Header menu link for other important links
X
A substantial rise in the area and population affected by dryness in South Asia under 1.5 °c, 2.0 °c and 2.5 °c warmer worlds
, Vimal Mishra
Published in Institute of Physics Publishing
2019
Volume: 14
   
Issue: 11
Abstract
Millions of people in South Asia face water scarcity every year. Previous studies based on the multi-model ensemble mean reported a decline in dryness (the ratio of potential evapotranspiration and precipitation) in South Asia under the warming climate. However, using observations and simulations from skilful climate models (BEST-GCMs) that simulate the critical monsoon features and show less bias to simulate observed climate, we show that dryness has significantly increased over the Gangetic Plain and parts of Pakistan during 1951-2016. Moreover, a rise in global mean temperature of 1.5 °C from the pre-industrial level will result in an increased dryness over half of South Asia affecting more than 790(±336) million people. Population affected by dryness is projected to 890 (±485) and 1960 (±1033) million under 2.0° and 2.5° warming worlds, respectively. Previously reported reduced aridity under the warming climate based on multi-model ensemble is mainly due to the GCMs that have less skill to simulate monsoon features. The GCMs with less skill project a higher increase (∼25%) in the monsoon season precipitation, which is largely due to their higher sensitivity of convective precipitation to warming. We show that the risk of water scarcity and dryness in South Asia under warming climate is higher than previously reported.
About the journal
JournalEnvironmental Research Letters
PublisherInstitute of Physics Publishing
ISSN17489326
Open AccessNo