In this paper, a novel image fusion algorithm based on framelet transform is presented. The core idea is to decompose all the images to be fused into low and high-frequency bands using framelet transform. For fusion, two different selection strategies are developed and used for low and high-frequency bands. The first strategy is adaptive weighted average based on local energy and is applied to fuse the low-frequency bands. In order to fuse high-frequency bands, a new strategy is developed based on texture while exploiting the human visual system characteristics, which can preserve more details in source images and further improve the quality of fused image. Experimental results demonstrate the efficiency and better performance than existing image fusion methods both in visual inspection and objective evaluation criteria. © 2012 World Scientific Publishing Company.