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Abstract In this article, a globally convergent sequential quadratic program-
ming (SQP) method is developed for multi-objective optimization problems
with inequality type constraints. A feasible descent direction is obtained using
a linear approximation of all objective functions as well as constraint functions.
The sub-problem at every iteration of the sequence has feasible solution. A
non-differentiable penalty function is used to deal with constraint violations.
A descent sequence is generated which converges to a critical point under the
Mangasarian-Fromovitz constraint qualification along with some other mild
assumptions. The method is compared with a selection of existing methods on
a suitable set of test problems.
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1 Introduction

A widely used line search technique for solving constrained single objective
optimization problems is SQP method, which was developed by Wilson in
1963 and modified by several researchers (see [16,36]) in various directions.
A serious limitation of these methods is the inconsistency of the quadratic
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sub-problem. Powell ([35]) suggested a modified sub-problem to overcome this
restriction, which was further modified in [4,24,32] for better efficiency. SQP
method in [4] converges to an infeasible point in some situations. SQP method
in [25] is a two step method. But, SQP method in [32] is one step method and
always converges to a feasible point. These developments are related to single
objective optimization problems. In this article, a convergent SQP iterative
scheme is developed for constrained multi-objective optimization problems, in
the light of [32].

Classical methods for solving multi-objective optimization problems are ei-
ther scalarization methods or heuristic methods. Scalarization methods reduce
the multi-objective optimization problem to a single objective optimization
problem using pre determined parameters. Heuristic methods do not guaran-
tee the convergence to the solution. To address these limitations, line search
methods for unconstrained multi-objective optimization problems have been
developed since 2000 by many researchers ([1,2,11,12,34]), which are treated
as the extension of single objective line search techniques. Possible extension of
these concepts to constrained multi-objective problems is an interesting area
of research in recent times.

The steepest descent method for multi-objective problems developed by
Fliege and Svaiter ([12]) uses the linear approximation of all objective func-
tions to find a descent direction. This concept is extended in [9] to projected
gradient method for vector optimization problems, which is further extended
in [15,6] in different directions. An interior point algorithm is developed in
[31] for box constrained multi-objective optimization problems using the con-
cept of vector pseudo gradient. Recently Fliege and Vaz ([13]) and Gebken
et al. ([17]) have developed SQP methods for constrained multi-objective op-
timization problems using the ideas of single objective SQP methods. The
sub-problem in [13] is not necessarily feasible at every iteration step. Some
restoration process is used to make the sub-problem feasible, and approximate
Pareto front is generated. The SQP method in [17] requires feasible initial
approximation, which is very difficult in nonlinear constrained problems. In
addition to this, the iterative process in [17] does not use penalty function,
and only active constraints are used in the sub-problem. In this article these
difficulties are taken care. A modified SQP scheme is developed using a differ-
ent sub-problem so that the infeasibility of the sub-problem at every iteration
step can be avoided and a non-differentiable penalty function is used to restrict
constraint violations.

The outline of this article is as follows. Some preliminaries on the exis-
tence of the solution of a multi-objective optimization problem are discussed
in Section 2. A modified SQP scheme for inequality constrained multi-objective
optimization problems is developed in Section 3 and global convergence of this
scheme is proved in Section 4. In Section 5, the proposed method is compared
with existing methods using a set of test problems.
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2 Preliminaries

Consider the multi-objective optimization problem:

MOP : min (f1(x), f2(x), ..., fm(x))

s.t. gi(x) ≤ 0, i = 1, 2, ..., p,

where fj, gi : R
n → R are continuously differentiable for j ∈ {1, 2, ...,m} and

i ∈ {1, 2, ..., p}. Denote R
n
+ = {x ∈ R

n|xi ≥ 0, i = 1, 2, ..., n},
Λn = {1, 2, ..., n} for any n ∈ N, and the feasible set of the MOP as
X = {x ∈ R

n : gi(x) ≤ 0, i ∈ Λp}. Inequality in R
n is understood com-

ponentwise. If there exists x ∈ X which minimizes all objective functions
simultaneously then it is an ideal solution. But in practice, decrease of one
objective function may cause increase of another objective function. So, in the
theory of multi-objective optimization, optimality is replaced by efficiency.
A feasible point x∗ ∈ X is said to be an efficient solution of the MOP if
there does not exist x ∈ X such that f(x) ≤ f(x∗) and f(x) 6= f(x∗) hold
where f(x) = (f1(x), f2(x), ..., fm(x)). A feasible point x∗ ∈ X is said to be
a weak efficient solution of MOP if there does not exist x ∈ X such that
f(x) < f(x∗) holds. For x, y ∈ X , we say y dominates x, if and only if
f(y) ≤ f(x), f(y) 6= f(x). A point x ∈ X is said to be non dominated if
there does not exist any y ∈ X such that y dominates x. If X∗ is the set of
all efficient solutions of the MOP , then the image of X∗ under f , i.e. f(X∗)
is said to be the Pareto front of the MOP.

In our analysis, we use the L∞ non-differentiable penalty function

Φ(x) = max{0, gi(x), i ∈ Λp}.

In order to obtain a feasible descent direction, the penalty function for the
MOP is used as the following merit function Ψj,σ(x), with a penalty parameter
σ > 0 as

Ψj,σ(x) = fj(x) + σΦ(x), j ∈ Λm.

Let I(x) = {i ∈ Λp : gi(x) = Φ(x)} be the set of active or most violated
constraints. The directional derivative of Φ(x) in any direction d ∈ R

n is

Φ′(x; d) = max
i∈I(x)

{∇gi(x)
T d},

In general Φ′(x; d) is not continuous. A continuous approximation of Φ′(x; d)
(see [3]) is

Φ∗(x; d) = max
i∈I(x)

{gi(x) +∇gi(x)
T d, 0} − Φ(x).

Thus, an approximation of the directional derivative of Ψj,σ(x) is

θj,σ(x; d) = ∇fj(x)
T d+ σΦ∗(x; d), j ∈ Λm.

If all fj, gi are continuously differentiable then the necessary condition of weak
efficiency can be derived using Motzkin’s theorem as follows.
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Theorem 1 (Fritz John necessary condition [Theorem 3.1.1,[30]])
Suppose fj, j ∈ Λm and gi, i ∈ Λp are continuously differentiable at x∗ ∈ X. If
x∗ is a weak efficient solution of the MOP then there exists (λ, µ) ∈ R

m
+ ×R

p
+,

(λ, µ) 6= 0m+p satisfying

Σ
j∈Λm

λj∇fj(x
∗) + Σ

i∈Λp

µi∇gi(x
∗) = 0 (1)

µigi(x
∗) = 0 ∀ i ∈ Λp. (2)

The set of the vector (λ, µ) ∈ R
m
+ × R

p
+ \ {0m+p} satisfying (1) and (2) are

called Fritz John multipliers associated with x∗. But the Fritz John necessary
condition does not guarantee λj > 0, for at least one j. So some constraint
qualifications or regularity conditions should hold to ensure it.
Several constraint qualifications or regularity conditions are defined and dis-
cussed in [28,27]. Through the discussion of this article we consider the Mangasarian-
Fromovitz constraint qualification.

Definition 1 [29] The Mangasarian-Fromovitz constraint qualification (MFCQ)
is said to be satisfied at a point x ∈ R

n, if there is a z ∈ R
n such that

∇gi(x)
T z < 0 for i ∈ I(x).

Suppose MFCQ holds at x. Then the system of inequalities ∇gi(x)
T z < 0

for i ∈ I(x) has a nonzero solution z ∈ R
n. Hence by Gordan’s theorem of

alternative Σ
i∈I(x)

µi∇gi(x) = 0, µi ≥ 0 has no nonzero solution. That is, µi = 0

∀ i ∈ I(x).
Conversely suppose the system Σ

i∈I(x)
µi∇gi(x) = 0, µi ≥ 0 at x has no nonzero

solution µ. Then by Gordan’s theorem of alternative the system of inequalities
∇gi(x)

T z < 0 for i ∈ I(x) has some nonzero solution z ∈ R
n.

Above discussion concludes that MFCQ holds at x iff

Σ
i∈I(x)

µi∇gi(x) = 0, µi ≥ 0 ⇒ µi = 0 ∀ i ∈ I(x).

Strong and weak stationary points for single-objective optimization problems
are defined in Definition 1 of [32]. In the light of this definition, strong and
weakly critical point of the MOP can be defined, taking care all objective
functions together as follows.

Definition 2 A feasible point x of the MOP is said to be

( 1) a strongly critical point of the MOP if there exist vectors λ ∈ Rm
+−{0m}

and µ ∈ Rp
+ satisfying (1) and (2).

( 2) a weakly critical point of the MOP if there exists an infeasible sequence
{xk} converging to x ∈ X such that

lim
k→∞

max
d∈D(xk)

max
i∈Λp

{gi(x
k) +∇gi(x

k)Td; 0}

Φ(xk)
= 1,

where D(xk) = {d : ∇fj(x
k)Td ≤ 0, j ∈ Λm}.

One may observe that a strongly critical point is a KKT point of the MOP .
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3 A SQP based line search method for MOP

In order to obtain a feasible descent direction at x, we solve a quadratic pro-
gramming sub-problem QP (x) at x as

QP (x) : min
t,d

t+
1

2
dTd

s. t. ∇fj(x)
T d ≤ t j ∈ Λm (3)

gi(x) +∇gi(x)
T d ≤ t i ∈ Λp. (4)

Motivation for this sub-problem comes from [12] with modifications to address
infeasibility. Notice that t = Φ(x), d = 0 is a feasible solution of QP (x). Hence
the feasibility of the sub-problem is guaranteed. QP (x) has unique solution
since this is a convex quadratic problem. The solutions ofQP (x) satisfy MFCQ
since the system

− Σ
j∈Λm

γj − Σ
i∈Λp

ηi = 0

Σ
j∈Λm

γj∇fj(x) + Σ
i∈Λp

ηi∇gi(x) = 0

γj ≥ 0, ηi ≥ 0

implies γj = 0 for all j and ηi = 0 for all i. Hence there exist λ ∈ R
m
+ , µ ∈ R

p
+,

(λ, µ) 6= 0m+p satisfying the KKT optimality conditions. As a result,

d+ Σ
j∈Λm

λj∇fj(x) + Σ
i∈Λp

µi∇gi(x) = 0, (5)

1− Σ
j∈Λm

λj − Σ
i∈Λp

µi = 0, (6)

λj ≥ 0, λj(∇fj(x)
T d− t) = 0, j ∈ Λm, (7)

µi ≥ 0, µi(gi(x) +∇gi(x)
T d− t) = 0 i ∈ Λp, (8)

∇fj(x)
T d− t ≤ 0, j ∈ Λm, (9)

gi(x) +∇gi(x)
T d− t ≤ 0 i ∈ Λp. (10)

Lemma 1 Suppose that (t, d) is the solution of the QP (x).

(I) Then

t ≤ Φ(x) −
1

2
dT d. (11)

(II) If d = 0 and the MFCQ holds at x then x is a strong critical point of
MOP.

(III) If d 6= 0 then d is a descent direction of Ψj,σ(x) at x for σ sufficiently
large.
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Proof:
(I) One can observe that t = Φ(x), d = 0 is a feasible solution of QP (x). Hence
t+ 1

2d
T d ≤ Φ(x). This implies

t ≤ Φ(x) −
1

2
dTd.

(II) Suppose (t, 0) is the solution of QP (x). Replacing d by 0 in (5)-(10), we
get

Σ
j∈Λm

λj∇fj(x) + Σ
i∈Λp

µi∇gi(x) = 0 (12)

1− Σ
j∈Λm

λj − Σ
i∈Λp

µi = 0 (13)

λj ≥ 0 λjt = 0, j ∈ Λm (14)

µi ≥ 0 µi(gi(x)− t) = 0 i ∈ Λp (15)

0 ≤ t, gi(x) ≤ t i ∈ Λp. (16)

Φ(x) ≤ t follows from definition of Φ(x) and (16). Then t, satisfying (11) with
d = 0 implies Φ(x) ≥ t. Hence Φ(x) = t. From (15), µi = 0 follows for all
i /∈ I(x). Also, λj > 0 holds for at least one j. Otherwise, (12) and (13) will
imply Σ

i∈Λp

µi∇gi(x) = 0, µi > 0 for at least one i, which violates the MFCQ.

This implies that t = 0 = Φ(x) (from (14)). That is, x is a feasible point. Then
from (15), µigi(x) = 0, µi ≥ 0, i ∈ Λp. Therefore, x is a strongly critical point
of P , which follows from (12).
(III) Suppose (t, d) is the solution of QP (x) and d 6= 0. Then the following
two cases could arise:
Case-1: Let Φ(x) > 0. Applying (11) in (4) we get

gi(x) +∇gi(x)
T d ≤ t ≤ Φ(x) −

1

2
dT d < Φ(x).

Since 0 < Φ(x), we have max
i∈I(x)

{gi(x) + ∇gi(x)
T d, 0} − Φ(x) < 0, from the

inequalities above. That is, Φ∗(x; d) < 0. If σ is chosen in such way that

∇fj(x)
T d+ σΦ∗(x; d) ≤ −

1

2
dTd < 0

holds for all j then d will be a descent direction of Ψj,σ(x) for all j (from
Lemma 2.1(1) of [3]).
Case-2: If Φ(x) = 0, then t = 0, d = 0 is a feasible solution of QP (x). So
gi(x) +∇gi(x)

T d ≤ t ≤ 0 holds for all i ∈ I(x). So

Φ∗(x; d) = max
i∈I(x)

{gi(x) +∇gi(x)
T d, 0} − Φ(x) = 0.

Also, d 6= 0 implies t < 0. Hence from (3), we have ∇fj(x)
T d ≤ t < 0 and

consequently ∇fj(x)
T d+ σΦ∗(x; d) < 0. ⊓⊔

Let (tk, dk) be the solution of the subproblem QP (xk). Following the argu-
ments of the proof of Lemma 1(III), the penalty parameter σk can be updated
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to force dk to remain a descent direction for all Ψj,σk+1
(xk). At kth iteration

σk is unchanged if dk is the descent direction. Otherwise, σk is updated as

σk+1 = max

{

2σk,
∇fj(x

k)Tdk + 1
2d

kTdk

−Φ∗(xk; dk)
, j ∈ Λm

}

. (17)

The theoretical results developed so far are summarized in the following algo-
rithm.

Algorithm 1 (A SQP based algorithm)

Step 1. (Initialization) Choose x0 ∈ R
n, some scalars r ∈ (0, 1), β ∈ (0, 1),

the initial penalty parameter σ0 > 0, and an error tolerance ǫ. Set
k := 0.

Step 2. Solve the QP (xk) to find the descent direction (tk; dk) with Lagrange
multipliers (λk, µk). If ‖dk‖ < ǫ, then stop, otherwise go to Step 3.

Step 3. If Φ(xk) = 0 or θj,σk
(xk; dk) ≤ − 1

2d
kTdk for all j, let σk+1 = σk.

Otherwise, σk+1 is updated using (17).
Step 4. Compute step length αk as the first number in the sequence {1, r, r2, ...}

satisfying

Ψj,σk+1
(xk + αkd

k)− Ψj,σk+1
(xk) ≤ αkβθj,σk+1

(xk; dk) ∀ j ∈ Λm.

(18)

Step 5. Update xk+1 = xk + αkd
k. Set k := k + 1 and go to Step 2.

4 Convergence

In this section the global convergence of Algorithm 1 is proved. The following
lemma is used to establish that Step 4 is well-defined. The extension to the
multi-objective case justifies the convergence analysis.

Lemma 2 Suppose ∇fj(x) and ∇gi(x) are Lipschitz continuous for every j ∈
Λm and i ∈ Λp with Lipschitz constant L and let (tk, dk) be the solution of the
QP (xk) with dk 6= 0. Then (18) holds for α sufficiently small.

Proof: Since ∇fj(x) and ∇gi(x) are Lipschitz continuous for every j ∈ Λm

and i ∈ Λp, from Lemma 2.1(3) of [3], there exists L > 0 such that

Ψj,σk+1
(xk + αdk) ≤ Ψj,σk+1

(xk) + αθj,σk+1
(xk; dk) +

1

2
(1 + σk+1)Lα

2‖dk‖2

holds for every α ∈ [0, 1]. Hence for every α ∈ [0, 1] and β ∈ (0, 1) (initialized
in Step 1 of Algorithm 1) we have,

Ψj,σk+1
(xk + αdk)− Ψj,σk+1

(xk)− βαθj,σk+1
(xk; dk)

≤ (1− β)αθj,σk+1
(xk; dk) +

1

2
(1 + σk+1)Lα

2‖dk‖2. (19)
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Since dk 6= 0, from Step 3 of Algorithm 1,

(1− β)θj,σk+1
(xk; dk) ≤ −

1

2
(1 − β)‖dk‖2 < 0.

Hence from (19), (18) holds for every α > 0 sufficiently small. ⊓⊔

Lemma 3 Let (tk, dk) be the solution of the sub-problem QP (xk) and assume
that the sequences {xk} and {(tk, dk)} are bounded. If xk → x∗ as k → ∞,
then {(tk, dk)} converges to (t∗, d∗), where (t∗, d∗) is the solution of QP (x∗).
In particular, if dk converges to 0 and the MFCQ holds at every xk then x∗ is
a strongly critical point of the MOP .

Proof: If possible let {xk} converges to x∗ but {(tk, dk)} does not converge to
(t∗, d∗). Since {(tk, dk)} is bounded, there exists a sub sequence {(tk, dk)}k∈K

converging to (t̄, d̄) 6= (t∗, d∗). Since (tk, dk) is the optimal solution of QP (xk),
there exists (λk, µk) such that (tk, dk;λk, µk) satisfies the KKT optimality
conditions (5)-(10). Now (6) implies {λk} and {µk} are bounded. Hence there
exists a converging sub sequence of the subsequence {(λk, µk)}k∈K . Without
loss of generality we may assume λk → λ∗ and µk → µ∗ as k → ∞ and k ∈ K.
Hence in (5)-(10), taking limit k → ∞, k ∈ K, we have

d̄+ Σ
j∈Λm

λ∗
j∇fj(x

∗) + Σ
i∈Λp

µ∗
i∇gi(x

∗) = 0,

1− Σ
j∈Λm

λ∗
j − Σ

i∈Λp

µ∗
i = 0,

λ∗
j ≥ 0 λ∗

j (∇fj(x
∗)T d̄− t̄) = 0, j ∈ Λm,

µ∗
i ≥ 0 µ∗

i (gi(x
∗) +∇gi(x

∗)T d̄− t̄) = 0 i ∈ Λp,

∇fj(x
∗)T d̄− t̄ ≤ 0, j ∈ Λm,

gi(x
∗) +∇gi(x

∗)T d̄− t̄ ≤ 0 i ∈ Λp.

These imply that (t̄, d̄;λ∗, µ∗) satisfies first order necessary conditions of the
convex quadratic programming sub-problem QP (x∗). Hence (t̄, d̄) is an opti-
mal solution of QP (x∗). This contradicts the fact that (t∗, d∗) is the optimal
solution of QP (x∗), since QP (x∗) has unique solution. Hence {(tk, dk)} con-
verges to (t∗, d∗).
In particular, if dk converges to 0 and the MFCQ holds at every xk then re-
placing d∗ by 0 in (5)-(10) at (x∗, t∗, d∗, λ∗, µ∗) and proceeding as in Lemma
1(II) it is easy to prove that x∗ is a strongly critical point of the MOP . ⊓⊔

Lemma 4 Suppose that σk = σ > 0 for k large enough, the sequences {xk}
and {(tk, dk)} are bounded, ∇fj(x) and ∇gi(x) are Lipschitz continuous for
every j ∈ Λm and i ∈ Λp with Lipschitz constant L, and {xk}k∈K is a conver-
gent subsequence. Then dk → 0 as k → ∞ and k ∈ K.

Proof:Without loss of generality, assume that σk = σ for all k ∈ K. If possible
suppose that there exists an infinite subset K

′

⊂ K and a positive constant η
such that

‖dk‖ ≥ η, k ∈ K
′

. (20)
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First we will show that there exists δ > 0 such that αk ≥ δ holds for every k,
where αk is the step length obtained in Step 4 of Algorithm 1. From this step
either αk = 1 or αk = rk1 holds for some k1 ∈ N. If αk = rk1 holds then there
exists ĵ ∈ Λm satisfying,

Ψĵ,σ(x
k + rk1−1dk)− Ψĵ,σ(x

k) > rk1−1βθĵ,σ(x
k; dk).

Then from (19),

1

2
(1 + σ)Lr2(k1−1)‖dk‖2 ≥ −rk1−1(1− β)θĵ,σ(x

k; dk).

From Step 3 of Algorithm 1,

1

2
(1 + σ)Lrk1−1‖dk‖2 ≥

1

2
(1− β)‖dk‖2

⇒ rk1 ≥
r(1 − β)

(1 + σ)L

Choose δ = min{1, r(1−β)
(1+σ)L}. Then αk ≥ δ holds for every k. Now

Ψj,σ(x
k+1)− Ψj,σ(x

0) = Σk
l=0Ψj,σ(x

l + αld
l)− Ψj,σ(x

l)

≤ −
β

2
Σk

l=0αk‖d
k‖2

≤ −
1

2
(k + 1)δβη2 ∀k ∈ K ′.

The second inequality follows from (18) and Step 3 of Algorithm 1. This im-
plies Ψj,σ(x

k + αkd
k) → −∞ as k → ∞ and k ∈ K ′ (since α0βη

2 > 0). This
contradicts the assumption that {xk}, {(tk, dk)} are bounded as Ψj,σ is a con-

tinuous function. So there does not exist any K
′

⊂ K and η > 0 such that
(20) holds. Hence the lemma follows. ⊓⊔

Lemma 5 If σk → ∞ and the sequences {xk}, {(tk, dk)} are bounded then
lim
k→∞

Φ(xk) = 0.

Proof: Proof of this result is similar to the proof of Lemma 7 in [32]. ⊓⊔

Theorem 2 Let {xk} be a sequence generated by Algorithm 1, the sequences
{xk} and {(tk, dk)} are bounded, ∇fj(x) and ∇gi(x) are Lipschitz continuous
for every j ∈ Λm and i ∈ Λp with Lipschitz constant L, and the MFCQ is
satisfied at every xk. Then any accumulation point of {xk} is a critical point
(either weak or strongly critical point) of the MOP .

Proof:
(i) Convergence to a strongly critical point:
Let K be an infinite index set such that xk → x∗ as k → ∞ and k ∈ K. Let
{(tk, dk)} be the solution of QP (xk). If dk → 0 as k → ∞ then by Lemma 3,
x∗ is a strongly critical point of P .
(ii) Convergence to a weakly critical point:
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If there exists a constant c0 > 0 such that ‖dk‖ ≥ c0 for large k ∈ K then
from Lemma 4, σk → ∞ as k → ∞. Since the sequences {xk}, {(tk, dk)} are
bounded, so from Lemma 5, lim

k→∞
Φ(xk) = 0. Hence from (11) and (3),

∇fj(x
k)Td ≤ tk < 0 ∀ j ∈ Λm.

This implies, dk ∈ D(xk) for large k. Assume ad absurdum that there exists a
constant η2 > 0 such that for sufficiently large k,

max
d∈D(xk)

max
i∈Λp

{gi(x
k) +∇gi(x

k)T d; 0} ≤ Φ(xk)− η2.

Suppose d̂k maximizes max
i∈Λp

{gi(x
k) +∇gi(x

k)T d̂k, 0}. Then

θj,σk+1
(xk; dk) +

1

2
dk

T
dk ≤ Φ(xk) + σk

(

max
i∈ΛP

{gi(x
k) +∇gi(x

k)T d̂k, 0} − Φ(xk)

)

≤ Φ(xk)− η2σk

< 0.

This contradicts Step 3 of the Algorithm. As a result, {xk} converges to a
weakly critical point.
Hence any accumulation point of {xk} is either a strongly critical point or a
weakly critical point. ⊓⊔

5 Numerical illustration and discussion

In this section the proposed method (Algorithm 1) (MOSQP) is compared
with a classical method (weighted sum method (MOS)) and the method de-
veloped by Fliege and Vaz [13] (MOSQP(F)). In order to compare different
methods we use the performance profiles presented in [13,40,41] with respect
to the purity metric and the Γ and ∆ spread metrics. (The readers may see
the details in [13]). In addition to this, two line search techniques MOSQP
and MOSQP(F) are compared with respect to average function evaluations.

Performance profile: Performance profiles are defined by a cumulative func-
tion ρ(τ) representing a performance ratio with respect to a given metric, for a
given set of solvers. Given a set of solvers SO and a set of problems P , let ςp,s
be the performance of solver s on solving problem p. The performance ratio
is then defined as rp,s =

ςp,s
min

s∈SO
ςp,s

. The cumulative function ρs(τ) (s ∈ SO) is

defined as

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P |
.

It has been observed that the performance profiles are sensitive to the number
and types of algorithms considered in the comparison (see [18]). So we have
compared algorithms pairwise.
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Purity metric: Purity metric is used to compare the number of non-dominated
solutions obtained by different algorithms. Let Fp,s be the approximated Pareto
front of problem p obtained by method s. Then we can build an approxima-
tion to the true Pareto front Fp by first considering ∪

s∈S
Fp,s and removing the

dominated points. The purity metric for algorithm s and problem p is defined
by the ratio

t̄p,s =
|Fp|

|Fp,s ∩ Fp|
.

Clearly t̄p,s = ∞ implies that the algorithm is unable to generate any non-
dominated point in the reference Pareto front of the corresponding problem.
Spread metrics: Two types of spread metrics (Γ and ∆) are used in order
to analyze if the points generated by an algorithm are well-distributed in the
approximated Pareto front of a given problem. Let x1, x2, ...xN be the set of
points obtained by a solver s for problem p and let these points be sorted by
objective function j, i.e., fj(xi) ≤ fj(xi+1) (i = 1, 2, ..., N − 1). Suppose x0

is the best known approximation of global minimum of fj and xN+1 is the
best known global maximum of fj , computed over all approximated Pareto
fronts obtained by different solvers. Define δi,j = fj(xi+1)− fj(xi). Then the
Γ spread metric is defined by

Γp,s = max
j∈Λm

max
i∈{0,1,...,N}

δi,j .

Define δ̄j as the average of the distances δi,j , i = 1, 2, ..., N−1. For an algorithm
s and a problem p the spread metric ∆p,s is

∆p,s = max
j∈Λm

(

δ0,j + δN,j +ΣN−1
i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)

.

Test problems: A set of test problems, collected from different sources, are
summarized in Tables 1 and 2. Bound constrained test problems are summa-
rized in Table 1. Linear and nonlinear constrained test problems are summa-
rized in Table 2. In Table 2, ‘linear’ is the number of linear constraints except
bound constraints, and ‘nonlinear’ is the number of nonlinear constraints. In
both tables m is the number of objective functions and n represents the num-
ber of variables.

Implementation details: MATLAB code (2019a) is developed for all three
methods. The MATLAB code of MOSQP(F) is available in public domain,
which is not used here. For MOSQP(F), we have developed own code which
uses only the Step 4 (third stage) of Algorithm 4.1 [13] since the convergence
analysis of Algorithm 4.1 [13] is different from the convergence analysis of
MOSQP. Multi start techniques, similar to MOSQP, is used to generate an
approximated Pareto front for MOSQP(F).

– Quadratic sub-problems are solved using MATLAB function ‘quadprog’
with ‘Algorithm’,‘interior-point-convex ’.
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problem Source m n problem Source m n problem Source m n

BK1 [19] 2 2 Fonseca [14] 2 2 MLF1 [19] 2 1

CEC09 1 [38] 2 30 GE2 [10] 2 40 MLF2 [19] 2 2

CEC09 2 [38] 2 15 GE5 [10] 2 40 MOP1 [19] 2 1

CEC09 3 [38] 2 30 IKK1 [19] 3 3 MOP2 [19] 2 2

CEC09 7 [38] 2 30 IM1 [19] 2 2 MOP3 [19] 2 2

CL1 [5] 2 4 Jin1 [22] 2 2 MOP5 [19] 3 2

Deb41 [7] 2 2 Jin2 a [22] 2 2 MOP6 [19] 2 2

Deb513 [7] 2 2 Jin3 [22] 2 2 MOP7 [19] 3 2

Deb521a a [7] 2 2 Jin4 a [22] 2 2 SK1 [19] 2 1

Deb521b [7] 2 2 KW2 [10] 2 2 SK2 [19] 2 4

DG01 [19] 2 1 lovison1 [26] 2 2 SP1 [19] 2 2

DTLZ1 [8] 3 7 lovison2 [26] 2 2 SSFYY1 [19] 2 2

DTLZ1n2 [8] 2 2 lovison3 [26] 2 2 SSFYY2 [19] 2 1

DTLZ2 [8] 3 12 lovison4 [26] 2 2 TKLY1 [19] 2 4

DTLZ2n2 [8] 2 2 lovison5 [26] 3 3 VFM1 [19] 3 2

DTLZ5 a [8] 3 12 lovison6 [26] 3 3 VU1 [19] 2 2

DTLZ5n2 a [8] 2 2 LRS1 [19] 2 2 VU2 [19] 2 2

ex005 [21] 2 2 MHHM1 [19] 3 1 ZDT3 [39] 2 30

Far1 [19] 2 2 MHHM2 [19] 3 2

Table 1: Multi-objective test problems with bound constraints

problem Source m n linear nonlinear problem Source m n linear nonlinear

ABC Comp [20] 2 2 2 1 GE3 [10] 2 2 0 2

BNH [7] 2 2 0 2 GE4 [10] 3 3 0 1

CEC09 C3 [38] 2 10 0 1 liswetm [23] 2 7 5 0

CEC09 C9 [38] 3 10 0 1 MOQP 002 [23] 3 20 9 0

ex003 [37] 2 2 0 2 OSY [7] 2 6 4 2

ex004 [33] 2 2 2 0 SRN [7] 2 2 1 1

GE1 [10] 2 2 0 1 TNK [7] 2 2 0 2

Table 2: Multi-objective test problems with linear and nonlinear constraints

– For MOS, the test problems are converted to single objective optimization
problems and solved using MATLAB function ‘fmincon’ with ’Algorithm’
‘sqp’, Specified ‘objective gradient ’ and ‘constraint gradient ’, and initial
approximation as (l + u)/2, where l and u are used as in [13].

– ‖dk‖ < 10−5 or a maximum of 500 iterations are considered as stopping
criteria.

– It is essential to find a set of well distributed solutions of MOP . Spread-
ing out an approximation to a Pareto set is a difficult problem. One simple
technique may not work always in a satisfactory manner for all type of prob-
lems. Here, to generate an approximated Pareto front, we have selected the
initial point with the strategies LINE and RAND and random parame-
ters in the scalarization method. LINE is considered only for bi-objective
optimization problems and RAND is considered for both bi-objective and
more than two objective optimization problems.
– Initial point selection strategy LINE is considered for bi-objective op-

timization problems. Here 100 initial points are chosen in the line seg-
ment joining l and u, i.e. x0,k = l+k u−l

99 , k = 0, 1, 2, ..., 99 and for MOS
we have solved problems of the form
min
x∈X

wf1(x) + (1− w)f2(x) for w = k/99, k = 0, 1, 2, ..., 99.

– For every test (two or three objective) problem initial points selection
strategy RAND is considered. Here 100 random initial points are se-
lected uniformly distributed in l and u, and for MOS we have solved
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min
x∈X

Σ
j∈Λm

wjfj(x) wj ≥ 0 w 6= 0, where w is a random vector. Ev-

ery test problem is executed 10 times with random initial points and
weights.

– Restoration procedure is not used for MOSQP(F) if the quadratic sub-
problem is infeasible. These points are excluded. Quadratic sub-problem
(QP (xk)) of Algorithm 1 always has a solution since this is a convex
quadratic problem and has at least one feasible solution.

– Different run with initial point selection strategy RAND generates differ-
ent set of non-dominated points. Among 10 runs the run which generates
highest number of non-dominated solutions, is denoted as best run. Simi-
larly, the run which generates lowest number of non-dominated solutions,
is denoted as worst run. Performance profiles are compared for best and
worst runs.

The performance profiles between MOSQP and MOSQP(F) using purity met-
ric of best run in RAND is provided in Figure 1a and the performance profiles
between MOSQP and MOS using purity metric of best run in RAND is pro-
vided in Figure 1b. Figures 2a and 2b correspond to the performance profiles
for the purity metric in worst run comparing MOSQP with MOSQP(F) and
MOSQP with MOS, respectively. The performance profiles for the Γ metric
in best run comparing MOSQP with MOSQP(F) and MOSQP with MOS are
provided in Figures 3a and 3b respectively. The performance profiles for the Γ
metric in worst run comparing MOSQP with MOSQP(F) and MOSQP with
MOS are provided in Figures 4a and 4b respectively. Figures 5a and 5b corre-
spond to the performance profiles for ∆ metric in best run comparing MOSQP
with MOSQP(F) and MOSQP with MOS, respectively. The performance pro-
files for the ∆ metric in worst run comparing MOSQP with MOSQP(F) and
MOSQP with MOS are provided in Figures 6a and 6b respectively.
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Fig. 1: Performance profile using purity metric in best run in RAND



14 Md Abu Talhamainuddin Ansary, Geetanjali Panda

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s( )

MOSQP
MOSQP(F)

20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Performance profile between MOSQP
and MOSQP(F)

2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s()

MOSQP
MOS

50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Performance profile between MOSQP
and MOS

Fig. 2: Performance profile using purity metric in worst run in RAND
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Fig. 3: Performance profile using Γ metric in best run in RAND
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Fig. 4: Performance profile using Γ metric in worst run in RAND
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Fig. 6: Performance profile using ∆ metric in worst run in RAND

The performance profiles using purity metric in LINE between MOSQP
and MOSQP(F) and between MOSQP and MOS are provided in Figures 7a
and 7b respectively. Figures 8a and 8b correspond to the performance profiles
for Γ metric in LINE comparing MOSQP with MOSQP(F) and MOSQP
with MOS, respectively. The performance profiles for the ∆ metric in LINE
comparing MOSQP with MOSQP(F) and MOSQP with MOS are provided in
Figures 9a and 9b respectively.
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Fig. 7: Performance profile using purity metric in LINE
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Fig. 8: Performance profile using Γ metric in LINE
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Fig. 9: Performance profile using ∆ metric in LINE

Two line search techniques MOSQP and MOSQP(F) are compared using aver-
age number of function evaluations per non-dominated points. We have calcu-
lated gradient for MOSQP and MOSQP(F) and Hessian for MOSQP(F) using
forward difference formula. If n1 and n2 are number of non-dominated points
generated by MOSQP and MOSQP(F), then average function evaluations are
derived as

FE1 = (#f + n#∇f) /n1

and

FE2 =

(

#f + n#∇f +
1

2
n(n+ 1)#∇2f

)

/n2,

where #f , #∇f , and #∇2f denote the number of objective function, objec-
tive gradient, and objective Hessian evaluations. Performance profiles between
MOSQP and MOSQP(F) using average function evaluations in best and worst
run in RAND are provided in Figures 10a and 10b. Figure 11 represents per-
formance profiles between MOSQP and MOSQP(F) using average function
evaluations in LINE.
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Fig. 10: Performance profile between MOSQP and MOSQP(F) using average
function evaluations in RAND

Result analysis: One may observe from the above figures that the method
proposed in this article (MOSQP) gives better results than MOSQP(F) in pu-
rity, Γ , and ∆ metrics using initial point selection strategy RAND and pu-
rity, Γ metrics using initial point selection strategy LINE. Similarly MOSQP
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Fig. 11: Performance profile between MOSQP and MOSQP(F) using average
function evaluations in LINE

gives better results than MOS in Γ metric using initial point selection strat-
egy RAND and LINE. Other metrics have average performance ratios with
MOS and MOSQP(F).

6 Conclusion

In this article we have developed a globally convergent modified SQP method
for constrained multi-objective optimization problem. This method is free from
any kind of a priori chosen parameters or ordering information of objective
functions. Also feasibility of the sub-problem is guaranteed. To generate an
approximate Pareto front, we have used the initial point selection strategies
LINE and RAND. There is no single spreading technique for line search
methods that can work in a satisfactory manner for all types of multi-objective
programming problems. Spreading out an approximation to a Pareto front is
a difficult task. A well distributed spreading technique is discussed in Step 3
of Algorithm 1.4 of [13]. We keep the implementation of these techniques for
future developments.

References

1. Ansary, M.A.T., Panda, G.: A modified quasi-Newton method for vector optimization
problem. Optimization 64(11), 22892306 (2015)

2. Ansary, M.A.T., Panda, G.: A sequential quadratically constrained quadratic program-
ming technique for a multi-objective optimization problem. Eng. Optim. 51(1), 2241
(2019)

3. Bazaraa, M., Goode, J.: An algorithm for solving linearly constrained minimax prob-
lems. European J. Oper. Res. 11(2), 158166 (1982)

4. Burke, J.V., Han, S.P.: A robust sequential quadratic programming method. Math.
Program. 43(1-3), 277303 (1989)

5. Cheng, F.Y., Li, X.S.: Generalized center method for multiobjective engineering opti-
mization. Eng. Optim. 31(5), 641661 (1999)

6. Cruz, J.Y.B., Perez, L.L., Melo, J.G.: Convergence of the projected gradient method
for quasiconvex multiobjective optimization. Nonlinear Anal-Theor. 74(16), 52685273
(2011)

7. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of
test problems. Evol. Comput. 7(3), 205230 (1999)



18 Md Abu Talhamainuddin Ansary, Geetanjali Panda

8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization
test problems. In: Evolutionary Computation, 2002. CEC02. Proceedings of the 2002
Congress on, vol. 1, pp. 825830. IEEE (2002)

9. Drummond, L.M.G., Iusem, A.N.: A projected gradient method for vector optimization
problems. Comput. Optim. Appl. 28(1), 529 (2004)

10. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM
J. Optim. 19(4), 16941718 (2009)

11. Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newtons method for multiobjective opti-
mization. SIAM J. Optim 20(2), 602626 (2009)

12. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math.
Methods Oper. Res. 51(3), 479494 (2000)

13. Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on
SQP techniques. SIAM J. Optim. 26(4), 20912119 (2016)

14. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint han-
dling with evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst. Man
Cybern. A Syst. Hum. 28(1), 2637 (1998)

15. Fukuda, E.H., Drummond, L. M. G.: Inexact projected gradient method for vector
optimization. Comput. Optim. Appl. 54(3), 473493 (2013)

16. Garcia-Palomares, U.M.G., Mangasarian, O.L.: Superlinearly convergent quasi-Newton
algorithms for nonlinearly constrained optimization problems. Math. Program. 11, 113
(1976)

17. Gebken, B., Peitz, S., Dellnitz, M.: A descent method for equality and inequality con-
strained multiobjective optimization problems. In: L. rujillo, O. Schütze, Y. Maldonado,
P. Valle (eds.) Numerical and Evolutionary Optimization-NEO 2017, pp. 2961. Springer
International Publishing, Cham (2019)

18. Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM
Transactions on Mathematical Software (TOMS) 43(2), 15 (2016)

19. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems
and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477506 (2006)

20. Hwang, C.L., Masud, A.S.M.: Multiple objective decision making methods and appli-
cations: a state-of-the-art survey. Springer Science & Business Media (1979)

21. Hwang, C.L., Yoon, K.: Multiple attribute decision making: methods and applications
a state-of-the-art survey. Springer Science & Business Media (1981)

22. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary mul-
tiobjective optimization: Why does it work and how? In: Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, pp. 10421049. Morgan Kauf-
mann Publishers Inc. (2001)

23. Leyffer, S.: A note on multiobjective optimization and complementarity constraints.
Preprint ANL/MCS-P1290-0905, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Illinois, Argonne (2005)

24. Liu, X., Yuan, Y.: A robust algorithm for optimization with general equality and in-
equality constraints. SIAM J. Sci. Comput. 22(2), 517534 (2000)

25. Liu, X.W.: Global convergence on an active set SQP for inequality constrained opti-
mization. J. Comput. Appl. Math. 180(1), 201 211 (2005)

26. Lovison, A.: A synthetic approach to multiobjective optimization. arXiv preprint
arXiv:1002.0093 (2010)

27. Maciel, M.C., Santos, S.A., Sottosanto, G.N.: Regularity conditions in differentiable
vector optimization revisited. J. Optim. Theory Appl. 142(2), 385398 (2009)

28. Maeda, T.: Constraint qualifications in multiobjective optimization problems: differen-
tiable case. J. Optim. Theory Appl. 80(3), 483500 (1994)

29. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in
the presence of equality and inequality constraints. J. Math. Anal. Appl. 17(1), 3747
(1967)

30. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
31. Miglierina, E., Molho, E., Recchioni, M.C.: Box-constrained multi-objective optimiza-

tion: a gradient-like method without a priori scalarization. European J. Oper. Res.
188(3), 662682 (2008)

32. Mo, J., Zhang, K., Wei, Z.: A variant of SQP method for inequality constrained opti-
mization and its global convergence. J. Comput. Appl. Math. 197(1), 270281 (2006)



Title Suppressed Due to Excessive Length 19

33. Oliveira, S.L.C., Ferreira, P.A.V.: Bi-objective optimisation with multiple decisionmak-
ers: a convex approach to attain majority solutions. J. Oper. Res. Soc. 51(3), 333340
(2000)
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