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ABSTRACT

We present a set of four parameters that in combin-

ation can predict DNA-binding residues on protein

structures to a high degree of accuracy. These are

the number of evolutionary conserved residues

(Ncons) and their spatial clustering (qe), hydrogen

bond donor capability (Dp) and residue propensity

(Rp). We first used these parameters to characterize

130 interfaces in a set of 126 DNA-binding proteins

(DBPs). The applicability of these parameters both

individually and in combination, to distinguish the

true binding region from the rest of the protein

surface was then analyzed. Rp shows the best per-

formance identifying the true interface with the top

rank in 83% cases. Importantly, we also used the

unbound-bound test cases of the protein–DNA

docking benchmark to test the efficacy of our

method. When applied to the unbound form of the

DBPs, Rp can distinguish 86% cases. Finally, we

have applied the SVM approach for recognizing

the interface region using the above parameters

along with the individual amino acid composition

as attributes. The accuracy of prediction is 90.5%

for the bound structures and 93.6% for the

unbound form of the proteins.

INTRODUCTION

Protein–DNA interactions are vital for gene expression and
control. The growing number of protein–DNA complexes
deposited in the Protein Data Bank (PDB) (1) has enabled
systematic studies on characterization of the DNA-binding

region that is crucial for recognition (2–6). Extensive
analyses have been carried out on DNA-binding proteins
(DBPs) in terms of amino acid composition (7), packing
density of binding residues and B-factor (8), evolutionary
conservation of amino acid residues and base-pairs
constituting the interface regions, as well as evolutionary
profiles of surface patches (4,9–12). Interactions are not
only studied at specific amino acid—base level (13), but
have also been extended to atom–atom non-covalent
interactions from the corresponding protein and DNA
components; van der Waals contacts are found to consti-
tute two-thirds of all protein–DNA interactions (14).
Electrostatic potential has been employed to characterize
and predict protein–DNA binding region (15,16). All these
observations suggest that the amino acids at the interface
possess characteristics that distinguish them from residues
elsewhere on protein surface. Using the concept of
hotspots, Ahmad et al. (4) showed that a potential relation-
ship exists among the free energy of binding, sequence
conservation and structural cooperativity of conserved
residues in protein–DNA recognition. They coupled par-
ameters derived from the thermodynamics of binding
together with measures of evolutionary conservation in
their analysis and prediction.

Polar interactions have been shown to play a major role
at the interface of protein–DNA complexes and thus con-
tribute significantly to the binding. Water mediated
hydrogen bonds constitute 15% of all protein–DNA inter-
actions (14), almost at the same level as direct hydrogen
bonds. Of all the interfacial water molecules, �6% bridge
protein and DNA and 76% form hydrogen bond with
either component, thereby solvating and stabilizing the
protein and DNA separately (17). Owing to their large
presence it has been believed that water molecules play a
significant role in protein–DNA interaction contributing
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to the binding affinity, but its role in binding specificity is
largely unknown (18–20).

Apart from the features mentioned above even
nonspecific DNA–protein interaction modes exhibit some
similarity to specificDNA–protein-bindingmodes, and this
feature has also been implemented in prediction (21).
Position specific scoring matrices (PSSM) have been
employed for detecting DNA-binding residues from
primary sequence (22) and in structures (12). Amongst a
pool of DBPs and non-binding proteins, many groups tried
to predict the DBPs as a whole and not just their binding
regions (16,23,24), using mostly electrostatic potential and
knowledge based energy functions. A server called PreDs
predicts whether a protein is a DBP or not and additionally
highlights its binding site as well (25). This method also
exploited the electrostatic potential in addition to local
and global curvatures at the protein surface. At present,
there are many databases providing structural data of
protein–nucleic acid complexes, base amino acid inter-
actions, thermodynamic and conformational parameters
(26,27). There have also been studies on some specific
protein–DNA interactions, such as transcription factor–
transcription binding sites (TF–TFBSs), leading to
generalized advanced rules capturing features of biological
variations in TF and TFBS sequence patterns (28).

Predicting the DNA-binding region, given the 3D struc-
ture of a protein, remains a challenging task. The differ-
ential characteristics at the binding region may suffice for
the prediction of interaction sites from sequence as well as
from the coordinates of the 3D structure of a protein;
several algorithms have been implemented along this line
over the years (8,12,29–33). In this work we have identified
a number of important differential features residing at the
interface in relation to the rest of the protein surface based
on simple properties, such as conservation, clustering,
residue propensity and probable hydrogen bond donors
using a large dataset of 130 protein–DNA complexes.
We have applied these properties both individually and
in combination (using SVM—Support Vector Machines)
to predict the binding sites in the bound as well as the
unbound forms of the structures of DBPs.

MATERIALS AND METHODS

Dataset

Atomic coordinates of the protein–DNA complexes were
obtained from the PDB (1). Out of the 126 protein–DNA
complexes used in Biswas et al. (6), four PDB files (1k6o,
1jb7, 1t2k and 1k78) consisted of two different protein
monomers interacting with DNA in spatially distinct
regions—these were split into two separate protein–
DNA complexes, but involving the same DNA, creating
a dataset of 130 complexes. For homodimeric proteins (62
in number), only one subunit along with the associated
DNA was used. For each of the protein–DNA complex,
the interface residues were identified. Atoms/residues from
both partners that lose >0.1 Å2 of surface area upon
complexation constitute the protein interface (34).
Accessibilities were calculated using the program

NACCESS (35), which employs the Lee and Richards
algorithm (36).

Definition of interface/patch parameters

Sequence conservation
Evolutionary sequence conservation was determined from
multiple sequence alignment of homologous proteins
extracted from the HSSP database of sequence-structure
alignments (homology-derived secondary structure of
proteins, http://swift.cmbi.kun.nl/swift/hssp) (37). The
Shannon entropy of the aligned sequences at position
i was estimated as:

s ið Þ ¼ �
X

k¼1,7

pkln pkð Þ ð1Þ

where pk is the number fraction of residues of class k at the
ith position, the amino acids being grouped into seven
classes based on the similarity of environment in protein
structures (38). The sequence entropy is a measure of the
divergence at each position in the alignment—thus, the
lower the value of s, the greater is the degree of
sequence conservation.

Identification of conserved residues at the interface
The average sequence entropy for each interface with ‘n’
number of residues was calculated:

< s >int¼ �s ið Þ½ �=n ð2Þ

Interface residues with sequence entropy lower than the
average (<s>int) were considered as conserved and their
total number in each interface is denoted by Ncons.

Measurement of the extent of spatial clustering of conserved
residues and the inclusion of the residue composition
The degree of spatial clustering of a set of residues can be
measured as the average of the inverse distance between
every possible pairs in that set (39),

Ms ¼< 1=r >¼ 1=Npairs

X

Ns�1

i¼1

X

Ns

j¼i+1

ð1=rijÞ ð3Þ

where Ns is the number of residues in the set, Npairs is the
number of unique pairs of residues in the set given by:
Npairs=(Ns� 1).Ns/2; and, rij is the distance between the
centers-of-mass of the two residues in question, i and j.
The higher the value of Ms, the greater is the degree of
spatial clustering of the residues in the set.
For each interface two Ms values were calculated, one

only for the subset of conserved residues (Ms,cons) and
another for the entire interface (Ms,int). The ratio (�) of
Ms,cons to Ms,int enables comparison of the scattering of
inter-residue distances between these two sets, which is
actually an indicator of the extent of clustering of evolu-
tionary conserved residues, having being used earlier for
analyzing protein–protein binding sites (40).

�¼Ms,cons

Ms,int

ð4Þ
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�> 1.0 indicates that the subset of evolutionary conserved
residues is clustered within the interface. This gives us a
single overall numeric value representing whether or not
(and to what extent) the conserved residues are clustered
within the interface.
The amino acid composition of interface residues is

known to differ significantly from that of the
non-interface surface in protein–DNA complexes (2,3,6).
Therefore, we calculated the average amino acid compos-
ition of conserved interface residues (averaged over the
entire dataset) (Supplementary Table S1), and used these
values to find the Euclidean distance (de) of the residue
composition of the conserved subset in any surface patch.
Amino acids were grouped into five classes such that the
residues within a class have similar values of residue
propensity for being in a protein–DNA interface (6).
This class composition, rather than the individual
compositions, was used in the calculation of de.

de ¼
p
1=4

X

i¼1,5

ðCi � ciÞ2 ð5Þ

where, Ci is the average composition of the conserved
residues belonging to the ith class for the interface taken
over the entire dataset, ci is the corresponding value for
any given surface patch (including the interface). This
compositional disparity was combined with the degree of
clustering of evolutionary conserved positions to get a
score �e.

�e ¼ �=de ð6Þ

The higher the clustering and the closer the composition
of residues in a patch to the average value, the higher
would be the score. This composite score enables us to
combine two important discriminatory features of
protein–DNA interfaces.

Potential hydrogen bond donors
Side-chain groups of positively charged amino acids such
as arginine (PDB atom labels: NE, NH1, NH2), histidine
(ND1, NE2) and lysine (NZ), as well as of asparagine
(ND2), glutamine (NE2), tryptophan (NE1), serine
(OG), threonine (OG1) and tyrosine (OH) with accessibil-
ity �10 Å2 were assumed to be capable of getting involved
in hydrogen bonding with DNA and their number (Dp) in
each interface/patch was calculated.

Residue propensity score
Finally, the amino acid composition was used to calculate
residue propensity score (41) given by

Rp ¼
X

i

ni � pi ð7Þ

where ni is the number of residue of type i and pi is its
propensity to be in the interface.

Generation of surface patches and the
evaluation of parameters

The surface patches were defined in two steps. First, the
surface residues on each protein component were
identified with the consideration of those with relative

accessibility >5% (for homodimeric proteins residues
located at the dimeric interface were excluded). Next
each surface residue (represented by its center of mass)
was taken as the central seed residue and a surface patch
was constructed by including all neighboring surface
residues contained within spheres of increasing radii—
the patch size was allowed to increase until the number
of residues contained in the patch matched with the total
number of interface residues. Depending on its location a
patch could be of two types, one being devoid of any
interface residue, and the other type allowed a maximum
of 10% of residues in common with the real interface.
Hence a number of overlapping patches were generated
comparable to the size of the interface in terms of
residue numbers. All the parameters described above
(Ncons, �, �e, Dp and Rp) were computed for the real inter-
face and for all possible surface patches of each protein.
Values of each parameter were then used to arrange the
surface patches in descending order and the true interface
was ranked. The interface was ranked 1 if it occurred
within the top 10% of surface patches. In a few cases
where the number of generated patches was lower than
10, even if the interface had the highest value for a
parameter it would not fall within the top 10%—a rank
of 1 was assigned to these.

Training and test datasets used in model building by SVM

All 130 interfaces were screened for possible inclusion in the
positive dataset. Those with very few homologs (less than
eight, or when the sequences were all identical) failed to give
proper Ms values and were excluded—this led to 119
positive cases. Negative examples were randomly picked
from a consolidated list of all surface patches such that
each complex structure provided at least one, but not
more than two patches—this led to 153 negative examples.
A total of 70% of the above set was randomly picked for
creating the training dataset consisting of 83 positives and
107 negatives. The remaining 30% were used as test set
(36 positives and 46 negatives). The SVM classifier was
also applied to 47 unbound cases from the protein–DNA
docking benchmark version 1.2 (42) for testing.

Parameter selection

Altogether 25 features were used as attributes for modeling
the SVMclassifier. The attributeswere the fractional compos-
ition of each of the 20 amino acids, along with the five para-
meters (Ncons, �, �e,Dp and Rp) enumerated earlier. These 25
parameters were then ranked by Weka version 3.4.11 evalu-
ator—weak.attrubuteSelection.SVMAttributeEval (using
10-fold cross validation) (43).

SVM implementation

The freely downloadable LIBSVM package was used for
the implementation of SVM with the C-SVC SVM type
(SVM type for classification) and the widely used Radial
Basis Function (RBF) kernel (44). Two parameters are
required for optimizing the RBF–SVM classifier; g, which
determines the capacity of the RBF kernel and the regular-
ization parameter, C. All the attributes in the training and
test datasets were scaled in the range of �1 to 1.
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SVM optimization

The penalty parameter C and the RBF kernel parameter g
were optimized using repeated grid search and
leave-one-out cross-validation. In this cross-validation, a
single instance of the training dataset was used as the test
while all the other were used for training the classifier. The
process was repeated for all the instances such that every
instance was tested once individually. Matthews correl-
ation coefficient (MCC) was used during cross-validation
instead of percent accuracy, as the positive to negative
ratio (83:107) is not one.

Performance measure

The performance was measured by prediction accuracy
and MCC calculated as,

Accuracy ¼ ðTp+TnÞ
ðTp+Fn+Tn+FpÞ

� �

ð8Þ

MCC ¼ ½ðTp � TnÞ � ðFp � FnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðTp+FpÞ � ðTp+FnÞ � ðTn+FpÞ � ðTn+FnÞ�
p

ð9Þ

Tp, Fp, Tn and Fn represent the numbers of true
positive, false positive, true negative and false negative,
respectively. MCC takes into consideration true and
false positives and negatives and is generally regarded as
a balanced measure which can be used even if the classes
are of very different sizes. The MCC is in essence a cor-
relation coefficient between the observed and predicted
binary classifications; it returns a value between �1 and
+1. A coefficient of+1 represents a perfect prediction, 0
an average random prediction and �1 an inverse predic-
tion. Unlike MCC, accuracy is sensitive to dataset imbal-
ance. Also the sensitivity [Tp/(Tp+Fn)], specificity [Tn/
(Tn+Fp)], precision [Tp/(Tp+Fp)] and F-measure
[2�precision� sensitivity / (precision+sensitivity)] of
the model were determined.

RESULTS

In this work our goal was to characterize the nucleic acid
binding region of DBPs with evolutionary and other struc-
tural features and study their application in distinguish-
ing/identifying the DNA-binding region. Parameters
defining the binding site of 130 protein–DNA complexes
were compared to those derived from the rest of the
protein surface. The performances of these features were
tested, individually and in combination (using SVM) on
several other datasets including the unbound form of the
DBPs. We also tested the suitability of using these para-
meters in the identification of the binding site of
RNA-binding proteins.

Clustering of conserved residue positions in
protein–DNA interfaces

We first detected the conserved residues residing at the
interface in 130 protein–DNA complexes—on average
their number (Ncons) is 18 (Table 1). In an earlier study
on protein–protein hetero-complexes, the degree of

clustering of conserved interface residues had been
measured by using the simple function Ms [Equation (3)]
(40); the larger this value, the higher is the degree of clus-
tering. The same concept has been employed here to a set
of protein–DNA complexes: we calculatedMs for both the
whole interface (Ms,int) and for the subset of conserved
residues (Ms,cons). In 88.5% (108/122) cases (eight entries
were found to have very few homologs and were thus
excluded from the analysis), Ms,cons is found to have a
value greater than Ms,int (Figure 1), indicating that the
residues that are subjected to evolutionary pressure do
remain clustered in the majority of the protein–DNA
interfaces. The statistical significance of their difference
and their average over the entire dataset and of their
ratio, � [Equation (4)] are given in Table 1. In protein–
protein complexes a �-value >1 was found in 86.7% cases
(40). Furthermore, as was observed in case of the
hetero-complexes (40), we also found that the subsets of
evolutionary conserved residues in the interface were sig-
nificantly more clustered compared to subsets of the same
size consisting of randomly selected interface residues. The
latter calculation was repeated by generating 1000 random
subsets for each interface and the resulting average
<Ms,random> was compared to Ms,cons. Ms,cons is higher
than <Ms,random> in 88.5% cases (Supplementary
Figure S1). An example of the clustering of conserved
residues at the interface as compared to a few random
surface patches are shown in Supplementary Figure S2.

Conservation and clustering to discriminate interface
from other surface patches

All possible surface patches were generated for each
protein as described in ‘Materials and Methods’ section.
As was done for the interface, the conserved residues and
the clustering of conserved residues were determined for
each surface patch. The �-values of all the possible surface
patches along with that of the interface were then explored
to see to what extent this feature can be used to identify
the true interface. Arranging the �-values in descending

Table 1. Average values of interface parameters in protein–DNA

complexes

Parameters Values

Number of complexes 122a

<sint>
b 0.51±0.28

<scons>
b 0.18±0.20

Ms,cons 0.09±0.02c

Ms,int, [<Ms,random>] 0.08±0.02c, [0.08±0.01]c

� 1.11±0.10
�e 0.12±0.08
Rp 0.71±2.91
Ncons 18±10
Dp 18±8

aOf the 130 DBPs, 8 with only a few homologs were excluded.
b
<sint> is defined for a structure [Equation (2)]. Here the value
provided is the average over all the structures. Similarly, <scons> is
the value for the conserved residues only.
cThe differences between Ms,int and Ms,cons (and between <Ms,random>

and Ms,cons) are statistically significant at 1% level, P < 0.001.
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order, in �47% cases the � for the interface was among
the top 10% of all the values, corresponding to a rank of 1
(on a scale of 1 to 10) (Supplementary Figure S3).
Identification with this feature was slightly higher in case

of homodimers and protein–protein complexes, � being
ranked 1 in 54% and 49% cases respectively (40). In an
attempt to improve the ranking we incorporated a
measure of the similarity in the residue composition of
the conserved residues in a patch and the corresponding
average values over all the interfaces, expressed in terms of
the Euclidean distance, de. The true interface with the
minimum compositional variability would have the
minimum de making the ratio of � to de, �e [Equation
(6)] the highest among all the patches. This improved
our identification of interface by 7% to 54% (Figure 2b
and Supplementary Figure S3) making it comparable to
that observed for homodimers. An example of the
improvement of discrimination in going from � to �e is
provided in Figure 3; although the interface had a high
value of �, it was with �e that the interface had the highest
value. We then used conservation as the sole criterion
(considering the number of conserved residues, Ncons).
Interestingly, it gave a much better result. More than
70% of the interfaces could be identified with rank 1
(Table 2 and Figure 2).

Figure 2. Distribution of the rank (on a scale of 1 to 10) of the known DNA-binding site relative to other patches on the surface of the protein using
four different parameters. In (a) 77 structures are used with a strict definition of patches, in (b) 106 structures (where the patches may contain up to
10% interface residues).

Figure 1. Plot of Ms,cons versus Ms,int (clustering of conserved residues
versus that for all the residues in the interface).
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
0
/1

5
/7

1
5
0
/1

2
1
1
4
2
8
 b

y
 g

u
e
s
t o

n
 0

2
 A

u
g
u
s
t 2

0
2
1



Hydrogen bond donor

There are reports of high hydrogen bond density being
present at protein–DNA interfaces (2–3). Besides

protein–DNA interfaces are also enriched in positively
charged residues with greater hydrogen bond donor
capability (3,8,30). Therefore, we calculated the total
number of hydrogen bond donors (Dp) and their
accessibilities (both at the interface and the surface)
(Table 3). Furthermore, we tried to find out if the appli-
cation of a cut-off value on the accessibility (in the calcu-
lation of Dp) has any effect on the usefulness of the
parameter. We observed that restricting to donors that
have accessibility by �10 Å2 can best distinguish the true
interface from the rest of the surface in comparison to all
other cut-off values that we tested (0 or 1.5 or 20 Å2). Out
of all the donors that are involved in hydrogen bonding
with DNA in the complex, only 16% have accessibility
<10 Å2 (Supplementary Figure S4). The average Dp was
found to be 18±8 (Table 1) at the interface, comparable
to the value of 20±12 reported by Stawiski et al. (16),
even though we have excluded those with accessibility less
than 10 Å2.

Figure 3. Distribution of five parameters calculated for all patches for the DNA complex of human topoisomerase I (PDB code, 1ej9). On each
graph all the surface patches are represented in grey and the value for the known DNA-binding interface is indicated by an arrow. The parameters
used are (a) �, (b) �e, (c) Rp, (d) Dp and (e) Ncons.

Table 2. Percentage of cases where the true interface is ranked #1

using different parameters applied to different datasets

Parametera This dataset [77, 106]b Jones and Stawiskic [52, 65]b

�e 47, 54 50, 51
Rp 79, 83 81, 82
Dp 68, 70 67, 72
Ncons 70, 73 71, 68

a
� is omitted being already incorporated in �e.

bThe first entry indicates the percentage of cases using stringent condi-
tions (the surface patches devoid of any interface residue), the latter for
patches that may contain up to 10% of interface residues.
cCombining Jones and Stawiski datasets (15,16) and excluding the
redundant entries.
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Dp could identify 68–70% of the true interfaces in our
dataset with rank 1 (Figure 2). The performance was
equally good (67–72%) when Dp was applied to the
combined dataset of Jones and Stawiski (15,16)
(Table 2). A noteworthy feature is that all the donor
groups (with the exception of ND2 of Asn) have
greater accessible surface area at the interfacial region
before forming complex than at any other surface region
(Table 3). Though we have not used accessibility directly
in prediction this may be a distinctive feature. It may be
mentioned that the average accessible surface area per
residue of positive electrostatic patches in the nucleic
acid (NA)-binding region was found to be slightly
larger than that of non-NA-binding protein regions,
though no statistical significance could be assigned to
the observation (16).

Amino acid propensity

Amino acid composition/propensity markedly differs at
the interface compared to that in the remaining surface
due to the excess negative charges associated with DNA
and high degree of hydrogen bonding across the interface
(6). A residue propensity score, Rp [Equation (7)] that
depends on the number of occurrence of a given residue
in the interface and its propensity value was previously
found to be useful in discriminating protein–protein
interfaces from non-specific contacts in crystal lattice
(41). When applied to protein–DNA complexes, Rp

could identify 79–83% of the interfaces from among all
the surface patches in our dataset (Figure 2), the best per-
former among all the parameters studied. Also Rp could
identify 82% of the interfaces of Jones and Stawiski

dataset with rank 1 from among all other surface
patches (Table 2).

Analyzing the features on the unbound form of the
protein–DNA complexes

We also tested each of the parameters individually on the
unbound form of the proteins, as provided in the
protein–DNA docking benchmark (42). The benchmark
consists of 47 DNA–protein complexes, and structures
are available for all the proteins in both their bound
and unbound forms, with interface RMSD (conform-
ational change of the protein–DNA interface was
calculated by superimposition of all Ca and phosphate
atoms at the interface) ranging from 0 to 8 Å; 12 struc-
tures have RMSD >5 Å. We mapped the protein chain of
the unbound form on to the corresponding chain in
the complex, the fitting being performed using the
McLachlan (45) algorithm, as implemented in the
program ProFit (46). The residues in the unbound form
which are structurally equivalent to the residues located
in the interface of the complex constitute the potential
interface on the unbound form. Five cases were found
to have very few homologs and were not analyzed. On
average 17 residues were found to be conserved, which
as expected is nearly the same as in the interface of the
complex (Table 1). The average � was 1.13±0.2 and 90%
(38/42) cases had �> 1. The average number of hydrogen
bond donors was found to be 15±6, again quite similar
to the bound form. Though the value of average Rp was
rather low (�0.1±2), it had a good discriminating power
for the identification of the interface from random surface
patches—86% of the cases had rank 1 (Figure 4). Dp

could assign rank 1 to 67% of the interfaces. As
compared to the bound form of the proteins (Figure 2),
�e seems to have performed better in identifying the true
interface for the unbound form (54 versus 62%).

Predicting the DNA-binding region

As summarized in Table 2 except for clustering based
parameter �e, all other parameters, considered alone,
were good for discriminating the true interface in at
least 70% cases from other surface regions in DBPs. The
success rate is equally impressive when applied to an
independent dataset due to Jones and Stawiski, Rp

performs the best followed by Dp and Ncons. Indeed, Rp

outperforms the prediction accuracy of the method by
Jones (15) and Stawiski (16), especially in comparison
with the enzyme dataset of Stawiski (Table 4). It may be
mentioned that residue interface propensity was one
among five parameters that were used by Jones et al.
(15) who found that the one based on electrostatic score
performed the best (and shown in Table 4). We then
wanted to see the combined effect of the five parameters
along with 20 additional descriptors (representing the
residue composition in a given patch) by training a math-
ematical model, SVM. The binary classifier gives output as
positive or negative to depict the DNA-binding and
non-binding regions, respectively.

Table 3. Average accessible surface area, <ASA> of all the donor

groups in DNA-binding proteins

Groups Residues <ASA> (Å2) in

Interface Surfacea

Before
complexationa,b

After
complexation

NE Arg 10±4 (10±6) 3±3 7±3
NH1 Arg 29±10 (31±15) 11±7 25±9
NH2 Arg 35±11 (34±19) 13±10 31±11
ND1 His 11±8 (10±9) 3±4 10±5
NE2 His 15±9 (17±9) 5±6 13±9
NZ Lys 35±8 (32±12) 19±9 33±7
ND2 Asn 30±12 (27±17) 12±10 31±10
NE1 Trp 12±7 (9±9) 3±4 7±5
NE2 Gln 31±15 (21±19) 12±10 27±9
OG Ser 17±8 (17±11) 6±5 14±6
OG1 Thr 15±7 (14±10) 5±6 12±6
OH Tyr 21±11 (21±15) 7±7 19±9

aThe difference between the accessibilities is significant at 0.1 to 5%
level (P-value ranging from 0.001 to 0.05), except for ND1, NE2 (His
and Gln), OH and ND2.
bThe values for the unbound form (from the protein–DNA docking
benchmark) are given in parentheses, for comparison.
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SVM training and predictions

The SVM classifier was trained several times using com-
binations of different top ranked attributes and the values
of g and C were optimized to maximize the MCC value.
These were subsequently used to predict the test dataset to
assess the performance of the combination of attributes.
Results presented in Table 5 show that the model which
was trained with the top 15 attributes had the highest
MCC and was subsequently used for testing. This model
when applied to the test dataset performed quite well
(Table 6); all the performance measures are better as
compared to the model using all the attributes
(Supplementary Table S2).

In addition to the leave-one-out method we also
optimized the kernel parameters using 5-fold cross valid-
ation—the training dataset was spilt into five subsets,
where one of the subsets was used as the test set while
the other four subsets were used for training the classifier.
The trained classifier was then tested using the test set. The
process was repeated five times using a different subset for
testing, thereby ensuring that all subsets were used for
both training and testing. The results were essentially the

same, except that the model which was trained with all the
25 parameters had the highest MCC (0.8674).

Test on the unbound form of the protein–DNA benchmark

The trained SVM classifier was used for detecting the
likely interface in the unbound DBPs taken from the
docking benchmark (42), which contained 47 such struc-
tures. While the mapped interface on the unbound form
constituted the positive examples, the negatives were
picked up from the surface patches. Approximately two
surface patches were randomly picked for each structure
as negatives, making the negative to positive ratio as 2:1.
The classifier gave very good result with only two
Fn and six Fp predictions. The corresponding accuracy,

Figure 4. Distribution of the rank (on a scale of 1 to 10) of the DNA-binding site in the unbound form (obtained by mapping the interface
information from the bound structure) of 42 DNA-binding proteins taken from benchmark version 1.2, relative to other patches on the surface of the
protein using four different parameters. Patches were identified using the strict definition.

Table 4. Comparison of the efficiency of the present method with

other techniques

Dataset
(# of cases)

Reported
prediction
accuracy (%)

Accuracy
(%) using

Rp Dp

Jones (56) 68 82a 72a

Stawiski (54) 81
Stawiski enzyme data set (16) 50 92b 62b

aThe present method was applied to the combined Jones and Stawiski
datasets as given in Table 2.
bBased on 13 cases (three could not be used as no surface patch showed
up).

Table 6. Performance of the model on our test set and the unbound

cases in protein–DNA docking benchmark

Test set Accuracy Specificity Sensitivity/
Recall

Precision F-measure

Our dataseta 90.5 91.7 88.8 89.9 89.1
protein–DNA
docking
benchmarkb

93.6 92.8 95.2 86.9 90.9

aValues shown are average performance on 10 different randomly
generated test sets.
b42 positives and 83 negatives.

Table 5. Summary of SVM modeling

Attributes C g MCC

Top 5 15 0.013 0.7867
Top 10 14 0.5 0.8393
Top 15 7 0.021 0.8608
All 25 3 0 0.8508
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specificity, sensitivity and other performance parameters
are given in Table 6.

Application of the parameters on protein–RNA structures

Protein–RNA interaction is far less studied than the one
involving protein and DNA, mainly due to its complexity
and the lesser number of structures available.
Dinucleotide-specific contacts were found to be different
in case of RNA-binding proteins (RBPs) as compared to
DBPs and could be used to predict targets of RBPs (47).
Recently, Ahmad and Sarai extended their moment-based
approach for predicting DBPs (48) to RBPs and found
distinct patterns of net charge, dipole and quadruple
moments (49). It is interesting to see how our four param-
eters used for the characterization of the protein–DNA
interfaces perform in identification of the interfaces in
protein–RNA complexes. Of the 51 complexes listed in
Biswas et al. (50) 45 could be analyzed (the remaining
did not have enough homologs). Comparison of the
results (Figure 5) with those from protein–DNA
complexes (Figure 2) indicates that the performance with
Ncons for ranking the true interface as 1 remains nearly the

same. However the performance for all other parameters
deteriorated by �12% with Rp, 14–15% with Dp and
3–16% with �e.

Testing the specificity of the model using
a set of non-DBPs

To further validate the specificity of the model, we tested
our SVM classifier solely on a negative dataset (84 cases)
based on 42 weakly associated homodimeric proteins (51).
We opted for these dimers as their interface size is
comparable to that of the protein–DNA complexes dis-
cussed here (�1600 versus �2000 Å2). For each protein
two patches were defined—one corresponding to the
dimeric interface and another randomly selected from the
rest of the protein surface. The results showed only seven Fp

among the interfaces and six from the surface patches. The
number of false positives remained the same when the clas-
sifier was tested with the 42 positives randomly selected
from the protein–DNA set and the negatives comprising
of 42 examples of either the protein–protein interfaces or
the random surface patches. Thus the classifier has the
ability to distinguish the protein–DNA interface from the

Figure 5. Distribution of the rank (on a scale of 1 to 10) of the known RNA-binding site relative to other patches on the surface of the protein using
four different parameters. In (a) 39 structures are used with a strict definition of patches, in (b) 45 structures (where the patches may contain up to
10% interface residues).
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patches arising out of protein–protein binding region or a
random surface of non-DBPs.

DISCUSSION

We have analyzed and used four different parameters (and
one variant) individually for predictions of DNA-binding
sites on the surface of protein structures. One of the
parameters, � is based on clustering of conserved
residues. Though it is known that the putative hotspots
for DNA binding are those which occur as clusters of
conserved residues (4), we have defined � in an analogous
way to what was done for the analysis of protein–protein
interfaces (40). In 88.5% of the protein–DNA interfaces
� is >1 (Figure 1 and Table 1). The usefulness of the
clustering parameter for the identification of the interface
from any random surface patch can be improved by 7%
by modifying � into �e that incorporates a weighing factor
depending on the variation of the amino acid composition
of conserved residues of a given interface/patch from the
corresponding average composition observed in all the
interfaces. Another parameter to be used was based on
the hydrogen bond donors. Interestingly, the accessible
surface areas of such groups are found to be more in the
interface than when these are located in the rest of the
surface (Table 3). This is akin to what has been
observed at the residue level in protein–protein interfaces
(Guharoy et al., unpublished data). To improve the
discriminatory power, only those groups with an access-
ible surface area of �10 Å2 were used for the calculation of
Dp. An example of the values of the parameters at the
interface (being ranked the highest in all but �) with
respect to all other surface patches are shown in Figure 3.

Using a single parameter the best prediction (83%) was
obtained using Rp (Figure 2), the residue propensity score,
which also worked well for protein–protein interfaces (41).
Rp is equally efficient when applied to the unbound form
of DBPs, identifying 86% cases (Figure 4). This is indeed a
very high quality prediction rate compared to the previous
analysis by Jones et al. (15), which attained 68% correct
prediction using a similar approach of patch analysis and
the true interface ranking on the basis of electrostatic
potential. We also applied our parameters to the
combined dataset of Jones and Stawiski (15,16) and
obtained 82% correct prediction using Rp and 72%
using Dp (Table 4). We separately dealt with the 16
enzyme complexes in Stawiski’s dataset that were very
poorly identified by them, and found that out of 13
complexes (surface patch did not show up in three cases)
Rp and Dp could identify 12 and 8, respectively, of the
interfaces correctly (Table 4).

There are now attempts to distinguish DNA from RNA
binding surfaces (52,53). The parameter, Rp based on
features of DNA-binding interfaces is �12% less success-
ful in identifying the RNA-binding site (Figure 5). Dp is
also less effective. Thus there are some differences in the
residue propensity and the number of hydrogen bond
donors from DNA and RNA, which could be exploited
to distinguish between the two types of surface patches.

Finally, we built a SVM classifier with 15 attributes. The
model had a very high MCC of 0.86 compared to all other
earlier models and an accuracy of �90% (Tables 5 and 6).
Other DNA-binding site prediction methods have reported
MCCof 0.54 and 0.62 for the top twomodels with accuracy
of 85% and 87%, respectively (21). SVM predictors
developed by Kuznetsov et al. (11), which have used struc-
tural and evolutionary information in the form of PSSM,
achieved a maximum MCC of 0.66 with 82% accuracy.
Using the surface curvature and the electrostatic potential
of the DNA-binding and non-binding sites, the web server
PredDs (25) reported accuracy of 94%, with 86% sensitiv-
ity and 96% specificity—values comparable to ours,
though our method appears to be more sensitive. This
method also outperforms the available sequence-based pre-
diction methods of DNA-binding sites, such as DP-Bind
(22), DBSpred (7), DBS-PSSM (54) and BindN (55) in
terms of their reported accuracy, sensitivity and specificity.
A very recent method, metaDBSite that integrated results
from other web-servers including a few of those mentioned
above can predict solely on the basis of sequence informa-
tion and reports a sensitivity of 77% (56). While the
ultimate goal is to be able to predict the residues that
bind DNA directly from amino acid sequence (57), a
structure-based method, such as this can be incorporated
to develop a more robust method of prediction. It may be
mentioned that given the complexity of predicting the
specificity of a protein for a DNA sequence, the structure
is usually used to complement the results from sequence-
based approach (58,59).
Identifying the binding region in the unbound form of

the protein is a challenging task. Almost all earlier inves-
tigations exploited the bound complex in characterizing
and identifying the DNA-binding site. A method named
DISPLAR (30) used 14 unbound DBPs in testing and gave
an accuracy of 77%. In this work we too started with the
complex form in characterizing the binding site with dif-
ferent set of parameters, but tested them on the unbound
form of the proteins available in protein–DNA docking
benchmark (42). All the parameters performed well by
ranking >60% of the interface regions correctly. In
contrast to DISPLAR, our SVM model could identify
the binding region with an accuracy of 93.6%.

CONCLUSION

We have developed five parameters based on the residue
propensity, conservation and structural features of the
binding region in DBPs, and analyzed their usefulness in
identifying the interface from all possible surface patches.
Using 15 attributes we have applied the SVM approach
for the identification of the DNA-binding site on protein
molecular surface and achieve results that are better or at
least comparable to the existing algorithms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2, Supplementary Figures
1–4 and Supplementary Reference [60].
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