Humans are very efficient at recognizing familiar face images even in challenging conditions. One reason for such capabilities is the ability to understand social context between individuals. Sometimes the identity of the person in a photo can be inferred based on the identity of other persons in the same photo, when some social context between them is known. This research presents an algorithm to utilize co-occurrence of individuals as the social context to improve face recognition. Association rule mining is utilized to infer multi-level social context among subjects from a large repository of social transactions. The results are demonstrated on the G-album and on the SN-collection pertaining to 4675 identities prepared by the authors from a social networking website. The results show that association rules extracted from social context can be used to augment face recognition and improve the identification performance. © 2014 IEEE.