
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3963  | https://doi.org/10.1038/s41598-021-83524-2

www.nature.com/scientificreports

Comparative analysis 
of the alveolar microbiome 
in COPD, ECOPD, Sarcoidosis, 
and ILD patients to identify 
respiratory illnesses specific 
microbial signatures
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Nar Singh Chauhan6*

Studying respiratory illness-specific microbial signatures and their interaction with other micro-
residents could provide a better understanding of lung microbial ecology. Each respiratory illness 
has a specific disease etiology, however, so far no study has revealed disease—specific microbial 
markers. The present study was designed to determine disease-specific microbial features and their 
interactions with other residents in chronic obstructive pulmonary diseases (stable and exacerbated), 
sarcoidosis, and interstitial lung diseases. Broncho-alveolar lavage samples (n = 43) were analyzed by 
SSU rRNA gene sequencing to study the alveolar microbiome in these diseases. A predominance of 
Proteobacteria followed by Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria was observed 
in all the disease subsets. Shannon diversity was significantly higher in stable COPD when compared 
to exacerbated chronic obstructive pulmonary disease (ECOPD) (p = 0.0061), and ILD patient samples 
(p = 0.037). The lung microbiome of the patients with stable COPD was more diverse in comparison 
to ECOPD and ILD patients (p < 0.001). Lefse analysis identified 40 disease—differentiating microbial 
features (LDA score (log10) > 4). Species network analysis indicated a significant correlation (p < 0.05) 
of diseases specific microbial signature with other lung microbiome members. The current study 
strengthens the proposed hypothesis that each respiratory illness has unique microbial signatures. 
These microbial signatures could be used as diagnostic markers to differentiate among various 
respiratory illnesses.

Chronic obstructive pulmonary disease (COPD), interstitial lung diseases (ILD), sarcoidosis are dynamic, debili-
tating lung diseases with multiple comorbidities that affect millions of people  worldwide1–3. COPD is character-
ized by persistent respiratory symptoms and airflow limitations due to airway and/or alveolar  abnormalities4. 
Infections can further weaken the airway function and lead to the exacerbations of  COPD5. ILD is a heteroge-
neous group of respiratory disorders presenting with dyspnea, cough, and/or impaired pulmonary  function6. 
Radiologic and histopathologic evaluation of the lungs shows patterns of inflammation and fibrosis among ILD 
 patients7,8.
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These pathophysiological disorders alter lung physiology and could induce lung microbial  dysbiosis9. Studies 
have been initiated to define lung microbiome composition in health and disease subsets to identify microbial 
markers for disease prognosis and timely therapeutic  interventions10–13. Assessment of the temporal and spatial 
organization of lung  microbes14 and the disease-associated key microbes have also been  reported15,16. Several 
studies have indicated lung microbial dysbiosis during the onset of various pathophysiological diseases when 
compared to healthy  controls11,14–22. For instance, an abundance of Streptococcus, Corynebacterium, Alloiococ-
cus, Prevotella, Veillonella, Rothia, Porphyromonas, and Moraxella were associated with COPD  patients14,15,17. 
Haemophilus, Pseudomonas, and Moraxella microbial groups are reported to be enriched in the lung microbiome 
during the onset of exacerbated  COPD14,15,17,18. Similarly, an abundance of Veillonella, Megasphaera, Streptococcus, 
Prevotella, Acidovorax was observed in the lung microbiome of patients with lung  cancer19. Lung microbiome of 
the asthma patients showed enrichment of Haemophilus, Moraxella, Neisseria, Streptococcus, and Staphylococcus 
microbial  species20. Streptococcus, Prevotella, Veillonella, Rothia, Actinomyces, Gemella, Granulicatella, Fusobac-
terium, Neisseria, and Atopobium species are abundant in the lung microbiome of the Cystic fibrosis  patients21. 
The lung microbiome of the sarcoidosis patients has the enrichment of Atopobium and Fusobacterium  species22.

These studies have indicated lung microbial dysbiosis during the onset of various pathophysiological dis-
orders. Despite varied etiology, different pathophysiological conditions showed enrichment of almost simi-
lar microbial groups in each disease subset. Streptococcus, Prevotella, Veillonella, Rothia, and Moraxella are 
over-represented in the lung microbiome of patients with COPD, cystic fibrosis, asthma, and lung  cancer14–22. 
Similarly, Atopobium and Fusobacterium are found enriched within the lung microbiome of patients with cystic 
fibrosis, sarcoidosis, and  ILD21,22. These overlapping results limit the applicability of this information to develop 
respiratory illness-specific molecular diagnostics. We hypothesized that patients with stable COPD, ECOPD 
(exacerbated COPD), sarcoidosis, and other ILDs have varied disease etiology and each disease could have a 
unique lung microbiome profile. The current study was designed to explore the composition and distribution of 
microbial phylotypes in the disturbed physiological states of the lungs. A comparative lung microbiome analysis 
between diseases, instead of comparison with healthy individuals could help to identify respiratory illness-specific 
microbial markers that can be used for diseases-specific diagnosis. This attempt is a first of its kind to conduct 
an alveolar lung microbiome comparison among disease subsets.

Results
Quality of the sequencing dataset. Fourteen patients with stable COPD, thirteen patients with exac-
erbations of COPD, eight patients with ILD, and eight patients with sarcoidosis were enrolled in this study 
(Table 1, Supplementary Tables S1, S2, S3). A total of 1,282,459 raw reads were passed through the quality filter 
and chimera detection resulting in 772,133 (mean per sample: 17,956 ± 1651) high quality and non-chimeric 
reads. Based on dada2, amplicons were clustered into 2329 amplicon sequence variants (ASVs). The coverage of 
our sequencing was assessed by rarefaction curves (Supplementary Fig. S1). ASV tables were rarefied to 4,351 
reads per sample to remove the sequencing biases and represent 2162 ASVs across the 43 samples.

Alveolar microbiome composition. Microbial diversity analysis among different disease groups iden-
tified the prevalence of 19 bacterial phyla representing 120 families and 286 genera. Proteobacteria held an 
overwhelming predominance with an average relative abundance of 58.67%, followed by Firmicutes (20.6%), 
Bacteroidetes (15.11%), Actinobacteria (3.13%), and Fusobacteria (1.1%). The remaining 14 phyla were only 
observed in a fraction of the samples with a combined average abundance of less than 1% (Fig. 1). Proteobacte-
ria were abundant in ILD patients with a relative abundance of 65.71% compared to exacerbated COPD, stable 
COPD patients, and sarcoidosis patients, accounting for 56.54%, 59.68%, and 52.77%, respectively. In contrast, 
Firmicutes were abundant in stable COPD and ECOPD patients, (17.43% and 23.89% of the relative abundance), 
compared to ILD and sarcoidosis patients (Supplementary Table S4). At the family level, we observed the dif-
ference between the disease groups (Table 2 & Supplementary Table S5). The most abundant genera in the four 
disease groups were visualized in a heat map (Fig. 2). A range of genera showed relatively lower abundance but 
had high prevalence. These included Serratia, Prevotella, Streptococcus, Reyranella, Escherichia-Shigella, Neis-
seria, and Ralstonia (Fig. 2). Escherichia-Shigella, Haemophilus, Pseudomonas, and Serratia showed high vari-
ability among the four disease groups. Serratia was the most common genus in all groups except stable COPD. 
Escherichia-Shigella was also consistent among COPD groups along with Pseudomonas. Enterobacter was dif-
ferentially abundant in stable COPD patients while Klebsiella and Staphylococcus were abundant in ILD patients.  

Table 1.  Characteristics of the participants in this study. Data are presented as percentage value or mean ± SD 
as appropriate. BME: Biomass Exposure. *Data not available.

ECOPD (n = 13) Stable COPD (n = 14) Sarcoidosis (n = 8) ILD (n = 8)

Age, years 63.6 ± 5.79 53.6 ± 14.3 44.5 ± 13.1 53.5 ± 10.9

Sex (% male) 76.9 100 62.5 37.5

Smoker (n) 8 10 (3NA*) 1 (1NA*) 2

BME 5 (2NA*) 0 (3NA*) 3 (1NA*) 2



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3963  | https://doi.org/10.1038/s41598-021-83524-2

www.nature.com/scientificreports/

Alpha diversity among disease groups. We found no significant difference in observed richness 
between the diseases (Fig.  3A; p = 0.099, Kruskal–Wallis test). However, using Shannon diversity index, we 
observed statistically significant differences between diseases (Fig. 3B; p = 0.001, Kruskal–Wallis test) with post 
hoc tests revealing higher diversity in stable COPD compared to ILD (p = 0.037), and sarcoidosis (p = 0.004) 
respectively; Mann–Whitney test, Bonferroni adjustment).

Beta diversity among disease groups. Bray–Curtis based PCA plots were analyzed at the genus level 
to understand the community ordination (Fig.  4). This approach revealed extensive overlap in membership 
between the bacterial communities of the ECOPD, stable COPD, ILD, and sarcoidosis disease groups. The first 
two principal components accounted for 29.5% of variance explained, but we did not observe clear clustering. 
The PERMANOVA test was used to assess how much the overall variation could be explained in groups, indicat-
ing no notable separation among the groups (p = 0.0610).

Microbial taxa associated with disease groups. LEfSe identified 40 discriminative features, out of 
which, thirty taxa were discriminative for stable COPD patients, four taxa for ILD patients, and three taxa 
for ECOPD and sarcoidosis patients (Fig. 5). Taxa belonging to Firmicutes were significantly more abundant 
(p < 0.05) among ECOPD patients. Proteobacteria were more abundant among ILD patients, while Actinobac-
teria and Proteobacteria were significantly more abundant (p < 0.05) in sarcoidosis patients. On the other hand, 
Chlamydiae along with Firmicutes and Proteobacteria were significantly more abundant (p < 0.05) in ECOPD 
patient’s lungs (Supplementary Table S6). In ECOPD patients, the microbiome was characterized by a prepon-
derance of Streptococcus (LDA score [log10] > 4), whereas in the stable COPD patients, there was a preponder-
ance of Actinobacillus (LDA score [log10] > 4). However, ILD patient`s microbiome showed a very high abun-
dance of Haemophilus (LDA score [log10] > 4), while Corynebacterium was abundant in the sarcoidosis patient`s 
(LDA score [log10] > 3).

Figure 1.  Microbiota composition at phylum level in each disease group. Stacked bar plot showing the mean 
relative abundance, at phylum level, for each disease. Phyla with a mean relative abundance below 1% for all 
diseases were excluded from the plot.

Table 2.  The five families most commonly identified from each disease groups and their percentage.

Family
Exacerbation 
COPD Family ILD Family Stable COPD Family Sarcoidosis

Enterobacteriaceae 19.53 Enterobacteriaceae 22.98 Pasteurellaceae 12.61 Prevotellaceae 13.43

Streptococcaceae 11.69 Pasteurellaceae 15.36 Reyranellaceae 11.90 Burkholderiaceae 12.09

Prevotellaceae 8.02 Prevotellaceae 8.30 Prevotellaceae 10.92 Streptococcaceae 11.34

Pseudomona-
daceae

7.96 Staphylococcaceae 7.77 Burkholderiaceae 10.10 Enterobacteriaceae 10.14

Pasteurellaceae 7.81 Streptococcaceae 7.34 Enterobacteriaceae 9.61 Reyranellaceae 8.62
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Figure 2.  Heat map showing 50 most abundant genera in the four groups of samples. Columns represent the 
groups and rows the genera and their relative abundance. The color key represents the relative abundance of 
each genus.

Figure 3.  Observed richness (A) and Shannon diversity index (B). Comparing two groups using Mann–
Whitney test; ^comparing two or more groups using Kruskal–Wallis test. p < 0.05 denotes statistical significance.
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Functional annotation of the lung microbiome. Predicated phenotypes based on taxonomic classifi-
cation indicated that the majority of microbes were mesophilic (> 65%), gram-negative (> 74%) Bacillus (> 62%). 
A majority of the lung microbes were generally considered to be associated with humans (> 60%), while the 
remaining microbes were not commonly associated with a specific environment (> 30%). The majority of the 
identified lung microbes predict a higher potential for the onset of various human disorders. The percentage of 

Figure 4.  Principal component analysis. Dots represent samples and color represents different disease groups. 
First two principal components (PC) explained 29.5% of the variance.

Figure 5.  LDA shows distinct lung microbiome composition associated with ECOPD, stable COPD, ILD and 
sarcoidosis. LDA scores as calculated by LEfSe of taxa differentially abundant in different disease group. Only 
taxa with LDA scores of more than three and p value < 0.05 are shown here.
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such microbes was higher in the samples from sarcoidosis and other ILD groups (> 71–85%) as compared with 
the COPD group (62–70%). The majority of the microbes from COPD lung were found to play a significant role 
in ammonia oxidation, sulfur metabolism, and complex carbohydrate catabolism. Lung microbes in sarcoidosis 
and other ILD groups seemed to play a significant metabolic role in polyphenol metabolism and dehalogenation 
reactions in addition to the function carried out by COPD inherent microbes.

Core microbiome and its association with diseases. Common members of a microbial commu-
nity often perform moderate functioning of the host-microbial symbiotic system. We estimated a high degree 
of similarity between the core microbiome for each of the four diseases. Ten ASVs were shared among all of 
them; these belonged to the genera Reyranella, Ochrobactrum, Mesorhizobium, Ralstonia, Achromobacter, Pseu-
domonas, Streptococcus, Granulicatella, and two unclassified genera belonging to Xanthobacteraceae. Moreover, 
there were 11 ASVs unique to patients with sarcoidosis, three to ECOPD, 12 ASVs to stable COPD, and only two 
ASVs to ILD (Supplementary Table S7, Supplementary Fig. S3).

To gain insight into the interaction between bacterial species in the lung microbiome, we performed a spe-
cies network analysis (only correlations with an absolute value of 0.60, p < 0.05). Examination of the microbial 
network revealed that Xanthobacteraceae were highly connected with multiple other ASVs among all the disease 
groups (Fig. 6).

In ECOPD patients Escherichia-Shigella (Fig. 6A) positively correlated with Subdoligranulum, Catenibacte-
rium, and negatively correlated with Chryseobacterium and Prevotella. Conversely, one of the most abundant 
genera i.e., Streptococcus showed a negative correlation with Dialister, Ralstonia, and Christensenellaceae R-7 
groups. However, the rest of the most abundant genera i.e., Serratia, Haemophilus, and Pseudomonas did not 
correlate with any other genera. In the stable COPD subjects (Fig. 6B), the most abundant genus was Reyranella, 
which was negatively correlated with Haemophilus and Streptococcus whereas positively correlated with seven 
other genera that belong to Achromobacter, Chryseobacterium, Mesorhizobium, Elizabethkingia, Sphingobacte-
rium, Ralstonia, Xanthobacteraceae family. The other two most abundant genera were Escherichia-Shigella and 

Figure 6.  Bacterial co-existence and co-exclusion relationships with ASVs and different diseases. Each node 
represents ASVs. Each edge represents a significant correlation colored by co-existence (orange) or co-exclusion 
relationships (blue). The size of the node corresponds to its degree of connectivity, while edge lengths are 
arbitrary. ECOPD (A), stable COPD (B), sarcoidosis (C), and ILD (D).
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Haemophilus, both of which belong to the Proteobacteria phylum. Escherichia-Shigella showed a strong positive 
correlation with Dialister and Agathobacter, whereas it was negatively correlated with Elizabethkingia. On the 
other hand, Haemophilus showed no correlation with any other genera.

The sarcoidosis disease group (Fig. 6C) had the most negative connections with other members of the micro-
biota. Most abundant genera belonged to Serratia, Prevotella, Streptococcus, Reyranella, and Ralstonia. Except 
for the Serratia, which did not show any correlation, all other dominant genera showed a strong correlation 
with other genera in the group. Prevotella and Streptococcus genera were mostly negatively correlated, whereas 
Reyranella and Ralstonia showed a positive correlation.

In the ILD subjects (Fig. 6D), the most abundant genus, Hemophilus, did not show any correlation with others. 
Moreover, Streptococcus sp. showed correlation with 11 out of 14 genera in this group. It was found to be posi-
tively correlated with three genera and negatively correlated with eight different genera. Despite the abundance 
of the Klebsiella genera, it was positively correlated only with Pseudomonas aeruginosa and negatively correlated 
with Mesorhizobium sp.

Discussion
The present results confirm earlier reports that the human respiratory tract contains a diverse  microbiome23. Lung 
microbiome composition is influenced by the onset of respiratory illness, as well as with the usage of steroids, 
aerosols, and  antibiotics24,25. During airway diseases, lung microbiome can exacerbate the diseases, leading to 
increased levels of morbidity and  mortality15. Using the NGS platform, diverse non-cultivable bacteria were found 
in the respiratory  tract10. This study has explored the alveolar microbiome of the patients with COPD (stable and 
exacerbation), ILD, and sarcoidosis to understand the similarities & differences between the disease-associated 
microbial phylotypes. We have accessed the composition, diversity, and core microbiome for each disease and 
identified which aspects are related to lung diseases in general and which are diseases specific. Additionally, to 
our knowledge, this is the first alveolar microbiome report among the Indian population.

It was found that the microbial members of the bronchial microbiome do not change significantly in 
COPD  patients26,27. However, the predominance of Proteobacteria in the present study is in line with previous 
 studies14,15,17,18. We observed a higher abundance of Firmicutes in stable COPD and ECOPD subjects compared 
to ILD and sarcoidosis groups. We found a higher alpha diversity in the stable COPD group in comparison to 
the other groups. A similar observation was found in previous  studies14,28. Three taxa show a significant abun-
dance in ECOPD patients- Streptococcus, Faecalibacterium, and Coprococcus. Streptococcus is the most widely 
recognized microbe found in COPD  patients14,17. Faecalibacterium is a common resident of the human gut, while 
Coprococcus is usually found in the sputum, however, what role the latter two play in humans in the human lung 
is still unexplored.

Few efforts have been made to explore lung microbiome in the patients with sarcoidosis and other types 
of  ILD23,29 and these studies were unable to differentiate the lung microbiome structure among these disease 
 subtypes23. We were able to identify differences in their microbial composition. We found an increase in Act-
inobacteria and a decrease in Proteobacteria in sarcoidosis patients as compared to ILD subjects. The increased 
relative abundance of Streptococcus and Staphylococcus has been reported to contribute to disease progression 
in idiopathic pulmonary  fibrosis29. Similarly, we also observed a higher relative abundance of Streptococcus and 
Staphylococcus in the ILD groups, as well as an increased alpha diversity in sarcoidosis compared to ILD patients. 
Besides, PCA showed differences in microbial variation between COPD (stable and exacerbation), ILD, and sar-
coidosis patients. Moreover, current data show a significantly higher abundance of taxa belonging to the genera 
Haemophilus, Stenotrophomonas, and Enterobacteriaceae family in the ILD group, whereas Corynebacterium and 
Neisseria are more abundant in the sarcoidosis group. However, Haemophilus, known as pathogenic-bacteria, is 
usually observed in COPD  patients30.

ILD groups have enriched unique microbial groups. Moreover, we also observed a significantly higher abun-
dance of Haemophilus in stable COPD groups. These deviations could be seen as a possible outcome of diverse 
ethnicity, as commonly observed in other human microbiome  studies31,32.

When we compared the core microbiome of COPD (stable and exacerbation), ILD, and sarcoidosis patients, 
we observed that eleven taxa were shared among these disease groups. This supports the idea that many features 
shared between microbiota differ compositionally between these disease groups. Additionally, the core alveolar 
microbiome in respiratory illness was found altered as compared to that of a healthy lung microbiome. Core lung 
microbiome of a healthy individual harbors nine microbial  genera33,34 of which only Pseudomonas, Streptococ-
cus, Prevotella, and Sphingobacterium were shared within the studied core microbiomes. This result supports 
the hypothesis that the microbiome biotransformation may lead to the onset of pathophysiological  disorders35.

Furthermore, in the genus-level abundance network analysis, Xanthobacteraceae were highly connected with 
multiple other nodes between all the disease groups, indicating it as a keystone microbial taxon. Most of the 
genera in stable COPD, ECOPD, ILD, and sarcoidosis patients showed both positive and negative correlation; 
however, ECOPD and stable COPD patients showed a more positive correlation. We also noticed many potential 
clinically relevant taxa such as Streptococcus sp. (observed in all diseased groups), Haemophilus sp. (observed 
in stable COPD patients), Escherichia-Shigella sp. (observed in stable and ECOPD patients), and Pseudomonas 
aeruginosa (observed in stable COPD and ILD patients), show correlation with other  taxa14–22. However, cor-
relations between taxa are not proof of functional relationships between members of the community. Therefore, 
further studies are required to focus on the functional role of such taxa found within these communities.

The present study has used very stringent inclusion criteria for patients screening. Though it has allowed 
the identification of unbiased disease-specific samples, but also reduced the number of samples (~ 50 fold) for 
the downstream analysis. Due to the limitation of samples, the current study is slightly underpowered and 
higher numbers of samples are required to statistically strengthen the proposed claims. However, this pilot 
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study provides preliminary evidence in support of the hypothesis that there are diseases specific differences in 
the microbiomes of COPD (stable and exacerbation), ILD, and sarcoidosis patients.

Moreover, our study adds further insights into the microbial composition of the lung microbiota of Indian 
patients suffering from COPD, ILD, or sarcoidosis. Each disease subtype has differential microbial phylotypes that 
correlate with the abundance profile of other microbial taxa to possibly remodel the lung microbiome structure. 
This study enhances our understanding of lung microbial ecology in various respiratory illnesses. Identified 
microbial signatures could be utilized as prognostic markers for respiratory disease diagnosis and therapeutics.

Methods
Patient recruitment and Broncho-Alveolar Lavage (BAL) sample collection. This study was 
approved by the institutional human ethics committee, Vallabhbhai Patel Chest Institute, University of Delhi, 
Delhi, India. Adult patients with stable COPD, both male and female with a history of smoking (> 10 pack-years) 
and/or biomass fuel exposure (> 10 years) attending Vallabhbhai Patel Chest Institute were invited to participate 
in the study. Patients classified as having exacerbated COPD if they presented within increased cough or sputum 
production. All patients suspected of ILD underwent clinical evaluation including detailed history and exami-
nation. The diagnosis of ILD was made based on the American Thoracic Society/European Respiratory Society 
International Multidisciplinary Consensus Classification of Idiopathic Interstitial Pneumonia 2001  guidelines36. 
Similarly, the diagnosis of sarcoidosis was made based on the compatible clinical, radiological, laboratory, and 
where available, histopathological parameters, as per the joint statement of the American Thoracic Society, the 
European Respiratory Society, and the World Association of Sarcoidosis, and Other Granulomatous Disorders 
(ATS/ERS/WASOG), and also the simultaneous exclusion of any other cause of the granulomatous  disorder37. 
Since Bronchoscopy was used as a diagnostic criterion, patients were excluded if they have taken antibiotics or 
steroids prior to their inclusion.

After providing written informed consent, the patients underwent bronchoscopy as per the British Thoracic 
Society (BTS) guidelines for bronchoscopy 2013. This study included bronchoalveolar lavage collected from 
ECOPD (n = 13), stable COPD (n = 14), ILD (n = 8), and sarcoidosis (n = 8) patients, as well as saline buffer passed 
through a bronchoscope to be used as negative control.

Metagenomic DNA isolation from BAL samples and 16S rRNA gene sequencing. Each BAL 
sample (1.5 ml) was centrifuged at 13,000 rpm for 1 min to collect the bacterial pellet. The bacterial pellet was 
processed with the alkaline lysis  method38. Metagenomic DNA quantification was performed with Qubit 2.0 
using high sensitivity DNA quantification kit (Invitrogen, USA). All samples were diluted to a DNA concentra-
tion of 25 ng μl-1. The V3-V4 region of the bacterial 16S rRNA gene was amplified using gene-specific primer 
sequences (Fwd 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACGGGNGGC WGC AG-3` and 
Rev 5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTACHVGGG TAT CTA ATCC-3`)39. Nex-
tera XT Index kit (Illumina, USA) was used to index each sample during library preparation following Illumina 
technology workflow document (www.suppo rt.illum ina.com). The indexed 16S rRNA amplicons were pooled in 
equimolar concentration followed by paired-end sequencing on the Illumina MiSeq platform using paired-end 
MiSeq 600 cycle V3 sequencing Kit following manufacturer  instructions39.

Sequence and statistical analyses. Primers were removed from the MiSeq demultiplex FASTQ using 
“cutadapt"40. Further, reads were analyzed by the QIIME2  pipeline41 through  dada242 to infer the presence and 
relative abundance of amplicon sequence variants (ASVs) across the samples. Based on data-derived rates of 
Illumina sequencing errors, dada2 estimated an abundance distribution of distinct ASVs, which may differ by 
only a single nucleotide. Using read quality scores for the dataset, forward and reverse reads were truncated at 
270 bp and 200 bp, followed by trimming the 5`-end till 6 bp for both forward and reverse reads, respectively; 
other quality parameters used dada2 default values. Taxonomy was assigned using a pre-trained Naïve Bayes 
classifier (Silva database, release 132)43. The rarefaction curves (Supplementary Fig. S1) show the observed rich-
ness and Shannon diversity. To avoid the bias due to sampling depth, we rarefied our dataset to 4351 high-quality 
sequences per sample (90% of the minimum sample reads) using an in-house script. The function rarefies each 
sample 100 times, calculates the mean and standard deviation for observed richness and Shannon diversity 
index, and returns the ASV counts for the iteration with the lowest mean Bray–Curtis distance among the 100 
iterations.

All downstream analyses were performed on this rarefied ASVs table unless otherwise mentioned. We used 
two diversity indices i.e., observed richness, the number of taxa present in a sample at a particular taxonomic 
level, and Shannon diversity index, a composite measure of both species richness and evenness. Alpha and beta 
diversity was calculated using phyloseq v1.20.044 and visualized with ggplot2 v2.2.1in R v3.4.1.45. Comparison 
of community richness and diversity between the four disease groups was assessed by the Kruskal–Wallis test, 
with post hoc tests, performed using the Mann–Whitney test with Bonferroni adjustment applied. Significance 
testing between the disease groups for beta diversity was assessed using the PERMANOVA (permutational 
multivariate analysis of variance). LEfSe was used to identify the microbiological markers associated with stable 
COPD, ECOPD, ILD, and sarcoidosis disease groups by linear discriminate analysis (LDA) effect size of 3, and 
for multiclass analysis one-against-all option was used with default  parameters46.

Functional annotation of the lung microbiome. The taxonomically affiliated OTU table was used to 
annotate physiological functions and the lifestyle of human lung microbes associated with various disease sub-
sets with the METAGENassist  server47.

http://www.support.illumina.com
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Core microbiota and bacterial co-occurrence. Considering the variable nature of metagenomic com-
positional data, we performed further analysis only for conserved taxa. Towards this, we estimated core micro-
biota within the samples with a presence in at least 50% of the samples within each disease group on the non-
rarefied data. We examined co-occurrence patterns using network analysis on the core microbiota using Sparse 
Correlations for Compositional data algorithm (SparCC) with a bootstrap procedure repeated 100  times48. Co-
occurrence was considered robust when the correlations (either positive or negative) were both ≥ 0.6 and corre-
lation coefficients with two-tailed p values smaller than 0.05. The correlation was imported into Cytoscape v3.6.0 
to build the co-occurrence network, where each node represents taxa and the edges between the nodes represent 
the correlation coefficients between  taxa49.

Ethics approval and consent to participate. This study was carried out by following the recommenda-
tions of the Indian Council of Medical Research, India guidelines for biomedical research, with written informed 
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