lemma 2.3(iii).

Corollary 4.4 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that Xi’s are iid, and that the Yj’s are iid. Suppose that the set of conditions

{(iii), (v)} or {(iv), (v)} in Theorem 4.6 holds. Then

(i) τk:n (X(Θ1)) ≤rhr τl:n (Y (Θ2)) for l ≤ k;

(ii) τk:n (X(Θ1)) ≤rhr τk:m (Y (Θ2)) for n ≤ m;

(iii) τk:n (X(Θ1)) ≤rhr τk−r:n−r (Y (Θ2)) for r ≤ k;

(iv) τk:n (X(Θ1)) ≤rhr τl:m (Y (Θ2)) for l ≤ k and n− k ≤ m− l.
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5 One of the coherent systems under a random environment

In this section, as previously, we compare two coherent systems with respect to different stochas-

tic orders. However, we assume that one of them operates in a random environment, whereas

the other one operates in a deterministic environment. As was already mentioned, although

this case can be viewed as the special case of the discussion in the previous section, technically

it is more convenient to consider it independently. Let τ1 (X(Θ)) be the lifetime of a coherent

system that operates in a random environment modeled by a random variable Θ with support

Ω. Further, let τ2 (Y ) be the lifetime of the other coherent system that operates in some base-

line, deterministic environment. For a given environment Θ = θ, we denote the domination

function of τ1 (X(θ)) by h1(·). Further, we denote the domination function of τ2 (Y ) by h2(·).

5.1 Systems with not necessarily identical components

In the following theorem we show that under a set of sufficient conditions τ1 (X(Θ)) dom-

inates τ2 (Y ) with respect to the usual stochastic order. The proof follows in the same line as

in Theorem 3.1, and hence omitted.

Theorem 5.1 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Suppose that the following conditions hold.

(i) h1(p1, p2, . . . , pn) ≤ h2(p1, p2, . . . , pm);

(ii) Xi(θ) ≤st Yi for all θ ∈ Ω, and for all i = 1, 2, . . . ,min{m,n}.

Then τ1 (X(Θ)) ≤st τ2 (Y ). ✷

The next corollary immediately follows from Theorem 5.1 by using Lemma 2.5(i).

Corollary 5.1 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are independent, and that the Yj’s are independent. Suppose

that condition (ii) in Theorem 5.1 holds. Then

(i) τk:n (X(Θ)) ≤st τl:n (Y ) for l ≤ k;

(ii) τk:n (X(Θ)) ≤st τk:m (Y ) for n ≤ m;

(iii) τk:n (X(Θ)) ≤st τk−r:n−r (Y ) for r ≤ k;

(iv) τk:n (X(Θ)) ≤st τl:m (Y ) for l ≤ k and n− k ≤ m− l. ✷

The theorem to follow, provides some sufficient conditions for proving that τ1 (X(Θ)) is

smaller than τ2 (Y ) with respect to the hazard rate order. See the Appendix for the proof.

Theorem 5.2 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Suppose that {(i), (ii), (iv)} or {(i), (iii), (iv)} holds.
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(i)
n
∑

i=1

pi
h1(p)

∂h1(p)
∂pi

≥
m
∑

i=1

pi
h2(p)

∂h2(p)
∂pi

;

(ii)
n
∑

i=1

pi
h1(p)

∂h1(p)
∂pi

is decreasing in each pi, i = 1, 2, . . . , n;

(iii)
n
∑

i=1

pi
h2(p)

∂h2(p)
∂pi

is decreasing in each pi, i = 1, 2, . . . ,m;

(iv) Xi(θ) ≤hr Yj for all θ ∈ Ω, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Then τ1 (X(Θ)) ≤hr τ2 (Y ). ✷

On using Lemma 2.4(i) and Lemma 2.5(iv), from Theorem 5.2:

Corollary 5.2 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are independent, and that the Yj’s are independent. Suppose

that condition (iv) of Theorem 5.2 holds. Then

(i) τk:n (X(Θ)) ≤hr τl:n (Y ) for l ≤ k;

(ii) τk:n (X(Θ)) ≤hr τk:m (Y ) for n ≤ m;

(iii) τk:n (X(Θ)) ≤hr τk−r:n−r (Y ) for r ≤ k;

(iv) τk:n (X(Θ)) ≤hr τl:m (Y ) for l ≤ k and n− k ≤ m− l. ✷

Even though the result given in the following theorem is the same as in Theorem 5.2, the

set of sufficient conditions used here is different from the previous one. The proof could be

performed in the same line as in Theorem 5.2 and hence omitted.

Theorem 5.3 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes with n ≥ m. Suppose that the following conditions hold.

(i) pi
h1(p)

∂h1(p)
∂pi

≥ pi
h2(p)

∂h2(p)
∂pi

, for all i = 1, 2, . . . ,m;

(ii) pi
h1(p)

∂h1(p)
∂pi

or pi
h2(p)

∂h2(p)
∂pi

is decreasing in each pi, i = 1, 2, . . . ,m;

(iii) Xi(θ) ≤hr Yi for all θ ∈ Ω, and for all i = 1, 2, . . . ,m.

Then τ1 (X(Θ)) ≤hr τ2 (Y ). ✷

Now we discuss the corresponding result for the reversed hazard rate order. The proof is

deferred to the Appendix.

Theorem 5.4 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Suppose that {(i), (ii), (iv)} or {(i), (iii), (iv)} holds.

(i)
n
∑

i=1

1−pi
1−h1(p)

∂h1(p)
∂pi

≤
m
∑

i=1

1−pi
1−h2(p)

∂h2(p)
∂pi

;
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(ii)
n
∑

i=1

1−pi
1−h1(p)

∂h1(p)
∂pi

is increasing in each pi, i = 1, 2, . . . , n;

(iii)
n
∑

i=1

1−pi
1−h2(p)

∂h2(p)
∂pi

is increasing in each pi, i = 1, 2, . . . ,m;

(iv) Xi(θ) ≤rhr Yj for all θ ∈ Ω, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Then τ1 (X(Θ)) ≤rhr τ2 (Y ). ✷

This corollary follows from Theorem 5.4 by using Lemma 2.4(ii) and Lemma 2.5(v).

Corollary 5.3 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that the Xi’s are independent, and that the Yj’s are independent. Suppose

that condition (iv) in Theorem 5.4 holds. Then

(i) τk:n (X(Θ)) ≤rhr τl:n (Y ) for l ≤ k;

(ii) τk:n (X(Θ)) ≤rhr τk:m (Y ) for n ≤ m;

(iii) τk:n (X(Θ)) ≤rhr τk−r:n−r (Y ) for r ≤ k;

(iv) τk:n (X(Θ)) ≤rhr τl:m (Y ) for l ≤ k and n− k ≤ m− l. ✷

In the next theorem we show that the same result as in Theorem 5.4 holds under a different

set of sufficient conditions. The proof is similar to the previous theorem, and hence omitted.

Theorem 5.5 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes with m ≥ n. Suppose that the following conditions hold.

(i) 1−pi
1−h1(p)

∂h1(p)
∂pi

≤ 1−pi
1−h2(p)

∂h2(p)
∂pi

;

(ii) 1−pi
1−h1(p)

∂h1(p)
∂pi

or 1−pi
1−h2(p)

∂h2(p)
∂pi

is increasing in each pi, i = 1, 2, . . . , n;

(iii) Xi(θ) ≤rhr Yi for all θ ∈ Ω, and for all i = 1, 2, . . . , n.

Then τ1 (X(Θ)) ≤rhr τ2 (Y ). ✷

Below we discuss the corresponding result for the likelihood ratio order. See the Appendix

for the proof.

Theorem 5.6 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Suppose that the following conditions hold.

(i) For all i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

∂h2(q)
∂qj

∂h1(p)
∂pi

is increasing in x, for all θ ∈ Ω,

where pi = F̄Xi
(x|θ), qj = F̄Yj

(x);
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(ii) Xi(θ) ≤lr Yj for all θ ∈ Ω, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Then τ1 (X(Θ)) ≤lr τ2 (Y ). ✷

This corollary follows from Theorem 5.6 by using Lemma 2.6.

Corollary 5.4 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of component’s

lifetimes. Assume that the Xi’s are independent, and that the Yj’s are independent. Suppose

that condition (ii) in Theorem 5.6 holds. Then

(i) τk:n (X(Θ)) ≤lr τl:n (Y ) for l ≤ k;

(ii) τk:n (X(Θ)) ≤lr τk:m (Y ) for n ≤ m;

(iii) τk:n (X(Θ)) ≤lr τk−r:n−r (Y ) for r ≤ k;

(iv) τk:n (X(Θ)) ≤lr τl:m (Y ) for l ≤ k and n− k ≤ m− l.

5.2 Systems with iid components

In this subsection, we consider coherent systems of iid components. In the following theorems,

we compare τ1 (X(Θ)) and τ2 (Y ) with respect to the usual stochastic order, the hazard rate

order, the reversed hazard rate order and the likelihood ratio order. The proofs of these theorems

could be done in the same line as in the previous subsection, and hence omitted.

Theorem 5.7 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that the

following conditions hold.

(i) h1(p) ≤ h2(p) for all p ∈ (0, 1).

(ii) X1(θ) ≤st Y1 for all θ ∈ Ω,.

Then τ1 (X(Θ)) ≤st τ2 (Y ).

Theorem 5.8 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that the

following conditions hold.

(i) h1(p)/h2(p) is increasing in p ∈ (0, 1);

(ii) ph′1(p)/h1(p) or ph′2(p)/h2(p) is decreasing in p ∈ (0, 1);

(ii) X1(θ) ≤hr Y1 for all θ ∈ Ω,.

Then τ1 (X(Θ)) ≤hr τ2 (Y ).
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Theorem 5.9 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of components’

lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that the

following conditions hold.

(i) (1− h1(p))/(1 − h2(p)) is increasing in p ∈ (0, 1);

(ii) (1− p)h′1(p)/(1 − h1(p)) or (1− p)h′2(p)/(1 − h2(p)) is increasing in p ∈ (0, 1);

(ii) X1(θ) ≤rhr Y1 for all θ ∈ Ω,.

Then τ1 (X(Θ)) ≤rhr τ2 (Y ).

Theorem 5.10 Let X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Ym) be two sets of compo-

nents’ lifetimes. Assume that Xi’s are identical, and that the Yj’s are identical. Suppose that

the following conditions holds.

(i) h′1(p)/h
′
2(p) is increasing in p ∈ (0, 1);

(ii) For k = 1 or 2, there exists some point µ ∈ (0, 1) such that

(a) ph′′k(p)/h
′
k(p) is decreasing and positive for all p ∈ (0, µ), and

(b) (1− p)h′′k(p)/h
′
k(p) is decreasing and negative for all p ∈ (µ, 1).

(iii) X1(θ) ≤lr Y1 for all θ ∈ Ω,.

Then τ1 (X(Θ)) ≤lr τ2 (Y ).

Remark 5.1 It is worthwhile to mention, that a corollary corresponding to each theorem dis-

cussed in this subsection could be formulated similar to those given in Subsection 5.1.

6 Concluding Remarks

In this paper, we study an impact of a random environment on lifetimes of coherent systems with

dependent lifetimes. There are two combined sources of the considered dependence. One results

from the dependence of the components of the coherent system operating in a deterministic

environment and the other is due to the dependence of components of a system sharing the same

random environment. We provide different sets of sufficient conditions for the corresponding

stochastic comparisons and consider various scenarios, namely, (i) two coherent systems operate

under the same random environment; (ii) two coherent systems operate under two different

random environments; (iii) one of the coherent systems operates under a random environment,

whereas the other under a deterministic one. Furthermore, we show that some of the proposed

results hold for the well known k-out-of-n and l-out-of-m systems. These systems are very

common in practice.

Motivated by discussions in Amini-Seresht et al. [1], we present solutions for some open
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problems formulated in this paper. We also generalize the results of these authors and present

some new comparisons as well. Specifically, we provide different sets of sufficient conditions

for one system to dominate the other one with respect to different stochastic orders, namely,

usual stochastic order, hazard rate order, reversed hazard rate order and likelihood ratio order.

Moreover, our methodology for obtaining comparisons also differs from that discussed in their

paper.

Even though we have incorporated a large number of new results in this paper, there are

still some open problems left behind. One of them is to generalize the results discussed in

Sections 3 and 4 to the likelihood ratio order.

We believe that the obtained results and the developed methodology can be helpful not only

to the specialists in mathematical reliability theory but for design engineers, reliability analysts,

etc., as engineering systems usually operate in different environments that are random and the

proper comparisons of reliability characteristics can help in choosing or designing the most

appropriate system (e.g., for performing a mission).
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Appendix

Proof of Theorem 3.1: Consider the following two cases.

Case-I: Let m ≥ n. Note that

F̄
τ1(X(Θ))(x) =

∫

Ω
h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ)

≤

∫

Ω
h1
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Yn(x|θ)
)

dFΘ(θ)

≤

∫

Ω
h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

dFΘ(θ)

= F̄
τ2(Y (Θ))(x),

where the first inequality follows from condition (ii) and the fact that h1 (p) is increasing in

each pi. The second inequality follows from condition (ii).

Case-II: Let n > m. Note that

F̄
τ1(X(Θ))(x) =

∫

Ω
h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ)

≤

∫

Ω
h1
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ), F̄Xm+1(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ)

≤

∫

Ω
h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

dFΘ(θ)

= F̄
τ2(Y (Θ))(x),

where the first inequality follows from condition (ii) and the fact that h1 (p) is increasing in

each pi. The second inequality follows from condition (ii). Hence the result is proved. ✷

Proof of Theorem 3.2: We only prove the result under the set of conditions {(i), (ii), (iii)}.

The result could be proved in the same line under the second set of conditions. Note that
m
∑

i=1

rYi
(x|θ2)

[

pi
h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x|θ2)

≥
m
∑

i=1

rYi
(x|θ1)

[

pi
h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x|θ2)

≥

m
∑

i=1

rYi
(x|θ1)

[

qi
h2 (q)

∂h2 (q)

∂pi

]

qi=F̄Yi
(x|θ1)

,

where the first and the second inequalities follow from conditions (ii) and (iii). The above

inequality is equivalent to the fact that

h2
(

F̄Y1(x|θ2), F̄Y2(x|θ2), . . . , F̄Ym(x|θ2)
)

h2
(

F̄Y1(x|θ1), F̄Y2(x|θ1), . . . , F̄Ym(x|θ1)
) is decreasing in x > 0,
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or equivalently,

h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

is RR2 in (x, θ) ∈ (0,∞) × Ω. (6.1)

Further, we have

n
∑

i=1

rXi
(x|θ)

[

pi
h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ)

≥

m
∑

i=1

rXi
(x|θ)

[

pi
h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ)

≥
m
∑

i=1

rYi
(x|θ)

[

pi
h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Xi
(x|θ)

≥

m
∑

i=1

rYi
(x|θ)

[

qi
h2 (q)

∂h2 (q)

∂qi

]

qi=F̄Yi
(x|θ)

,

where the first inequality holds because each term in the summation is nonnegative. The second

inequality follows from conditions (i) and (iii), whereas the third inequality follows from (ii)

and (iii). Thus the above expression can equivalently be written as

h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
) is increasing in x > 0, for all θ ∈ Ω. (6.2)

Again, condition (iii) implies that, for all θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

Xi(θ1) ≤st Xi(θ2) and Yj(θ2) ≤st Yj(θ1). (6.3)

On using this, we get

d

dθ
h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

=
n
∑

i=1

[

∂h1 (p)

∂pi

dpi
dθ

]

pi=F̄Xi
(x|θ)

≥ 0,

and

d

dθ
h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

=

m
∑

j=1

[

∂h2 (q)

∂pi

dpi
dθ

]

pi=F̄Yi
(x|θ)

≤ 0,

or equivalently,

1

h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
) is decreasing in θ ∈ Ω,

and

h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

is decreasing in θ ∈ Ω.

On combining these two get

h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
) is decreasing in θ ∈ Ω, for all x > 0. (6.4)
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On using (6.1), (6.2) and (6.4) in Lemma 2.1, we get, for x1 ≤ x2,
∫

Ω h1
(

F̄X1(x2|θ), F̄X2(x2|θ), . . . , F̄Xn(x2|θ)
)

dFΘ(θ)
∫

Ω h2
(

F̄Y1(x2|θ), F̄Y2(x2|θ), . . . , F̄Ym(x2|θ)
)

dFΘ(θ)

≤

∫

Ω h1
(

F̄X1(x1|θ), F̄X2(x1|θ), . . . , F̄Xn(x2|θ)
)

dFΘ(θ)
∫

Ω h2
(

F̄Y1(x1|θ), F̄Y2(x1|θ), . . . , F̄Ym(x1|θ)
)

dFΘ(θ)
,

or equivalently,

F̄
τ1(X(Θ))(x)

F̄
τ2(Y (Θ))(x)

=

∫

Ω h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ)
∫

Ω h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

dFΘ(θ)
is decreasing in x > 0,

and hence τ1 (X(Θ)) ≤hr τ2 (Y (Θ)). ✷

Proof of Theorem 3.3: We only prove the result under the set of conditions {(i), (ii), (iii)}.

The result could be proved in the same line under the second set of conditions. Note that

n
∑

i=1

r̃Xi
(x|θ2)

[

1− pi
1− h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ2)

≥
n
∑

i=1

r̃Xi
(x|θ1)

[

1− pi
1− h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ2)

≥

n
∑

i=1

r̃Xi
(x|θ1)

[

qi
1− h1 (q)

∂h1 (q)

∂pi

]

qi=F̄Xi
(x|θ1)

,

where the first and the second inequalities follow from conditions (ii) and (iii). The above

expression can equivalently be written as

1− h1
(

F̄X1(x|θ2), F̄X2(x|θ2), . . . , F̄Xn(x|θ2)
)

1− h1
(

F̄X1(x|θ1), F̄X2(x|θ1), . . . , F̄Xn(x|θ1)
) is increasing in x > 0,

or equivalently,

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

is TP2 in (x, θ) ∈ (0,∞) × Ω. (6.5)

Further, we have

m
∑

i=1

r̃Yi
(x|θ)

[

1− pi
1− h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x|θ)

≥

n
∑

i=1

r̃Yi
(x|θ)

[

1− pi
1− h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x|θ)

≥
n
∑

i=1

r̃Xi
(x|θ)

[

1− pi
1− h1 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x|θ)

≥
n
∑

i=1

r̃Xi
(x|θ)

[

1− qi
1− h1 (q)

∂h1 (q)

∂qi

]

qi=F̄Xi
(x|θ)

,

where the first inequality holds because each term in the summation is nonnegative. The second

inequality follows from conditions (i) and (iii), whereas the third inequality follows from (ii)

and (iii). Then the above expression can equivalently be written as

1− h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
) is increasing in x > 0, for all θ ∈ Ω. (6.6)
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Again, condition (iii) implies that, for all θ1 ≤ θ2, and for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

Xi(θ1) ≤st Xi(θ2) and Yj(θ2) ≤st Yj(θ1).

On using this, we get

d

dθ

[

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)]

= −

n
∑

i=1

[

∂h1 (p)

∂pi

dpi
dθ

]

pi=F̄Xi
(x|θ)

≤ 0,

and

d

dθ

[

1− h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)]

= −

m
∑

j=1

[

∂h2 (q)

∂pi

dpi
dθ

]

pi=F̄Yi
(x|θ)

≥ 0,

or equivalently,

1

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
) is increasing in θ ∈ Ω,

and

1− h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

is increasing in θ ∈ Ω.

On combining, we get

1− h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
) is increasing in θ ∈ Ω, for all x > 0. (6.7)

On using (6.5), (6.6) and (6.7) in Lemma 2.1, we get, for x1 ≤ x2,

∫

Ω

[

1− h2
(

F̄Y1(x2|θ), F̄Y2(x2|θ), . . . , F̄Ym(x2|θ)
)]

dFΘ(θ)
∫

Ω

[

1− h1
(

F̄X1(x2|θ), F̄X2(x2|θ), . . . , F̄Xn(x2|θ)
)]

dFΘ(θ)

≥

∫

Ω

[

1− h2
(

F̄Y1(x1|θ), F̄Y2(x1|θ), . . . , F̄Ym(x1|θ)
)]

dFΘ(θ)
∫

Ω

[

1− h1
(

F̄X1(x1|θ), F̄X2(x1|θ), . . . , F̄Xn(x2|θ)
)]

dFΘ(θ)
,

or equivalently,

F
τ2(Y (Θ))(x)

F
τ1(X(Θ))(x)

=

∫

Ω

[

1− h2
(

F̄Y1(x|θ), F̄Y2(x|θ), . . . , F̄Ym(x|θ)
)]

dFΘ(θ)
∫

Ω

[

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)]

dFΘ(θ)
is increasing in x > 0,

and hence τ1 (X(Θ)) ≤rhr τ2 (Y (Θ)). ✷

Proof of Theorem 5.2: We only prove the result under the condition {(i), (iii), (iv)}. The

result follows similarly for the other case. Now, from condition (iv), we have

min
1≤i≤n

rXi
(x|θ) ≥ max

1≤i≤m
rYi

(x) for all θ ∈ Ω. (6.8)
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Then

n
∑

i=1

rXi
(x|θ)

[

pi
h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ)

≥ min
1≤i≤n

rXi
(x|θ)

n
∑

i=1

[

pi
h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ)

≥ max
1≤i≤m

rYi
(x)

m
∑

i=1

[

pi
h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Xi
(x|θ), i=1,2,...,min{m,n},

{pi=F̄Yi
(x), i=n+1,...,m}I[m>n]

≥ max
1≤i≤m

rYi
(x)

m
∑

i=1

[

qi
h2 (q)

∂h2 (q)

∂qi

]

qi=F̄Yi
(x)

≥

m
∑

i=1

rYi
(x)

[

qi
h2 (q)

∂h2 (q)

∂qi

]

qi=F̄Yi
(x)

,

where the first and the fourth inequalities are obvious. The second inequality follows from (6.8)

and condition (i), whereas the third inequality follows from condition (iii) and (iv). Now, the

above inequality implies that

h2
(

F̄Y1(x), F̄Y2(x), . . . , F̄Ym(x)
)

∫

Ω

(

n
∑

i=1

rXi
(x|θ)

[

pi
∂h1 (p)

∂pi

]

pi=F̄Xi
(x|θ)

)

dFΘ(θ)

≥

(

m
∑

i=1

rYi
(x)

[

qi
∂h2 (q)

∂qi

]

qi=F̄Yi
(x)

)

∫

Ω
h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ),

which is equivalent to the fact that

F̄
τ1(X(Θ))(x)

F̄
τ2(Y )(x)

=

∫

Ω h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)

dFΘ(θ)

h2
(

F̄Y1(x), F̄Y2(x), . . . , F̄Ym(x)
) is decreasing in x > 0,

and hence τ1 (X(Θ)) ≤hr τ2 (Y ). ✷

Proof of Theorem 5.4: We only prove the result under the condition {(i), (ii), (iv)}. The

result follows similarly for the other case. Now, from condition (iv), we have

min
1≤i≤m

r̃Yi
(x) ≥ max

1≤i≤n
r̃Xi

(x|θ) for all θ ∈ Ω. (6.9)
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Note that

m
∑

i=1

r̃Yi
(x)

[

1− pi
1− h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x)

≥ min
1≤i≤m

r̃Yi
(x)

m
∑

i=1

[

1− pi
1− h2 (p)

∂h2 (p)

∂pi

]

pi=F̄Yi
(x)

≥ max
1≤i≤n

r̃Xi
(x|θ)

n
∑

i=1

[

1− pi
1− h1 (p)

∂h1 (p)

∂pi

]

pi=F̄Yi
(x), i=1,2,...,min{m,n},

{pi=F̄Xi
(x|θ), i=m+1,...,n}I[n>m]

≥ max
1≤i≤n

r̃Xi
(x|θ)

n
∑

i=1

[

1− qi
1− h1 (q)

∂h1 (q)

∂qi

]

qi=F̄Xi
(x|θ)

≥

n
∑

i=1

r̃Xi
(x|θ)

[

1− qi
1− h1 (q)

∂h1 (q)

∂qi

]

qi=F̄Xi
(x|θ)

,

where the first and the fourth inequalities are obvious. The second inequality follows from (6.9)

and condition (i), whereas the third inequality follows from condition (ii) and (iv). Further,

the above inequality implies that

(

m
∑

i=1

r̃Yi
(x)

[

(1− pi)
∂h2 (p)

∂pi

]

pi=F̄Yi
(x)

)

∫

Ω

[

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)]

dFΘ(θ)

≥
[

1− h2
(

F̄Y1(x), F̄Y2(x), . . . , F̄Ym(x)
)]

∫

Ω

(

n
∑

i=1

r̃Xi
(x|θ)

[

(1− qi)
∂h1 (q)

∂qi

]

qi=F̄Xi
(x|θ)

)

dFΘ(θ),

which is equivalent to the fact that

F
τ1(X(Θ))(x)

F
τ2(Y )(x)

=

∫

Ω

[

1− h1
(

F̄X1(x|θ), F̄X2(x|θ), . . . , F̄Xn(x|θ)
)]

dFΘ(θ)

1− h2
(

F̄Y1(x), F̄Y2(x), . . . , F̄Ym(x)
) is decreasing in x > 0,

and hence τ1 (X(Θ)) ≤rhr τ2 (Y ). ✷

Proof of Theorem 5.6: Note that τ1 (X(Θ)) ≤lr τ2 (Y ) holds if

f
τ1(X(Θ))(x)

f
τ2(Y )(x)

=

∫

Ω

[

n
∑

i=1

(

fXi
(x|θ)

∂h1(p)
∂pi

)

]

dFΘ(θ)

m
∑

i=1

(

fYi
(x)

∂h2(q)
∂qi

)

is decreasing in x > 0,

or equivalently,

n
∑

i=1

[

∫

Ω

(

fXi
(x|θ)

∂h1(p)
∂pi

)

dFΘ(θ)
]

m
∑

i=1

(

fYi
(x)∂h2(q)

∂qi

)

is decreasing in x > 0.
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This holds if, for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

∫

Ω

(

fXi
(x|θ)

fYj
(x)

)





∂h1(p)
∂pi

∂h2(q)
∂qj



 dFΘ(θ) is decreasing in x > 0,

which holds if, for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

fXi
(x|θ)

fYj
(x)

is decreasing in x > 0, for all θ ∈ Ω,

and

∂h1(p)
∂pi

∂h2(q)
∂qj

is decreasing in x > 0,

which are true because of conditions (i) and (ii). ✷
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