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ALTERATIONS AND REARRANGEMENTS OF A
NON-AUTONOMOUS DYNAMICAL SYSTEM

PUNEET SHARMA AND MANISH RAGHAV

Abstract. In this paper, we discuss the dynamics of alterations
and rearrangements of a non-autonomous dynamical system gen-
erated by the family F. We prove that while insertion/deletion of a
map in the family F can disturb the dynamics of a system, the dy-
namics of the system does not change if the map inserted/deleted
is feeble open. In the process, we prove that if the inserted/deleted
map is feeble open, the altered system exhibits any form of mix-
ing/sensitivity if and only if the original system exhibits the same.
We extend our investigations to properties like equicontinuity,
minimality and proximality for the two systems. We prove that
any finite rearrangement of a non-autonomous dynamical system
preserves the dynamics of original system if the family F is feeble
open. We also give examples to show that the dynamical behavior
of a system need be not be preserved under infinite rearrangement.

1. INTRODUCTION

Dynamical systems have been long used to investigate various
physical processes occurring in nature. The theory has been applied
effectively across various disciplines of sciences and engineering and
has helped providing solutions to a variety of modern day problems.
To name a few, the theory has been applied to address problems
like ”determining chemical dynamics of a system”, ”estimating pop-
ulation growth of a species” and ”controlling dynamics of various
electrical and mechanical systems”[1, 7, 12]. The theory developed
pertains to determining the dynamics of a general dynamical system
and hence is extremely beneficial for addressing problems across a
variety of disciplines. Although most of the problems addressed are
modelled using autonomous systems, it is intuitive to believe that
better estimates can be obtained for a system when the system is
modelled in a non-autonomous setting. As any general model ap-
proximating any natural or physical process is non-autonomous in
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nature, such a modification provides greater insight to the problem
and hence results in a better approximation of the original system.
Thus, it is important to develop the theory of non-autonomous dy-
namical systems. As a result, some investigations for such a setting in
the discrete case have been made and interesting results have been ob-
tained. While [8] investigates the topological entropy when the fam-
ily F is equicontinuous or uniformly convergent, [9] discusses mini-
mality conditions for a non-autonomous system on a compact Haus-
dorff space while focussing on the case when the non-autonomous
system is defined on a compact interval of the real line. In [6] au-
thors prove that if fn → f , in general there is no relation between
chaotic behavior of the non-autonomous system generated by fn and
the chaotic behavior of f . In [11], authors investigate the dynamics
generated by a uniformly convergent sequence of maps. They give
conditions under which the dynamics of a non-autonomous system
can be determined by the limiting system. In [10] authors investi-
gate a non-autonomous system generated by a finite family of maps.
In the process, they study properties like transitivity, weak mixing,
topological mixing, existence of periodic points, various forms of
sensitivities and Li-Yorke chaos. In [2] authors investigate proper-
ties like weakly mixing, topological mixing, topological entropy and
Li-Yorke chaos for the non-autonomous system. Although, many of
the questions arising for the dynamics of a non-autonomous system
have been answered, many questions are still open and are an inter-
esting point of investigation. For example, how does the dynamics
of a system change when a map f is introduced in the family F at
r-th position? What is the effect on the dynamics of the system when
the map at k-th position is deleted from the family F? If the family F
is rearranged to obtain a family G, what is the relation between the
dynamics of the original system and dynamics of the rearranged sys-
tem? Under what conditions is the dynamics of a system preserved
under alterations (finite insertions/deletions) or rearrangements?

So far, each of the questions posed above are open. In this paper,
we investigate the relation between the dynamics of a given system
and its alteration (or rearrangement). We prove that while alteration
of a system (X,F) by an arbitrary continuous map can disturb the dy-
namics of (X,F), the dynamics of a system is preserved, when altered
by a feeble open map. In the process, we prove that if the system is
altered by a feeble open map f , various forms of mixing and sensitiv-
ity are equivalent for the two systems. We extend our investigations
to properties like equicontinuity, minimality and proximality for the
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two system. In the process, we prove that if the family F is feeble
open, any finite rearrangement of the given system preserves the
dynamics of the original system. We also give examples to show
that the dynamics of a system need not be preserved under infinite
rearrangements. Before we move further, we give some of the basic
concepts and definitions required.

Let (X, d) be a compact metric space and let F = { fn : n ∈ N} be
a family of continuous self maps on X. For any initial seed x0 ∈ X,
any such family F generates a non-autonomous dynamical system
via the relation xn = fn(xn−1). Let (X,F) denote the non-autonomous
dynamical system generated by the family F. For any x0 ∈ X, the set
{ fn ◦ fn−1 ◦ . . .◦ f1(x0) : n ∈N} defines the orbit of the point x0. For any
k ∈N, letFk denote the truncated family { fn : n ≥ k+1}. The objective
of study of a non-autonomous dynamical system is to investigate the
orbit of an arbitrary point x in X. For notational convenience, let
ωn

n+k
= fn+k ◦ fn+k−1 ◦ . . .◦ fn+1 andωn(x) = fn ◦ fn−1 ◦ . . .◦ f1(x) (the state

of the system after n iterations).

A point x is called periodic for (X,F) if there exists n ∈ N such
that ωnk(x) = x for all k ∈ N. The least such n is known as the pe-
riod of the point x. A system (X,F) is called feeble open if for any
non-empty open set U in X, int( f (U)) , φ for all f ∈ F. The system
(X,F) is equicontinuous if for each ǫ > 0, there exists δ > 0 such that
d(x, y) < δ implies d(ωn(x), ωn(y)) < ǫ for all n ∈N, x, y ∈ X. The sys-
tem (X,F) is transitive (or F is transitive) if for each pair of non-empty
open sets U,V in X, there exists n ∈ N such that ωn(U)

⋂

V , φ. The
system (X,F) is said to be minimal if every point has a dense orbit.
The system (X,F) is said to be weakly mixing if for any collection of
non-empty open sets U1,U2,V1,V2 in X there exists a natural number
n such that ωn(Ui)

⋂

Vi , φ, i = 1, 2. Equivalently, we say that the
system is weakly mixing if F × F is transitive. The system is said to
be topologically mixing if for every pair of non-empty open sets U,V
there exists a natural number K such thatωn(U)

⋂

V , φ for all n ≥ K.
The system is said to be sensitive if there exists a δ > 0 such that for
each x ∈ X and each neighborhood U of x, there exists n ∈ N such
that diam(ωn(U)) > δ. If there exists K > 0 such that diam(ωn(U)) > δ
∀n ≥ K, then the system is cofinitely sensitive. A pair (x, y) is proximal
for (X,F) if lim inf

n→∞
d(ωn(x), ωn(y)) = 0. See [3, 4, 5] for details.
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2. Main Results

Throughout this section, the maps fk are assumed to be surjective.

Proposition 1. (X,F) is minimal⇔ (X,Fk) is minimal.

Proof. Let (X,F) be minimal and let x ∈ X. As each fk is surjective,
ω−1

k
(x) is non-empty. Further, as (X,F) is minimal, orbit of any y ∈

ω−1
k

(x) (under F) is dense in X. As orbit of x (under Fk) and orbit of y
(underF) differ by finitely many points (atmost k), denseness of orbit
of y (under F) implies denseness of orbit of x (under Fk) and hence
(X,Fk) is minimal.

Conversely let x ∈ X and y = ωk(x). As (X,Fk) is minimal, orbit of
y (under Fk) is dense in X. Further as orbit of y (under Fk) and orbit
of x (under F) differ by finitely many points (atmost k), denseness of
orbit of y (under Fk) ensures denseness of orbit of x (under F) and
hence (X,F) is minimal. �

Proposition 2. (X,Fk) is equicontinuous⇔ (X,F) is equicontinuous.

Proof. Let (X,Fk) be equicontinuous and let ǫ > 0 be given. As (X,Fk)
is equicontinuous, there exists ρ > 0 (ρ < ǫ) such that d(x, y) < ρ
implies d(ωk

n(x), ωk
n(y)) < ǫ ∀ n ≥ k+1. Also as the set { f1, f2◦ f1, . . . , fk◦

fk−1 ◦ . . . ◦ f1} is finite, there exists η > 0 such that d(x, y) < η ensures
d( fr ◦ fr−1 ◦ . . . ◦ f1(x), fr ◦ fr−1 ◦ . . . ◦ f1(y)) < ρ for r ∈ {1, 2, . . . , k} or
d(ωr(x), ωr(y)) < ρ for r ∈ {1, 2, . . . , k}. In particular, d(x, y) < η gives
d(ωk(x), ωk(y)) < ρ which further implies d(ωk

n(ωk(x)), ωk
n(ωk(y))) <

ǫ ∀ n ≥ k + 1 (by equicontinuity of (X,Fk)) or d(ωn(x), ωn(y)) < ǫ for
all n ∈N and hence (X,F) is equicontinuous.

Conversely, let (X,F) be equicontinuous and let ǫ > 0 be given.
As (X,F) is equicontinuous, there exists δ > 0 such that d(x, y) < δ
ensures d(ωn(x), ωn(y)) < ǫ ∀n ∈ N. Let x ∈ X and let Nx = {S(x, 1

n
) :

n ∈N}be the neighborhood base at x. As
⋂

U∈Nx

ω−1
k

(U) = ω−1
k

({x}), there

exists U ∈ Nx such that ω−1
k

(U) ⊂
⋃

y∈ω−1
k

({x})

S(y, δ) or there exits m ∈ N

such that ω−1
k

(S(x, 1
m

)) ⊂
⋃

y∈ω−1
k

({x})

S(y, δ). Consequently, if d(x, z) < 1
m

,

for any u ∈ ω−1
k

(z), d(u, y) < δ for some y ∈ ω−1
k

({x}) and hence

d(ωn(u), ωn(y)) < ǫ for all n ∈N. Asωk(u) = z, ωk(y) = x andωk
n ◦ωk =

ωn, we obtain d(ωk
n(x), ωk

n(z)) < ǫ for all n ≥ k + 1 and hence the
truncated system is equicontinuous at x. As the proof holds for
any x ∈ X, (X,Fk) is equicontinuous and hence equicontinuity is
equivalent for the two systems. �
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Remark 1. The above proofs establish the equivalence of minimality
and equicontinuity for the two systems. While equivalence of min-
imality for the two systems follow from the fact that denseness of
a set is not altered by addition or deletion of finitely many points,
equivalence of equicontinuity is established by working on each of
the fibres of the inverse function (fibres of f−1 are functions g = f−1|M
where M is maximal subset of X such that f |M is injective). The result
is intuitive in nature and extends the fact that addition of finitely
many maps cannot generate sensitivity in a non-sensitive system.
We now turn our attention towards proximality for the two systems.

Proposition 3. If F is commutative then, (x,y) is proximal for (X,Fk) ⇒
(x, y) is proximal for (X,F). Further if each fi is bijective then, (x,y) is
proximal for (X,F)⇒ (x, y) is proximal for (X,Fk).

Proof. If (x, y) is proximal for (X,Fk) then there exists a sequence
(nr) of positive integers such that lim

r→∞
d(ωk

nr
(x), ωk

nr
(y)) = 0. As X is

compact, there exists z ∈ X and a subsequence (nrl
) of (nr) such that

lim
l→∞
ωk

nrl
(x) = lim

l→∞
ωk

nrl
(y) = z. Thus we get, fk◦ fk−1◦. . .◦ f1(lim

l→∞
ωk

nrl
(x)) =

fk ◦ fk−1 ◦ . . . ◦ f1(lim
l→∞
ωk

nrl
(z)) = fk ◦ fk−1 ◦ . . . ◦ f1(z) or lim

l→∞
fk ◦ fk−1 ◦

. . . ◦ f1(ωk
nrl

(x)) = lim
l→∞

fk ◦ fk−1 ◦ . . . ◦ f1(ωk
nrl

(y)) = fk ◦ fk−1 ◦ . . . ◦ f1(z) (as

fk◦ fk−1◦. . .◦ f1 is continuous). Consequently, lim
l→∞
ωnrl

(x) = lim
l→∞
ωnrl

(y) =

fk ◦ fk−1 ◦ . . . ◦ f1(z) (as F is commutative) and hence (x, y) is proximal
for (X,F).

Conversely, let (x, y) be proximal for (X,F). Thus, there exists
sequence (nr) of natural numbers such that lim

r→∞
d(ωnr(x), ωnr(y)) = 0.

Consequently, there exists a subsequence (nrl
) of (nr) and z ∈ X such

that lim
l→∞
ωnrl

(x) = lim
l→∞
ωnrl

(y) = z. As ωnrl
= ωk

nrl
◦ ( fk ◦ fk−1 ◦ . . .◦ f1) and

the family F is commutative, we obtain lim
l→∞

fk ◦ fk−1 ◦ . . .◦ f1(ωk
nrl

(x)) =

lim
l→∞

fk ◦ fk−1 ◦ . . . ◦ f1(ωk
nrl

(y)) = z or fk ◦ fk−1 ◦ . . . ◦ f1(lim
l→∞
ωk

nrl
(x)) =

fk ◦ fk−1 ◦ . . . ◦ f1(lim
l→∞
ωk

nrl
(y)) = z (as fk ◦ fk−1 ◦ . . . ◦ f1 is continuous).

As each fi is bijective, fk ◦ fk−1 ◦ . . . ◦ f1 is bijective and thus we obtain
lim
l→∞
ωk

nrl
(x) = lim

l→∞
ωk

nrl
(y) or (x, y) is proximal for (X,Fk). �

Remark 2. The above proof establishes the equivalence of proximality
for the two systems when the family F is commutative and each fk

is a bijection. While proximality is preserved from (X,Fk) to (X,F)
when the family F is commutative, the converse is proved under
additional assumption of bijectivity of the the maps fk. However,
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the proof uses only injectivity of the maps fk and hence the result is
true whenF is a commutative family of injective maps. Further, both
commutativity and bijectivity (injectivity) are necessary conditions
to establish the result and the result does not hold good when either
of the conditions imposed is dropped. We now give examples in
support of our claim.

Example 1. Let I be the unit interval and let f : I → I be piecewise
continuous linear map such that f (0) = 0, f (1

3
) = 1, f (2

3
) = 0 and f (1) = 2

3
.

Let g : I→ I be the defined as

g(x) =

{

2x for x ∈ [0, 1
2
]

2 − 2x for x ∈ [1
2
, 1]

Let (X,F) be the non-autonomous system generated by F = { f , g, g, . . .}.
It may be noted that f and g do not commute and hence non-autonomous
system generated is non-commutative in nature. As g(0) = g(1), {0, 1} is a
proximal set for (X,Fk) for any k ∈ N. However, as f (0) = 0 and f (1) = 2

3
are fixed for g, the pair is not proximal for (X,F). Thus, commutativity
is an essential condition to preserve proximality of a pair (from (X,Fk) to
(X,F)).

Further, let h : I → I be continuous such that h(0) = 0, h(2
3
) = 1

4
and h(1) = 1 and let (X,F) be the non-autonomous system generated
by F = {h, g, g, . . .}. It may be noted that the system generated is non-
commutative in nature. Further, as the set {0, 2

3
} is proximal for (X,F) but

not for (X,Fk), the converse does not hold in absence of commutativity.

Example 2. Let S1 be the unit circle and let f : S1 → S1 be defined as
f (θ) = θ + π. Let g : S1 → S1 be defined as

g(θ) =

{

θ for θ ∈ [0, π]
θ2

π
− 2θ + 2π for θ ∈ [π, 2π]

Let (X,F) be the non-autonomous system generated by F = { f , g, g, . . .}.
It may be noted that both f and g are bijective and hence the non-autonomous
system generated is bijective (but non-commutative) in nature. Further, as
f ([0, π]) = [π, 2π] and π is fixed point (attracting from the right) for g,
any two points in [0, π] are proximal for (X,F). However, as g fixes every
point in [0, π], the truncated system (X,Fk) (k ≥ 1) does not exhibit any
proximal pair in [0, π].

Example 3. Let I be the unit interval and let f , g : I→ I be defined as

f (x) =



















x for x ∈ [0, 1
2
]

4
3
x − 1

6
for x ∈ [1

2
, 7

8
]

1 for x ∈ [7
8
, 1]
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g(x) =



















−2x + 1
2

for x ∈ [0, 1
4
]

2x − 1
2

for x ∈ [1
4
, 1

2
]

x for x ∈ [1
2
, 1]

Let (X,F) be the non-autonomous system generated by F = { f , g, g, . . .}.
Then, f and g commute and hence non-autonomous system generated is
commutative (but not bijective) in nature. As f ([7

8
, 1]) = 1 and g(x) = x

for any x ∈ [7
8
, 1], any pair (x, y) (x, y ∈ [7

8
, 1]) is proximal for (X,F) but

fails to be proximal for any truncated system.

Remark 3. The above examples validate the necessity of the conditions
imposed in proposition 3. While Example 1 establishes the necessity
of the commutativity condition for the proposition to hold good, Ex-
amples 2 and 3 prove that commutativity or injectivity alone cannot
preserve the proximal pairs in the converse direction. Consequently,
both commuativity and injectivity of the maps fk are necessary for
the converse to hold good and hence cannot be dropped.

Proposition 4. (X,F) is transitive⇒ (X,Fk) is transitive. If the family F
is feeble open then (X,Fk) is transitive⇒ (X,F) is transitive.

Proof. Let (X,F) be transitive and let U,V be any pair of non-empty
open subsets in X. As (X,F) is transitive, for the pair U′ = ω−1

k
(U),V of

non-empty open sets in X, there exists r ∈N such thatωr(U
′)∩V , φ.

Also, transitivity of (X,F) enures that the set {r ∈N : ωr(U
′)∩V , φ}

is infinite. Consequently there exists r > k such that ωr(U
′) ∩ V , φ

or ωk
r(U) ∩V , φ and hence (X,Fk) is transitive.

Let (X,Fk) be transitive and let U,V be any pair of non-empty open
subsets in X. As the family F is feeble open ωk(U) has a non-empty
interior. Thus, for open sets U′ = int(ωk(U)),V in X, there exists
r ∈N such that ωk

r(U
′) ∩ V , φ. Consequently, ωk

r(ωk(U)) ∩ V , φ or
ωr(U) ∩ V , φ and hence (X,F) is transitive.. �

Remark 4. The above proof establishes the equivalence of transitiv-
ity for the two systems (X,F) and (X,Fk). Though the property is
preserved from (X,F) to (X,Fk) unconditionally, the proof of the con-
verse holds good when that family F is feeble open. As absence of
feeble openness destroys the topological structure of an open set over
iterations, feeble openness is a necessary condition for the converse
to hold good. Further, as the proof does not use the structure of open
sets explicitly, U1,U2 interact with V1,V2 for (X,F) (or (X,Fk)) at r-th
iterate then U1,U2 and V1,V2 interact at r − k-th (or r + k-th) iterate
for (X,Fk) (or (X,F)) and hence weakly mixing is equivalent for the
two systems under identical conditions. Further, as the set of times of
interaction between open sets U and V for the two systems (X,F) and
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(X,Fk) are translate of each other (by constant k), the similar proof
gives equivalence of topological mixing under identical conditions.
We now establish our claims below.

Corollary 1. (X,F) is weakly mixing (topological mixing) ⇒ (X,Fk) is
weakly mixing (topological mixing). If the family F is feeble open then
(X,Fk) is weakly mixing (topological mixing) ⇒ (X,F) is weakly mixing
(topological mixing).

Proof. The proof follows from discussions in Remark 4 and Proposi-
tion 4. �

Example 4. Let I be the unit interval and let f , g : I→ I be defined as

f (x) =

{

0 for x ∈ [0, 1
2
]

2x − 1 for x ∈ [1
2
, 1]

g(x) =

{

2x for x ∈ [0, 1
2
]

2 − 2x for x ∈ [1
2
, 1]

Let (X,F) be the non-autonomous system generated by F = { f , g, g, . . .}.
For any k ∈N, (X,Fk) is the autonomous system generated by tent map and
hence exhibits all forms of mixing and sensitivities. However for any open
set U, U ⊂ [0, 1

2
], ωr(U) = {0} for any r ∈ N. Thus the non-autonomous

system does not exhibit any form of mixing or sensitivity and hence feeble
openness is necessary to preserve any form of mixing or sensitivity (from
(X,Fk) to (X,F)). We now establish that feeble openness is indeed sufficient
to preserve sensitivity from (X,Fk) to (X,F).

Proposition 5. (X,F) is sensitive⇒ (X,Fk) is sensitive. If the family F is
feeble open then (X,Fk) is sensitive⇒ (X,F) is sensitive.

Proof. Let (X,F) be sensitive with δ as constant of sensitivity. For
any open set U, continuity of each fi implies U′ = ω−1

k
(U) is open

and hence there exists r ∈ N such that diam(ωr(U
′)) > δ. As the set

of times of expansion is infinite for a sensitive system, there exists
m > k such that diam(ωm(U′)) > δwhich implies diam(ωk

m(U)) > δ and
hence (X,Fk) is sensitive.

Conversely let (X,Fk) be sensitive with δ as constant of sensitivity
and let U be a non-empty open set in X. As the familyF is feeble open,
U′ = int(ωk(U)) is non-empty and hence sensitivity of (X,Fk) yields
m ∈N such that diam(ωk

m(U′)) > δ. Consequently, diam(ωk
m(ωk(U))) >

δ or diam(ωm(U)) > δ and hence (X,F) is sensitive. �

Remark 5. The above proof establishes equivalence of sensitivity for
the two systems (X,F) and (X,Fk) under feeble openness of the family
F. Once again, while sensitivity of (X,F) implies sensitivity of (X,Fk)
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unconditionally, the converse is true when the familyF is feeble open.
As noted in Example 4, feeble openness is necessary for the converse
to hold good and hence cannot be dropped. Further, it may be noted
that if one of the systems is sensitive with sensitivity constant δ, then
the proof establishes the sensitivity of the other system with same
constant of sensitivity and hence the two systems are sensitive with
same sensitivity constant. Finally, as the times of expansion (of an
open set U) for the two systems are translate (by constant k) of each
other, a similar proof establishes the equivalence of syndetic (cofinite)
sensitivity for the two systems. Hence we get the following corollary.

Corollary 2. (X,F) is syndetically (cofinitely) sensitive⇒ (X,Fk) is syn-
detically (confinitely) sensitive. If the family F is feeble open then (X,Fk)
is syndetically (cofinitely) sensitive ⇒ (X,F) is syndetically (cofinitely)
sensitive.

Remark 6. The proofs above establish that for a feeble open fam-
ily F, (X,F) exhibits any form of mixing (sensitivity) if and only
if (X,Fk) also exhibits the same. It may be noted that if (X,G) is
a finite rearrangement of (X,F) then there exists k ∈ N such that
Gk = Fk. Consequently, for a feeble open family F, as (X,F) and
(X,Fk) (and similarly (X,G) and (X,Gk)) exhibit identical notions of
mixing (sensitivity), (X,F) exhibits any form of mixing (sensitivity) if
and only if (X,G) exhibits identical form of mixing (sensitivity) and
hence various notions of mixing (sensitivity) are preserved under
finite rearrangements. Further, it may be noted that as minimality
and equicontinuity are equivalent for two systems (X,F) and (X,Fk)
unconditionally, the notions of minimality and equicontinuity are
preserved under finite rearrangements. Hence we obtain the follow-
ing corollaries.

Corollary 3. Let (X,F) be a non-autonomous dynamical system and let G
be a finite rearrangement of F. Then, (X,F) is minimal (equicontinuous)
⇔ (X,G) is minimal (equicontinuous).

Corollary 4. Let F be feeble open and let G be a finite rearrangement of F.
Then, (X,F) exhibits any notion of mixing (sensitivity) if and only if (X,G)
exhibits identical notion of mixing (sensitivity).

Corollary 5. Let F be commutative family of bijective maps and let G be
a finite rearrangement of F. Then, (x, y) is proximal for (X,F)⇔ (x, y) is
proximal for (X,G).
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Remark 7. The above results derive sufficient conditions under which
a dynamical notion is preserved under finite rearrangement. Conse-
quently, while minimality and equicontinuity are preserved uncon-
ditionally, various notions of mixing (sensitivity) are preserved when
the family F is feeble open. However, the result is true when G is a
finite rearrangement of F and the dynamical notions discussed need
not be preserved under the stated conditions when the rearrange-
ment G is an infinite rearrangement. We now an give example to
establish our claim.

Example 5. Let X = {0, 1}Z be the collection of two-sided sequences of
0 and 1 endowed with the product topology. Let σ : X → X be defined
as σ(. . . x−2x−1.x0x1x2 . . .) = (. . . x−2x−1x0.x1x2 . . .). The map σ is the shift
operator and is continuous with respect to the product topology on X. Let
F = {σ, σ−1, σ, σ, σ−1, σ−1, . . .}. Thus, the family F is defined by defining
fi = σ when n(n + 1) + 1 ≤ i ≤ (n + 1)2 and fi = σ

−1 when (n + 1)2 +

1 ≤ i ≤ (n + 1)(n + 2). Then, as ωn(n+1)(x) = x and ωn(n+1)+r(x) =
σr(x) for 1 ≤ r ≤ n + 1, for any open set U we obtain, ωn(n+1)+r(U) =
σr(U) for 1 ≤ r ≤ n + 1 and hence the system (X,F) exhibits all forms
of mixing and sensitivity. However, as there are equal number of σ and
σ−1 between fn(n+1) and f(n+1)(n+2) (n each), the family F can be rearranged
to obtain G = {σ, σ−1, σ, σ−1, . . .}. As (X,G) does not exhibit any form
of mixing or sensitivity, any form of mixing or sensitivity need not be
preserved under infinite rearrangement. Further, it may be noted that
(X,F) is strongly sensitive and hence is not equicontinuous. However, as
orbit of any x in (X,G) is {x, σ(x)}, the system (X,G) is equicontinuous
and hence equicontinuity is not preserved under infinite rearrangements
even when the maps fi are bijective. Hence the conditions under which
the dynamical behavior is preserved for finite rearrangements strictly work
whenG is a finite rearrangement and need not preserve the dynamics when
the family F is infinitely rearranged.

3. Conclusion

In this work, we investigated the dynamics arising from various
possible alterations and rearrangements arising from a given non-
autonomous dynamical system (X,F). We prove that if (X,G) is
obtained by inserting/deleting finitely many maps from the family
F, under certain conditions, the modified system exhibits behavior
similar to (X,F) and hence the dynamics is preserved under such
modifications. We prove that while minimality and equicontinuity
are preserved unconditionally, proximality is preserved when the
familyF is commutative and injective. We prove that various notions
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of mixing and sensitivities are equivalent for the two systems when
the family F is feeble open. We prove that the results established do
not hold good when the conditions imposed are relaxed and hence
the conditions imposed are indeed necessary for the results to hold
good. We generalize our results to the case when the family G is a
finite rearrangement of F. We prove that the results obtained hold
good strictly for finite rearrangements and fail to hold true when the
rearrangement is infinite.
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