Nature offers several examples of self-organizing systems that automatically adjust to changing conditions without adversely affecting the system goals. We propose a self-organizing sensor network that is inspired from real-life systems for sampling a region in an energy-efficient manner. Mobile nodes in our network execute certain rules by processing local information. These rules enable the nodes to divide the sampling task in a manner such that the nodes self-organize themselves to reduce the total power consumed and improve the accuracy with which the phenomena are sampled. The digital hormone-based model that encapsulates these rules, provides a theoretical framework for examining this class of systems. This model has been simulated and implemented on cricket motes. Our results indicate that the model is more effective than a conventional model with a fixed rate sampling. © 2013 Indu Sreedevi et al.