Speckle reduction is desired to improve the quality of ultrasound images. However, a uniform speckle reduction from the entire image results in loss of important information, especially in cardiac ultrasound images. In this paper, a tissue selective total variation regularization approach is proposed for the enhancement of cardiac ultrasound images. It measures the pixel probability of belonging to blood regions and uses it in the total variation framework. As a result, the unwanted speckle from the blood chamber regions is removed and the useful speckle in the tissue regions is preserved. This helps to improve the visible contrast of the images and enhances the structural details. The proposed approach is evaluated using synthetic as well as real images. A better performance is observed as compared to the state-of-the-art filters in terms of speckle region’s signal to noise ratio, structural similarity measure index, figure of merit, and mean square error. © Springer International Publishing AG 2017.