Header menu link for other important links
X
Antibody immobilization for ZnO nanowire based biosensor application
, M. Nayak, D. Singh, S. Bhattacharya
Published in Materials Research Society
2014
Volume: 1675
   
Pages: 33 - 39
Abstract
Due to the high surface area and good bio-compatibility of nano structured ZnO, it finds good utility in biosensor applications. In this work we have fabricated highly dense ZnO nano bundles with the assistance of self assembled poly methylsilisesquoxane (PMSSQ) matrix which has been realized in a carpet like configuration with implanted ZnO nano-seeds. Such high aspect ratio structures (∼50) with carpet like layout have been realized for the first time using solution chemistry. Nanoparticles of PMMSQ are mixed with a nano-assembler Poly-propylene glycol (PPG) and Zinc Oxide nanoseeds (5-15 nm). The PPG acts by assembling the PMSSQ nanoparticles and evaporates from this film thus creating the highly porous nano-assembly of PMMSQ nanoparticles with implanted Zinc Oxide seeds. Nano-wire bundles with a high overall surface roughness are grown over this template by a daylong incubation of an aqueous solution of hexamethylene tetra amine and Zinc nitrate. Characterization of the fabricated structures has been extensively performed using FESEM, EDAX, and XRD. We envision these films to have potential of highly dense immobilization platforms for antibodies in immunosensors. The principle advantage in our case is a high aspect ratio of the nano-bundles and a high level of roughness in overall surface topology of the carpet outgrowing the zinc-oxide nanowire bundles. Antibody immobilization has been performed by modifying the surface with protein-G followed by Goat anti salmonella antibody. Antibody activity has been characterized by using 3D profiler. Bio-Rad Protein assay and UV-Visible spectrophotometer. © 2014 Materials Research Society.
About the journal
JournalMaterials Research Society Symposium Proceedings
PublisherMaterials Research Society
ISSN02729172