Header menu link for other important links
X
An attention ensemble based approach for multilabel profanity detection
P. Ratadiya,
Published in IEEE Computer Society
2019
Volume: 2019-November
   
Pages: 544 - 550
Abstract
The amount of user-generated content in the cyberspace keeps increasing in the 21st century. However, it has also meant an increase in the number of cyber abuse and bullying incidents being reported. Use of profane text by individuals threatens the liberty and integrity of the digital space. Manual moderation and reporting mechanisms have been traditionally used to keep a check on such profane text. Dependency on human interpretation and delay in results have been the biggest obstacles in this system. Previous deep learning-based approaches to automate the process have involved use of traditional convolution and recurrence based sequential models. However, these models tend to be computationally expensive and have higher memory requirement. Further, they tend to produce state of the art results in binary classification but perform relatively poorly on multilabel tasks, owing to less flexibility in architecture. In today's world, classifying text in a binary way is no longer sufficient and thus a flexible solution able to generalize well on multilabel text is the need of the hour. In this paper, we propose a multihead attention-based approach for detection of profane text. We couple our model with power weighted average ensembling techniques to further improve the performance. The proposed approach does not have additional memory requirement and is less complex as compared to previous approaches. The improved results obtained by our model on publicly available real-world data further validate the same. Flexible, lightweight models which can handle multilabel text well can prove to be crucial in cracking down on social evils in the digital space. © 2019 IEEE.
About the journal
JournalData powered by TypesetIEEE International Conference on Data Mining Workshops, ICDMW
PublisherData powered by TypesetIEEE Computer Society
ISSN23759232