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Characterizing noisy quantum processes is important to quantum computation and communica-
tion (QCC), since quantum systems are generally open. To date, all methods of characterization of
quantum dynamics (CQD), typically implemented by quantum process tomography, are off-line, i.e.,
QCC and CQD are not concurrent, as they require distinct state preparations. Here we introduce a
method, “quantum error correction based characterization of dynamics”, in which the initial state
is any element from the code space of a quantum error correcting code that can protect the state
from arbitrary errors acting on the subsystem subjected to the unknown dynamics. The statistics
of stabilizer measurements, with possible unitary pre-processing operations, are used to characterize
the noise, while the observed syndrome can be used to correct the noisy state. Our method requires
at most 2(4n − 1) configurations to characterize arbitrary noise acting on n qubits.

I. INTRODUCTION

The principal difficulty in implementing quantum com-
putation physically is environment-induced noise, which
decoheres the quantum system, resulting in the loss of
superposition and of entanglement. The noise acting on
a quantum system starting initially in a product state
with its environment is described by a completely posi-
tive (CP) map and is represented by the Kraus operators
[1] Ej ≡

∑

i αi,jFi, where Fi is an element from an opera-
tor (or error) basis satisfying the orthogonality condition

Tr(FiF
†
j ) = dδi,j , where δi,j is the Kronecker delta, and

d = 2p is the dimension of the system, consisting of p
qubits. Thus, if ρ represents the initial quantum state,
then

E(ρ) =
∑

j

EjρE
†
j =

∑

m,n

χm,nFmρF †
n (1)

where χm,n ≡
∑

j αj,mα∗
j,n is a Hermitian matrix (the

“process matrix”) in the d2-dimensional Hilbert-Schmidt
space of linear operators acting on the system of di-
mension d. From the completeness condition, we have
∑d2

j=1 E
†
jEj =

∑

m,n χm,nF
†
mFn = I, which imposes d2

conditions, so that the matrix χ has d4−d2 independent
real elements. Since taking trace on both sides yields
∑

j χj,j = 1, the (positive) diagonal elements of χ can be
interpreted as probabilities. In this work, Fj are multi-
qubit Pauli operators, which is appropriate for employing
the QEC formalism.
The characterization of noisy quantum processes,

namely determining the matrix elements χm,n, was ini-
tially addresed by standard quantum process tomography
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(SQPT) [1, 2]. Here the system undergoing the unknown
noisy dynamics is initially prepared in suitable states and
subjected to state tomography measurements. In ancilla-
assisted process tomography (AAPT) [3], the principal
system P and an ancillary system A are prepared in suit-
able initial states, and information about the dynamics of
P is extracted via quantum state tomography on the joint
system using separable or non-separable basis measure-
ments. SQPT and AAPT are indirect in that they first
obtain full state tomographic data µm,n = Tr(ρmE(ρn))
on input states ρn, and then invert this exponentially
large data (of size d4 − 1 in SQPT and d4 − d2 in AAPT
under trace-preserving noise) to derive χ.
By contrast, direct characterization of quantum dy-

namics (DCQD) [4, 5], bypasses the state tomography. It
uses quantum error detection measurements augmented
by normalizer measurements in a code-space determined
by stabilizers corresponding to Bell-state measurements.
Other recent developments include the characterization
of noise using an efficient method for transforming a
channel into a symmetrized (i.e., having only diagonal
elements in the process matrix) channel via twirling [6],
suitable for identifying quantum error correcting codes
(QECCs) [7]. Recently, three independent proposals have
been presented to rapidly estimate the channel using
quantum error correction (QEC) techniques [8–10], which
aim for concurrent preservation of quantum information,
rather than for process tomography of the dynamics of
P. A method similar to [6], but extended to efficiently
estimate any given off-diagonal term, was introduced in
Ref. [11].
Suppose we have a situation where it is known with

reasonable confidence that an arbitrary noise is restricted
to a certain known, sufficiently small subsystem of a
quantum computation and communication (QCC) de-
vice, say a quantum computer. One can construct
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QECCs that would protect against the noise. On the
other hand, the statistics of the measured syndrome out-
comes could be used for characterization of that noise,
which could be useful for other quantum information
processing tasks. A method that helps combine QCC
and characterization of quantum dynamics (CQD) would
thus surely help save valuable quantum resources. In this
work, we present such a method, a QEC-based charac-
terization of quantum dynamics (QECCD). The reason
that the noise must be restricted to a known subsystem
of the quantum computer is that the allowed errors must
form a group, for a reason that will become clear later.
Without the subsystem restriction, our method can still
be used to determine the diagonal terms of the process
matrix in the Pauli representation.

From the perspective of CQD, our method allows ini-
tial states that are not fixed but, instead, can be any
thing in the code space of a QECC. This means that
the noise characterization is indifferent to certain kinds
of errors in state preparation, namely those that keep
the state within the stabilized code space. Our method
is presently restricted to CP–but not necessarily trace-
preserving–maps, though the QEC formalism is known
[12] to be applicable even to non-CP maps.

The remainder of this work is as follows. Section II
presents the basic motivation for using QECC for CQD.
The basic intuition here is an isomorphism that can be
established between the allowed noise and the erroneous
version of the logical state. In Section IIA, we introduce
a different type of stabilizer codes that are suitable for
CQD. These are QECCs that correct all possible errors
that occur on known coordinates and form a group. Here
we give an example of a five-qubit QECC that corrects
all errors on the first two qubits, and furthermore is per-
fect (i.e., it saturates the quantum Hamming bound). In
Sec. II B, we show how the statistics of syndrome out-
come data on this kind of QECCs can be used to read
off the diagonal terms of the process matrix. Accessing
off-diagonal terms is a bit more involved. In principle, a
suitable unitary can be used to rotate off-diagonal terms
in such a way that a syndrome measurement can access
them. We show how this is done in Sec. II C. However,
this method can only access the real or imaginary part
of off-diagonal terms. In Sec. IID, we show how a “tog-
gling” can be customized to the above unitary, such that
the real and imaginary parts of the accessed off-diagonal
terms can be ‘toggled’, i.e., exchanged, so that after tog-
gling, the method of Sec. II C can be used. In Sec. III,
we consider experimental aspects. We point out that var-
ious QECCD experiments are well within the reach of an
experimental facility (NMR, quantum optics, etc.) where
entanglement generation and manipulation are done. An
example of QECCD of a single-qubit noise, that would be
suitable for experimental implementation, is worked out
in detail. To this end, we introduce a new three-qubit
perfect stabilizer code, which is applied to an amplitude
damping channel on the first qubit. Finally, we conclude
in Sec. IV.

preparation
  Ancilla

 System

   State Unitary operation

syndrome measurement
        and

FIG. 1. (Color online) Scheme for QECCD: The principal sys-
tem P (subjected to the uncharacterized noise E) plus CQD
ancilla A (assumed to be noiseless) are prepared in a QECC-
encoded state. After P is subjected to channel E (assumed
correctable by the QECC used), the stabilizers are measured
on the joint system, possibly following unitary operation U

or US+.

II. NOISE CHARACTERIZATION AND QECCS

Like DCQD, our method is direct and requires ini-
tial entangled states. However, unlike DCQD and other
quantum process topography (QPT) methods, QECCD
requires no special initial state preparation: any state in
the 2k-dimensional code space of an [[n, k]] n-qubit sta-
bilizer code for QEC is appropriate, provided the code
corrects arbitrary errors on m (< n) known coordinates
of P. The syndrome obtained from the stabilizer mea-
surement can be used to correct the noisy state, while
the experimental probabilities of syndromes will contain
information about the noise channel.
We recollect that the code is a subspace C, whose

projector ΠC satisfies the error correcting condition
ΠCF †

aFbΠC = CabΠC , where Cab is a Hermitian matrix
[13]. In the case of non-degenerate QECCs (where Cab is
non-singular), this defines a bijective mapping between
the allowed noise channel and states in the error ball

about any QECC-encoded state |ΨL〉, akin to a Choi-
Jamiolkowski isomorphism [14]. This follows from the
one-to-one correspondences:

E ←→ {χm,n} ←→
∑

m,n

χm,n|Ψm
L 〉〈Ψn

L|, (2)

where the first correspondence follows by definition, and
the second from the fact that {|Ψm

L 〉 ≡ Fm|ΨL〉} forms
a basis in the error ball about |ΨL〉. QECCD can be
seen as exploiting the QECC isomorphism to determine
matrix χ in that various measurements on E(|ΨL〉〈ΨL|),
the noisy version of the initial logical state |ΨL〉, will suf-
fice to extract all information about E , while extracting
no information about the encoded state |Ψ〉. This re-
sult is non-trivial, since such an isomorphism exists quite
generally for arbitrary QECCs, but the experimental ac-
cessibility of off-diagonal terms of the process matrix in
the Pauli representation is possible in this approach only
when the allowed errors form a group. Thus a general
QECC cannot necessarily serve QECCD.
The scheme for QECCD is depicted in Fig. 1. Some

of the qubits will be allowed to be noisy and others are
assumed to be clean. The former qubits constistute the
principal system P; the latter the CQD ancilla A.
Suppose the full system P +A is in the state |ΨL〉 ≡

∑2k−1
j=0 βj |jL〉, where {|jL〉} denotes a logical basis for
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the code space of a [[p + q, k]] QECC (which encodes k
qubits into n ≡ p + q qubits) such that allowed errors
in the p known coordinates of P can be detected and
corrected. An assumption here is that no (appreciable)
errors occur on the q ancillary qubits. The stabilizers
Sj are a set of p + q − k mutually commuting binary
n-qubit observables that stabilize the code space (i.e.,
Sj |jL〉 = |jL〉). Correctable errors Fi are such that for
any pair Fi, Fj (i 6= j), there is at least one Si that anti-
commutes with the product FiFj . This ensures that the
eigenvalue pattern for each correctable error, which is the
error syndrome, is distinct. The Hamming bound [13] in
this case is given by 2kV ≤ 2p+q, where V is the size of
the error ball, here the set of all possible errors in P, so
that V =

∑p
r=0

(

p
r

)

3r · 1p−r = 4p = d2 (since d = 2p).
The Hamming bound for QECCD is thus q ≥ k + p.

A. A class of stabilizer codes suitable for CQD

To see the connection between QEC and CQD, con-
sider the [[5, 1]] code that saturates the Hamming bound
for an arbitrary single-qubit error on any qubit:

|0L〉 =
1

2
√
2
(|00000〉+ |00110〉+ |01001〉 − |01111〉

− |10011〉+ |10101〉+ |11010〉+ |11100〉)
|1L〉 = XXXXX|0L〉, (3)

where the states are represented in the computational
basis, and X is the Pauli-X operator. We note that
the above code words satisfy the error correcting condi-
tions when the allowed errors are arbitrary errors on the
first two qubits. Thus, let the first two qubits constitute
P, subjected to unknown dynamics, while the remaining
three are CQD ancillas. There are 16 basis elements for
the general noise acting on these two qubits, represented
byXuZv, where u = (u1, u2) and v = (v1, v2) are vectors
defined over GF (2).
The stabilizer generators

G ≡ {IZZZZ,XXXII, ZXZIX,ZZXXI} (4)

uniquely determine the four syndromes to be (u2, v1 ⊕
v2, u1 ⊕ v2, u1 ⊕ u2). It is worth stressing that code (3)
is different from that in Ref. [15] because the stabiliz-
ers, and thus the set of correctable errors, are different,
even though the code words are the same. The main
point for QECCD is that the set E of correctable er-
rors (up to scalar factors ±1 and ±i), form a group,
the error group. This is reflected in the above Ham-
ming bound for QECCD. Suppose the unknown dynam-
ics is a (correlated) noise given by the Kraus operators
{√1− pI,

√
pX1X2}. From Eq. (1) one finds that the

probability that no error happens, and thus that to ex-
perimentally find the no-error syndrome (1, 1, 1, 1), is
χI,I = 1−p. Similarly, the syndrome (−1, 1,−1, 1) for er-
ror X1X2 occurs with probability χX1X2,X1X2

= p. The
syndrome carries information only about the noise, and

nothing about the encoded state, and can be used to cor-
rect the noisy version of |ΨL〉, while the error statistics
determined by the syndrome outcomes helps determine
the elements of matrix χ. (There are no off-diagonal
terms of χ for this channel in the Pauli operator repre-
sentation.)
Now consider a variant of the above example, wherein

we consider letting P be all 5 qubits, while the noise is
taken to be an arbitrary one-qubit error on any one qubit.
This is just the five-qubit code of Ref. [15]. Though the
above five-qubit QECC is suitable for QEC here, still the
correctable errors do not form a closed set and, thus, do
not constitute an error group: e.g., while X1 and Y2 can
be corrected, their product X1Y2 cannot. Although the
diagonal terms of the process matrix can still be calcu-
lated, for the off-diagonal terms, our method requires this
closure property.

B. Determining the diagonal terms of χm,n

Given E known to be correctable by a non-degenerate
QECC Q, but otherwise uncharacterized, a single config-
uration suffices to determine all diagonal elements χm,m

via measurement of the (mutually commuting) stabiliz-
ers of Q. We refer to the corresponding observable as the
syndrome operator, Σ. The measurement of syndrome x,
corresponding to error Fx, collapses the noisy state into
the pure state Fx|ΨL〉, which can be corrected by apply-
ing F †

x = Fx. The probability of obtaining outcome x
is:

ξ(x) = Tr



E (|ΨL〉〈ΨL|)





2k−1
∑

J=0

|Jx〉〈Jx|









= 〈Ψx
L|





d2−1
∑

m,n

χm,n|Ψm
L 〉〈Ψn

L|



 |Ψx
L〉

=

d2−1
∑

m,n=0

χm,nδx,mδx,n = χx,x, (5)

where it is convenient to take the tracing basis to be any
completion of {Fj |ΨL〉}.

C. Determining the off-diagonal terms of χm,n

Off-diagonal terms are obtained by pre-processing the
noisy state using a unitary U or US+, prior to stabilizer
measurement. [Equivalently, measurements are made in
one of two bases: the “rotated basis” UΣU † or the “tog-
gled and rotated basis” (US+)Σ(US+)†, as explained be-
low.] Here again, the state just after measurement will
be Fx|ΨL〉, for some correctable Fx. Consider a uni-
tary operator U(a, b) = Fa+Fb√

2
, where allowed errors Fa

and Fb anti-commute (else, we choose U = Fa+iFb√
2

), such

that FaFx and FbFx represent correctable errors. This is
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guaranteed by choosing a QECC whose correctable Pauli
errors form a group (up to a scalar factor ±1 or ±i) under
multiplication. This requirement is met, as in the first ex-
ample above, by choosing a QECC that corrects arbitrary
errors on subsystem P. Let gAFA ≡ FaFx, where FA is a
Pauli operator and the Pauli factor gA ∈ {±1,±i}. Simi-
larly, let gBFB ≡ FbFx. For example, if Fa = X,Fx = Y ,
then FA = Z and gA = +i. If gA and gB are both real or
both imaginary, then we say that the Pauli factors are of
the same type. If one of gA and gB is imaginary and the
other real, we say that the Pauli factors are of distinct
type.
Operation U(a, b) rotates one correctable state to an-

other correctable state. This alters the statistics of the
stabilizer measurement without affecting the correctabil-
ity. The probability of finding the syndrome correspond-
ing to error Fx is now:

ξ(a, b, x) ≡

Tr



U(a, b)E (|ΨL〉〈ΨL|) (U(a, b))†





2k−1
∑

J=0

Fx|J〉〈J |Fx









=

∑d2−1
m,n χm,n〈Fx (Fa⋆m + Fb⋆m)〉L〈(Fn⋆a + Fn⋆b)Fx〉L

2

=
1

2

d2−1
∑

m,n

χm,n (g
∗
AδA,m + g∗BδB,m) (gAδA,n + gBδB,n)

=
χA,A + χB,B

2
+

g∗AgBχA,B + gAg
∗
BχB,A

2

=
1

2
(χA,A + χB,B) + Re (g∗AgBχA,B) , (6)

where we have used the notation Fm⋆n ≡ FmFn, and the
expectation value 〈· · · 〉L is with respect to |ΨL〉. The
first term in the final expression of Eq. (6) contains only
diagonal elements of χ, which are determined by stabi-
lizer measurements without the application of any pre-
processing unitaries. It follows from the second term in
(6) that if gA and gB are of the same (different) type,
then ξ(a, b, x) depends only on the real (imaginary) part
of χA,B . For example, suppose a = X, b = Y, x = Z,
in which case gA = −i and FA = Y , while gB = i and
FB = X. Thus an application of U(X,Y ) followed by
a Z-error syndrome extracts the real part of χX,Y . In
particular, ξ(X,Y, Z) = 1

2 (χX,X + χY,Y ) − Re(χX,Y ).
Note that the state obtained after measurement in Eq.
(6) is ρf = |Ψx

L〉〈Ψx
L|

(

UE|ΨL〉〈ΨL|U†) |Ψx
L〉〈Ψx

L| =
ξ(a, b, x)|Ψx

L〉〈Ψx
L|, that is, the use of U does not alter

the QEC procedure, but only modifies the error statis-
tics to be dependent on off-diagonal terms according to
the choice of U .
If Fa and Fb do not commute, then U = (Fa+iFb)/

√
2.

In place of Eq. (6) we obtain:

ξ(a, b, x) =
1

2
(χA,A + χB,B + i [gAg

∗
BχB,A − g∗AgBχA,B ])

=
1

2
(χA,A + χB,B) + Im (g∗AgBχA,B) . (7)

It follows from the second term in (7) that if gA and
gB are of the same (different) type, then ξ(a, b, x) de-
pends on the imaginary (real) part of χA,B . For exam-
ple, suppose a = I, b = Y, x = I, in which case gA = 1
and FA = I while gB = 1 and FB = Y . An applica-
tion of U(I, Y ) followed by the no-error syndrome is a
function of the imaginary part of χI,Y . In particular,
ξ(I, Y, I) = 1

2 (χI,I + χY,Y ) + Im(χI,Y ), where χI,I is the
probability of obtaining no error.
In general, this will leave the real or imaginary parts

of off-diagonal terms undetermined. In the first exam-
ple above, the only other measurements that can ex-
tract information on χX,Y are the no-error outcome in
the U(X,Y ) configuration [i.e., the term ξ(X,Y, I)] and
the X- and Y -error outcomes in the U(I, Z) configura-
tion [i.e., the terms ξ(I, Z,X) and ξ(I, Z, Y )], all of which
can yield only information about Re(χX,Y ).

D. Toggling operation

We solve this problem by pre-processing the noisy state
as follows. Let S ≡ Diag

(

eiθ0 , eiθ1 , eiθ2 , · · · , eiθV −1

)

be
a V × V diagonal matrix where θj ∈ {±π

4 }, with equal
entries of both signs. Prior to U , we apply the operation

S+ =

2k−1
⊕

J=0

SJ ⊕ I
′ =

V−1
∑

m=0

[

eiθm
∑

J

|Jm
L 〉〈Jm

L |
]

⊕ I
′, (8)

where SJ is the S gate acting on the error space of the
Jth code word and I

′ is the identity operation on the
space Ξ of states lying outside the error ball of all code
words. From the perspective of experiment

S+ = exp



i







2k−1
⊕

J=0



ǫ





V/2
∑

{m,n}=0

σz
(Jm,Jn)









J

⊕ 0 · I′








 ,

(9)
where the subscript J labels the error space spanned by
basis {Fi|JL〉} of the Jth code word (Fi being the al-
lowed errors), with suitable pairing {m,n}, i.e., one that
ensures that Smm = S∗

nn. The term within the curly
braces defines the Hamiltonian HS suitable to generate
S+.
Any correctable pure state is an eigen-

state of S+: S+|Ψm
L 〉 = S+ (

∑

J αj |Jm
L 〉) =

∑

J αJe
iθm |Jm

L 〉 = eiθm |Ψm
L 〉. We thus have

S+ [E(ρ)] (S+)† =
∑

m,n χm,nS
+|Ψm

L 〉〈Ψn
L|(S+)† =

∑

m,n χm,ne
i(θm−θn)|Ψm

L 〉〈Ψn
L| ≡

∑

m,n χ
′
m,n|Ψm

L 〉〈Ψn
L|.

Thus, under the action of S+, χ −→ χ′ = SχS†, which
leaves the diagonal terms of χ invariant, while the
real and imaginary parts of the off-diagonal elements
of term χ′

m,n are interchanged if θm = −θn, but are
invariant otherwise (θm = θn). Therefore, a syndrome
measurement following an application of suitable U on
the ‘toggled’ (i.e., S+-applied) noisy state can reveal
the real or imaginary part of χj,k that is inaccessible
otherwise.
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For a given U , we determine d2 off-diagonal real or
imaginary terms without S+. Now there exists a S+

such that the configuration US+ suffices to cover all the
remaining real/imaginary counterparts of these terms.
This follows from noting that these d2 terms can be rep-
resented graph theoretically by a cyclic graph with d2

vertices, where correctable errors are vertices, and edges
are pairs of errors that occur in the off-diagonal terms.
The required S+ exists precisely because an even cycle
is always two-vertex colorable. For example, suppose the
U configuration determines the real or imaginary parts
of χ1,2, χ2,3, · · · , χd2,1, then in Eq. (8), we choose θ1 =
θ3 = · · · = θd2−1 = π

4 and θ2 = θ4 = · · · = θd2 = −π
4 .

Now one configuration is enough to determine all d2−1
independent diagonal terms. This leaves d4 − 2d2 + 1 =
(d2 − 1)2 independent off-diagonal terms to be deter-
mined, for which the number of configurations, Nexp is

at most 2× ⌈ (d
2−1)2

d2 ⌉ = 2(d2 − 1) = 2(4n − 1), including
the experiments with both U and US+. This compares
favorably with SQPT (Nexp = 16n), AAPT with mutu-
ally unbiased basis measurements (Nexp = 4n + 1), and
DSQD (Nexp = 4n) [4]. As when U alone is applied,
similarly to S+ toggling, the correctability is unaffected,
allowing the encoded state to be recovered. The observed
syndrome will indicate the error to be corrected, while no
information about the encoded state is revealed.

III. PRACTICAL IMPLEMENTATION

From an experimental perspective, quantum circuits
that implement computation can readily be adapted into
those that implement QECCD. For example, the five-
qubit QECCD code differs from the five-qubit code of
Ref. [15] only in the choice of stabilizer measurements,
and not in the encoding. For an [[n, k]]-qubit code that
performs QECCD on an m-qubit noise, the quantum
Hamming bound may be stated as

2k|E| = 2k4m ≤ 2n, (10)

from which it follows that the smallest non-trivial code
for QECCD is not a five-qubit code, but a three-qubit
code, setting k = m = 1 in inequality (10). Thus a
suitable starting place for an experimental implementa-
tion of our idea is a three-qubit code (discussed in detail
below), or an adaption of the five-qubit code. One can
devise a family of codes that satisfy bound (10), and
correspondingly a family of new experiments. QECCD
can be implemented with technologies like NMR [16] a
nd linear-optics with post-selection [17] that are used for
quantum computation.

Accordingly, let us consider a one-qubit system P, sub-
jected to an arbitrary CP channel. The Hamming bound
is reached with n = 3, and a [[3, 1]] QECC (with qubits
2 and 3 constituting CQD ancilla A) that meets the re-

|0>

|0>

{|Ψ>

H

H H

H M

M

X

X

Z

Y

Y

FIG. 2. Circuit to measure the stabilizer generators XIX

and Y Y Z for the [[3, 1]] QECC, (11). The top two wires are
the error correction ancillas, while the bottom three wires are
the code qubits. Time flows from left to right. The boxes H

and M represent a Hadamard and measurement in the com-
putational basis, respectively. The circle with an operation
U ∈ {X,Y, Z} represents a control-U operation, with con-
trol at the filled circle on the other end of the “stick”. Only
two-qubit interactions are used.

quirement is:

|0L〉 =
1

2
(|001〉+ |010〉+ |100〉+ |111〉)

|1L〉 =
1

2
(|110〉 − |101〉+ |011〉 − |000〉), (11)

whose stabilizer generators are XIX and Y Y Z, which
constitute the set G3. The logical operators are XL ≡
−ZXZ and ZL ≡ XYX. We consider applying QECCD
to characterize an amplitude damping channel, deter-

mined by two Kraus operators, E0 ≡ 1+
√
1−λ
2 I2 +

1−
√
1−λ
2 Z and E1 ≡

√
λ
2 X + i

√
λ

2 Y , where λ, the un-
known parameter, is a measure of the vacuum coupling
strength. Figure 2 depicts the implementation of one of
the stabilizers for the code.
The state ρi ≡ |ΨL〉〈ΨL| transforms un-

der this channel, as per Eq. (1), to ρf =
∑

m,n χm,n|Ψm
L 〉〈Ψn

L| = 1
4 [(2 − λ + 2

√
1− λ)|ΨL〉〈ΨL| +

(2− λ− 2
√
1− λ)|ΨZ

L〉〈ΨZ
L |+ λ(|ΨL〉〈ΨZ

L |+ |ΨZ
L〉〈ΨL|+

|ΨX
L 〉〈ΨX

L | + |ΨY
L 〉〈ΨY

L | − i|ΨX
L 〉〈ΨY

L | + i|ΨY
L 〉〈ΨX

L |)].
Syndrome measurements on this state yield the diagonal
terms of χ as outcome probabilities. The only nonva-
nishing off-diagonal terms are χI,Z = χZ,I = λ and
χX,Y = −χX,Y = −iλ.
Suppose U = UX,Y ≡ X+Y√

2
is applied to ρf , fol-

lowed by measurement of the above two stabilizers. From
Eq. (6), we see that this will reveal Re(χX,Y ) = 0
in the case of outcomes corresponding to errors I and
Z, and Im(χI,Z) = 0 in the case of outcomes corre-
sponding to errors X and Y , so that λ remains un-
determined. To obtain information about Re(χX,Y )
or Im(χI,Z), one applies prior to U(X,Y ), a toggling
operation, which in the representation of the basis
{|0L〉, |0xL〉, |0y〉, |0z〉, |1L〉, |1xL〉, |1y〉, |1z〉}, is given by the
diagonal 8× 8 matrix:

S+ ≡ 1√
2

(

S 0
0 S

)

, (12)
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where S = Diag(γ, γ, γ, γ), with γ = 1+ i and γ = 1− i.
For the toggled channel, χ′

I,J = (SχS)I,J = iχI,J = iλ.

Similarly, χ′
X,Y = iχX,Y = λ. Thus the full noise is

determined. The following three configurations are used
for CQD: (i) immediate stabilizer measurement; (ii) pre-
processing with U(X,Y ) before stabilizer measurement;
(iii) pre-processing with S+ and then U(X,Y ) before sta-
bilizer measurement.

IV. DISCUSSION AND CONCLUSIONS

We have proposed QECCD, a method for CQD that
exploits QEC techniques. Like DCQD [4], CQD is direct
and requires a separation of a clean qubit system A from
the noisy qubit system P. While this assumption is a
bit restrictive, it is worth noting that all AAPT methods
(to our knowledge) require this assumption. Expanding
our method so that some noise is allowed in the ancillary
system would be an interesting future direction of work.
Another direction for expansion of our method would be
to incorporate fault-tolerance, by allowing the gate op-
erations performed during CQD to be imperfect. This
approach may either aim to determine a threshold for
the gate fidelity that would allow CQD to be accurate,
or relate gate fidelity to the variance in the estimated
noise parameters.

Unlike earlier CQD techniques, the QECCD protocol
is not restricted to a fixed set of initial states, but ac-
cepts as input any encoded quantum information and,
thus, can be implemented concurrently with the QCC.
This has the economizing virtue that a quantum state
used for CQD need not be discarded from the quantum

computation procedure. Moreover, QECCD requires at
most only twice the number of experimental configura-
tions as does DCQD or AAPT with mutually unbiased
basis measurements. Unlike AAPT with POVMs, which
requires many-body interactions, QECCD, like DCQD,
requires only one- and two-body interactions [18].
We now highlight some other insights that our method

has provided: First, we present in Eq. (2) a new
channel-state isomorphism, which is similar to the Choi-
Jamiolkowski isomorphism, but with an interesting twist.
To turn the Choi-Jamiolkowski isomorphism into a
method for CQD, one requires a full state tomography
on the state obtained under the isomorphism (the Choi
matrix). By our method, however, the QECC isomor-
phism only requires partial information (syndrome out-
come data) at each step.
Second, QEC involves destroying the coherence be-

tween Pauli errors, and only gives the probability of those
errors. Nevertheless, the QECC isomorphism, (2), im-
plies that the noisy encoded state contains these coher-
ence data, and raises the question whether this coherence
information can be physically accessed using QEC tech-
niques. Our method answers this question in the affir-
mative.
Third, some of the mathematical tools we propose,

such as toggling to determine the real and imaginary
parts of the off-diagonal terms of the density operator,
can be of independent interest.
Last but not least, the QECCs which we introduced for

QECCD are different in that they are novel. They are
stabilizer codes that correct arbitrary errors on known co-
ordinates, and have the property that the set of allowed
Pauli errors forms a group. Codes (3) and (11) are exam-
ples of such QECCs suitable for QECCD. Interestingly,
both these codes are perfect.
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