Header menu link for other important links
An Improved Ping-Pong Protocol Using Three-Qubit Nonmaximally Nonorthogonal Entangled States
H. Kaur,
Published in De Gruyter
We analyse the ping-pong (PP) protocol [K. Bostrom and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002)] using different sets of partially entangled three-qubit states. Interestingly, our results show that the partially entangled nonorthogonal three-qubit states are more useful as resources in comparison to three-qubit maximally entangled Greenberger-Horne-Zeilinger (GHZ) states. The properties of orthogonal set of partially entangled states as resources for PP protocol, however, are similar to that of maximally entangled GHZ states - both the states are not preferable due to the vulnerability towards eavesdropping. On the other hand, partially entangled nonorthogonal basis set holds importance for transferring two-bit information, one each from a sender, to a single receiver. The protocol is further analysed for various eavesdropping attacks, and the results are compared with the use of two shared Bell pairs for two-bit information transfer. Surprisingly, the use of partially entangled nonorthogonal set of states is found to offer better qubit efficiency and increased security, as against the use of two separate maximally entangled Bell states with orthogonal basis. In addition, we also propose a mixed-state sharing protocol to further enhance the security of the PP protocol. ©2019 Walter de Gruyter GmbH, Berlin/Boston 2019.
About the journal
JournalData powered by TypesetZeitschrift fur Naturforschung - Section A Journal of Physical Sciences
PublisherData powered by TypesetDe Gruyter
Open AccessNo