Header menu link for other important links
An event-triggered based robust control of robot manipulator
, I.N. Kar, K. Paul
Published in Institute of Electrical and Electronics Engineers Inc.
Pages: 425 - 430
This paper proposes a framework to design an event-triggered based robust control law for nonlinear uncertain robot manipulator. Load variations and unmodeled system dynamics of manipulator are the primary sources of both system and input uncertainties. A static event-triggering rule is employed to realize the proposed robust control law. Derivation of static event-triggering rule with a positive inter-event time and corresponding stability criteria for uncertain manipulator dynamics are the key contribution of this paper. Validation of proposed control technique is carried out numerically on a two-link SCARA type robot manipulator. Simulation results show that measurement error norm is always bounded by the state dependent threshold and also ensures that asymptotic convergence of manipulator states in the presence of both system and input uncertainty. © 2014 IEEE.