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In this article, we propose two novel methods for four-class motor im-
agery (MI) classification using electroencephalography (EEG). Also, we
developed a real-time health 4.0 (H4.0) architecture for brain-controlled
internet of things (IoT) enabled environments (BCE), which uses the clas-
sifiedMI task to assist disabled persons in controlling IoT-enabled envi-
ronments such as lighting and heating, ventilation, and air-conditioning
(HVAC). The first method for classification involves a simple and low-
complex classification framework using a combination of regularized
Riemannian mean (RRM) and linear SVM. Although this method per-
forms better compared to state-of-the-art techniques, it still suffers from a
nonnegligible misclassification rate. Hence, to overcome this, the second
method offers a persistent decision engine (PDE) for theMI classification,
which improves classification accuracy (CA) significantly. The proposed
methods are validated using an in-house recorded four-class MI data set
(data set I, collected over 14 subjects, and a four-class MI data set 2a of
BCI competition IV (data set II, collected over 9 subjects). The proposed
RRM architecture obtained average CAs of 74.30% and 67.60% when val-
idated using datasets I and II, respectively. When analyzed along with
the proposed PDE classification framework, an average CA of 92.25% on
12 subjects of data set I and 82.54% on 7 subjects of data set II is ob-
tained. The results show that the PDE algorithm is more reliable for the
classification of four-class MI and is also feasible for BCE applications.
The proposed low-complex BCE architecture is implemented in real time
using Raspberry Pi 3 Model B+ along with the Virgo EEG data acqui-
sition system. The hardware implementation results show that the pro-
posed system architecture is well suited for body-wearable devices in the
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scenario of Health 4.0. We strongly feel that this study can aid in driving
the future scope of BCE research.

1 Introduction

With the evolution of the internet of things (IoT), artificial intelligence
(AI), and low-power electronics, multiple businesses, such as smarter
health care, industrial automation, monitoring, and environmental sens-
ing, are moving toward minimizing manual intervention and are offering
widely available services (Da Xu, He, & Li, 2014; Wollschlaeger, Sauter, &
Jasperneite, 2017; Kiran, Rajalakshmi, Bharadwaj, & Acharyya, 2014). The
health care industry is especially witnessing a revolution prominently re-
ferred to asHealth 4.0 (H4.0). In the context ofH4.0, health care deliverywill
use all the technologies noted to improve the quality of living (Thuemmler
& Bai, 2017). In many developed and developing nations, an aging pop-
ulation and accidents are increasing, posing significant challenges due to
the unavailability of adequate health care providers (Angel, Vega, & López-
Ortega, 2017; Sousa et al., 2017). Especially in the case of motor-disabled
persons (where physical impairments due to aging or accidents impede the
person’s mobility), they rely on the help of others to control electrical appli-
ances’ such as turning on and off heating, ventilation, and air-conditioning
(HVAC) systems and lighting, among others. The use of H4.0 systems can
aid the elderly and disabled in performing these tasks without their own
physical movement or an assisting human (Thuemmler & Bai, 2017). The
use of H4.0 technologies seems to be a promising solution for elderly care
and remote patient monitoring applications (Miori & Russo, 2017; Gope &
Hwang, 2016).

Fifteen percent of the world population suffers from different kinds of
disability (World Bank, 2019), and 13% of people worldwide are elderly, de-
fined as over 60 years (UnitedNations, 2019). Recently developed technolo-
gies, such as home automation using natural language processing (NLP)
and remote control, can assist those who are disabled. But in many devel-
oping countries, including India and Indonesia, people speak diversified
regional languages, and the use of NLP technology is not yet popular in
these countries. Hence, we feel a solution where brain activity such as mo-
tor imagery used for interaction with the environment, referred to as brain-
controlled IoT-enabled environments (BCE), is more beneficial and can be
adopted across populations.

Motor imagery (MI) is a promising solution for BCE to interact with elec-
trical appliances so that those who are elderly or disabled can turn appli-
ances on and off. However, multiple patterns of MI task detection using
electroencephalography (EEG) is still an active research area, and classifica-
tion accuracies are limited. Other EEG techniques such as P300 and SSVEP
(steady-state visual evoked potential) also exist to recognize the brain
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pattern of the EEG signals. For example, Rebsamen et al. (2010) developed a
brain-controlled wheelchair using P300 potential. Although the P300-based
system provides multiple commands, it has limits because its information
transfer rate is low. P300 and SSEVPmethods therefore require visual stim-
ulus for identifying positive peak present in the EEG signal.

The elderly and disabled may feel fatigue over prolonged use of these
systems. Hence, to improve the care of elderly and disabled persons by
reducing their dependence on the assistance of others, we propose an
H4.0 framework (MI-based BCE system) that enables them to control IoT-
enabled environments. Users are instructed to imagine performing one of
four MI tasks: moving their tongue, feet, left hand, or right hand. Each of
these tasks is mapped to control a single electrical appliance present in the
IoT-enabled environment.When the requiredMI task is performed, the sys-
tem uses features extracted from the collected EEG signals and classifies the
task performed by the user using a simple low-hardware complex classifier.
The identified task is then converted into real-time action by toggling the
state of the corresponding electrical appliance (on to off or off to on) using
the IoT wireless network developed. We make four primary contributions
in this article:

• We propose and develop a real-time implementable low-complex
BCE architecture that uses MI tasks performed by the user to control
the surrounding IoT-enabled electrical appliances.

• We validate the BCE framework in real time using the Raspberry Pi 3
(Model B+) interface along with an EEG data acquisition system and
IoT network.1

• Weproposed and develop a novel framework for classifyingMI tasks
(movement of the right hand, left hand, feet, and tongue) using regu-
larized Riemannianmean (RRM) and linear support vector machines
(LSVM) from the EEG data collected.

• We propose a novel persistent decision-based MI classifier to reduce
false alarms and improve classification accuracies (CAs).

The rest of this article is organized as follows. Section 2 discusses the
important studies in the literature and the proposed H4.0 framework with
a detailed description of the individual functional units. We discuss the
performance of the proposed low-complex classifier without the persistent
decision engine and the persistent decision-based classification framework
using data set I and data set II in section 3. We also discuss, the real-time
hardware implementation of the proposed architecture using Raspberry Pi
3 and the EEG Virgo EEG2 data acquisition system in section 3. Section
4 concludes by summarizing the work performed and discussing future
scope.

1
www.raspberrypi.org/products/raspberry-pi-model-b-plus/.

2
www.allengers.com/p/electroencephalograph.
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2 Methods

2.1 A Primer to MI Classification and Related Work. Motor imagery
is an active cognitive process involving the imagination of performing a
task such as the movement of hands, feet, or tongue without any physical
activity. TheMI task is internally reproduced in the sensorimotor area of the
human brain. The performed MI task provides unique pattern information
in the collected EEG signal, which is then converted to real-time control
commands in BCE applications.

Many studies have analyzed EEG signals to determine MI tasks that
users perform for various purposes such as gaming and neuroprosthetics
(Lu, Li, Ren, & Miao, 2017; Bhattacharyya, Konar, & Tibarewala, 2017). A
generic architecture to determine the MI task involves feature extraction
and uses the extracted features to classify the task. Two popular meth-
ods developed for MI classification are common spatial patterns (CSP)
(Blankertz, Tomioka, Lemm, Kawanabe, & Müller, 2008) and the use of
Riemannian manifolds (Barachant, Bonnet, Congedo, & Jutten, 2012). Basic
CSP is developed for classifying two-class MI, and when it is employed for
four-class MI classification, its performance degrades. Multiple enhanced
versions of CSP (Grosse-Wentrup & Buss, 2008; Nicolas-Alonso, Corralejo,
Gomez-Pilar, Álvarez, & Hornero, 2015; Ge, Wang, & Yu, 2014; Dong, Li,
Li, Du, Belkacem, & Chen, 2017) were developed to support multiclass MI
data with limited CAs.

One of the recent and promising approaches identified for MI classifi-
cation is the use of Riemannian geometry (Barachant et al., 2012; Zanini,
Congedo, Jutten, Said, &Berthoumieu, 2018; Congedo, Barachant, & Bhatia,
2017). Barachant et al. (2012) andZanini et al. (2018) proposed a Riemannian
geometry-based multiclass MI classification where the signal covariances
are used as features of interest using the minimum distance to Riemannian
mean (MDRM) of the Riemannian manifold. Although the methodology in
Barachant et al. (2012) gives a good CA for some subjects, there are also
subjects that suffer from a high misclassification rate. Zanini et al. (2018)
extended the work in Barachant et al. (2012) to improve the accuracy of
cross-session and cross-subject validation. Zanini et al. (2018) proposed a
new affine transformation to improve accuracy when a model trained on
one subject is used on the other subject. For every session, the covariance
matrices calculated are affine-transformed to center them with respect to a
reference covariance matrix. Although this improves accuracy, it requires
a predefined interval at the beginning of every session to find the affine
transformation, which may not be feasible in real-time use.

Dong, Zhu, and Chen (2017) proposed four-class MI classification with
22-channel EEG signals between 3 and 24HzusingCSPand a relevance vec-
tor machine with a combination of gaussian and Cauchy kernels. Although
the performance is improved, these methods did not improve the CAof all
subjects. Gaur, Pachori, Wang, and Prasad (2018) proposed a multivariate
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Figure 1: Proposed novel H4.0 framework using low-complex BCE.

empirical mode decomposition-based filtering along with Riemannian ge-
ometry to improve the CA, but the performance analysis includes one-
versus-one classification.

The systemswe have noted define the classificationmethodology of sev-
eral MI tasks. However, in this article, for the first time to the best of our
knowledge, we also define the system architecture using end-to-end classi-
fication and application as well in real time, wherein the users, even para-
lyzed patients, control the IoT appliances usingMI tasks. In Jagadish, Kiran,
and Rajalakshmi (2017), we proposed BCE using eye blink activity. We now
extend this to four-class MI, thereby incorporating more controls than in
previous work.

When compared to the existing studies, we propose three improvements
in this article. The first is the development of an end-to-end system archi-
tecture that uses a novel MI classification using RRMwith LSVM to control
the IoT-enabled environments. Second, we propose a novel and persistent
decision-based classification framework that significantly improves the CA
and reduces the false alarms in the BCE. Third, we implement the proposed
architecture in real-time using Raspberry Pi 3 along with a Virgo EEG ma-
chine. To the best of our knowledge, this is the first study analyzing the
performance of an H4.0 framework considering all of these advanceds.

2.2 Proposed Framework for Health 4.0 Using Low-Complex Brain-
Controlled IoT Environments. Figure 1 shows the proposed framework
for H4.0, comprising the novel architecture for BCE. The framework is di-
vided into two stages. First is wearable EEG aggregation and processing
device that aggregates 22-channel EEG data from the scalp of the subject,
with montages described in sections 2.2.2 and 2.2.3. After the aggregation,
the corresponding features for detecting four-class MI are extracted using
RRM and classified using LSVM. After the classification, depending on the
MI task identified, the decision engine generates the necessary actuation,
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which will be communicated to the IoT environment controller using wire-
less communication. Depending on the actuation received at the IoT envi-
ronment controller, the corresponding appliance state is toggled.

In this article, we consider fourMI tasks: left hand, feet, tongue, and right
hand to control the appliances: fan, HVAC, TV, and light, respectively, as
shown in the architecture. We introduced an additional class, the no motor
imagery task (NoMIT), to reduce the misclassification rate if no MI task
is detected, and hence, nothing is triggered to the IoT controller when the
persistent decision engine classifies as NoMIT.

2.2.1 Data Acquisition and Denoising. The performance of the proposed
RRM framework is analyzed using two data sets: (1) in-house recorded MI
EEG data (data set I) to generate the model for real-time implementation of
proposed BCE architecture and (2) the four-classMI data set 2a of BCI Com-
petition IV (Brunner et al., 2008), whichwe refer to as data set II, to compare
the performance of the proposed framework to that in the existing studies.
These two data sets consist of 22-channel EEG information; the location of
electrode positions to record the MI signal used for this study is shown in
Figure 1. The acquired 22-channel analog EEG signals are digitized using a
high-precision ADC with a sampling frequency of 250 Hz. The maximum
MI EEG information is present in the frequency band between 8 Hz and
30 Hz (Lu et al., 2017). Hence, to eliminate low-frequency noise and power
line noise and for whitening the EEG signals, we use the fifth-order Butter-
worth bandpass filter with a frequency range of 8 Hz to 30 Hz to denoise
the signal for the considered datasets.

2.2.2 Description of Data Set I: In-House Recorded MI EEG Data. Fourteen
healthy subjects (sevenmen and sevenwomenwith an average age of 23.07
years) participated in the MI data collection, and all subjects signed the
consent form before participating. This study was approved by the Ethics
Committee of Indian Institute of Technology Hyderabad, India. Monopolar
EEG signals were recorded in one session using a commercially available
40-channel VIRGO EEG machine (see Table 1). The montages used for the
MI data collection were (Fp1, Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4,
T3, T4, T5, T6, O1, Oz, O2, A1, A2).

The experimental paradigm used for MI data collection is shown in Fig-
ure 2. Initially, the subjects were seated in a comfortable armchair in front
of a computer screen. At the beginning of each trial, the subject was in IDLE
mode for 3 s. We guided the user to perform the MI task (imagining mov-
ing their right hand, left hand, feet, and tongue) for a duration of 3 s af-
ter the fixation cross disappeared. For every subject, we collected 240 such
trials, with 60 trials for each MI task. Figure 3 shows the subject involved
in the experimental paradigm before performing the MI task. The wrap-
per in Figure 3 is a headband used to hold all the electrodes tightly dur-
ing the data collection process. To analyze the performance of the proposed
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Table 1: Technical Specifications of the VIRGO EEG Data Acquisition System.

Subject Subject
Number Feature Value Number Feature Value

1 Number of
channels

40 5 Sweep speed 7.5, 15, 30,
60 mm/sec

2 Sampling rate 1024/256 Hz 6 Common mode
rejection ratio
(CMRR)

100 dB

3 ADC
resolution

16-bit 7 Input Impedance >100 M�

4 Sensitivity 1–1000 μV/mm

Figure 2: Experimental paradigm of the in-house recorded MI EEG data.

Figure 3: Subject preparation before the experiment.

algorithms, we considered MI data between 5.5 s and 7.5 s of each trial and
did not consider the Fp1, Fp2 data.

2.2.3 Description of Data Set II: Four-ClassMI Data Set 2a of BCI Competition
IV. Data set II was collected from nine subjects with the four types of MI
task similar to the tasks in data set I. The MI tasks in data set II are imaging
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the right hand, left hand, feet, and tongue. Data set II was acquired using
22 leads (Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1,
CPz, CP2, CP4, P1, Pz, P2, POz) and comprises two sessions of EEG data;
session 1, the training data set and session 2, the evaluation data set. The
EEG data from these two sessions were used to evaluate the performance of
the proposed algorithms for training and validation purposes as performed
in Zanini et al. (2018). In each session, every subject completed 288 trials,
with 72 trials for each MI class. From the analysis performed in studies,
subjects S1, S3, S7, S8, and S9 obtainedmoderate CAs (>50%), and therefore
performing reasonablywell, while subjects S2, S4, S5, and S6 delivered poor
performance. Hereafter, without loss of generality, we refer to subjects who
delivered reasonable performance as “good subjects” and the others as “bad
subjects.”

2.3 Proposed RRM-Based Feature Extraction and LSVM Classifier.
Although the methodology proposed in Barachant et al. (2012) and Zanini
et al. (2018) performswith reasonable accuracy, a few subjects still had poor
CA. The reason for this poor performance of tends to be the strong effect of
outliers and noise on the location of the Riemannianmean.Hence, to reduce
the impact of noise and outliers on the performance of the classifier, we pro-
pose a novel regularizedRiemannianmean (RRM)–based feature extraction
(FE) approach, which improves the CA for most of the subjects. To achieve
this while determining the Riemannian mean for the four MI classes, we
perform regularization, which makes the feature extraction robust against
the outliers. Also, after calculating the distances to the Riemannian mean
of all four classes, we employ an LSVM for classification (Cortes & Vapnik,
1995).

2.3.1 A Primer to Riemannian Manifold. Riemannian manifolds are well
studied in the literature (Barachant et al., 2012; Zanini et al., 2018; Con-
gedo et al., 2017; Gaur et al., 2018; Moakher, 2005). In this article, we em-
phasize the important properties of the Riemannian manifold used for de-
veloping the RRM. (We refer to Barachant et al., 2012 and Moakher, 2005,
for a more detailed description of the Riemannian manifold.) Amanifold is
a nonlinear structure that maps the high-dimensional original data with an
efficient low-dimensional feature space while maintaining important prop-
erties such as geometry and topology. Riemannian manifolds are smooth
manifolds equippedwith Riemannianmetrics, which allow one tomeasure
geometric quantities such as distance and angle.

LetM be the Riemannianmanifold and S(n) = {S ∈ M(n), ST = S} be the
vector space of all n× n symmetric matrices in a space of square matrices
M(n). Let P(n) = {P ∈ S(n),uTPu > 0, u ∈ R} be the set of all n× n sym-
metric positive definite (SPD) matrices. P(n) is the most importance while
analyzing the MI data because the spatial covariance matrice (SCM) of
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Figure 4: Riemannian manifold (M) comprising the SPD point Pwith its corre-
sponding tangent space TP and tangent vector Si. Ŵi(t) represents the geodesic
between points P and Pi.

22-channel EEG data belongs to space P(n). Figure 4 shows the Riemannian
manifoldM with the SPD points P and Pi.

The following properties of SPD matrices present in the Riemannian
manifold considered in this study are the essential ones:

1. The exponential matrix of P using the eigenvalue decomposition is
calculated as follows:

P = Udiag(σ1, . . . , σn)UT , (2.1)

exp(P) = Udiag(exp(σ1), . . . , exp(σn))UT , (2.2)

where σ1 > σ2 > . . . σn > 0 andU are the eigenvalues and eigenvec-
tors of P.

2. The logarithm of the SPD matrix P (the inverse of the exponential
given in equation 2.2) is given as

log(P) = Udiag(log(σ1), . . . , log(σn))UT , (2.3)

3. Following are the additional properties of SPD matrices in the space
P(n):

∀P ∈ P(n), det(P) > 0, (2.4)

∀P ∈ P(n), P−1 ∈ P(n), (2.5)

∀P ∈ P(n), log(P) ∈ S(n), (2.6)

∀S ∈ S(n), exp(S) ∈ P(n). (2.7)
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The spatial covariance matrix space P(n) is a differentiable Rieman-
nian manifoldM with a nonpositive curvature (Förstner & Moonen, 2003).
Hence, for every point P ∈ P(n), there exists a tangent space TP that lies in
space S(n). The inner product 〈·, ·〉 and the norm, which vary smoothly over
P(n), are defined as

〈S1,S2〉P = tr(S1P−1S2P
−1), (2.8)

||S||2P = 〈S,S〉P = tr(SP−1SP−1). (2.9)

Ŵi(t) in Figure 4 is known as the geodesic and is the shortest path between
two points in space P(n). In Figure 4, Ŵ(0) = P, and Ŵ(1) = Pi, while the
length of the geodesic, also known as the Riemannian geodesic distance, is
given by

δR(P,Pi) = || log(P−1Pi)||F =

⎡

⎣

n
∑

j=1

log2 λ j

⎤

⎦

1
2

, (2.10)

(Formore insight into equation 2.10, refer toMoakher, 2005.) From Figure 4,
one can also observe that the vector Si is the first derivative of the Ŵi(t) be-
tween P and Pi at t = 0. Hence, the relation between Pi and Si can be defined
as

ExpP(Si) = Pi = P
1
2 exp

(

P− 1
2 SiP

− 1
2
)

P
1
2 , (2.11)

LogP(Pi) = Si = P
1
2 log

(

P− 1
2PiP

− 1
2
)

P
1
2 . (2.12)

Now, using the Riemannian geodesic distance defined using equation 2.10,
the Riemannian mean of the SPD matrices can be calculated as

G
c
s(P1, . . .PI ) = arg min

P∈P(n)

I
∑

i=1

δ2R(P,Pi), (2.13)

where I represent the total number of trials present in a single class c for
a single subject s. The Riemannian mean, usually obtained using equation
2.13, is sensitive to the noise and the outliers present in the SCM. Hence, to
minimize the effect of noise and outliers on the calculation of Riemannian
mean, we introduce regularization.

2.3.2 Proposed Feature Extraction Using the RRM Approach. Equation 2.14
describes the approach adhered to for calculating the regularized Rieman-
nian mean of a single class c for a target subject s,

G̃
c
s = (1 − β )scGc

s + βGc, (2.14)
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Table 2: Summary of Primary Notations Used for the RRM Framework.

Parameter Description

s Target subject s
c MI class c of a target subject s
β Regularization factor
G
c
s Riemannian mean of SPD matrices

Gc Generic covariance matrix
G̃
c
s Regularized Riemannian mean of a target subject s for class c

Ss Comprises all subjects except target subject s
Nc Total number of trials of all subjects including target subject for class c
Ns
c Total number of trials of target subject for class c

Ni
c Total number of trials of subject i for the class c

Cit,c Spatial covariance matrix of a trail t for the class c and for subject i

where β is the regularization factor and Gc is a generic covariance matrix.
Gc is built using a weighted sum of the SCM matrices of other subjects
by deemphasizing covariance matrices estimated from fewer trials. Table
2 summarizes the notations used for the proposed RRM framework. Equa-
tions 2.15 and 2.16 provide the methodology for determining Gc and sc:

Gc =
∑

i∈Ss

Ni
c

∑

t=1

Ni
c

Nc
Ci
t,c, (2.15)

sc =
Ns
c

Nc
. (2.16)

Because regularization aims at improving the robustness of feature ex-
traction in the presence of noise and outliers, it helps in obtaining a rela-
tively less noisy estimation of Riemannian mean when compared to using
only the information present in the target subject.

2.3.3 Estimation of β, Feature Extraction Using RRM, and Classification Us-
ing LSVM. In general, the optimal β used for regularization varies from
subject to subject and takes values in the interval [0, 1]. To calculate the
optimal β that improves the CA, we adhere to a simple parameter search
approach. Data set I comprises 14 subjects (seven male, seven female), and
every subject performed 240 trials (60 trials for each MI task). The data of
data set I are divided into a training and validation set using a 10-fold cross-
validation (CV) procedure. Again, the training set is further divided into
subtraining and subtesting data using a 10-fold CV procedure. The sub-
training and subtesting sets are used for determining the optimal β for the
respective subject, and the process is explained using algorithm 1.



NECO_a_01223-Jagadish MITjats-NECO.cls August 1, 2019 13:14

U
nc
or
re
ct
ed

Pr
oo
f

12 B. Jagadish, P. Mishra, M. Kiran, and P. Rajalakshmi



NECO_a_01223-Jagadish MITjats-NECO.cls August 1, 2019 13:14

U
nc
or
re
ct
ed

Pr
oo
f

AReal-TimeH4.0 FrameworkwithNovel Feature Extraction andClassification for BCE13

Initially, for a single β, the RRM matrices for all four classes are deter-
mined using the subtraining set (subTrainingSet) in algorithm 1. Then, for
all the trials in the subtraining set, the Riemannian distance to all four RRM
matrices are calculated and used as a single feature vector ( f eatureVector).
After all the training features (trainFeatures) are calculated, the LSVM is
trained. Using the trained LSVM and RRM matrices, we analyzed perfor-
mance using the subtesting set.We repeated a similar process for all the val-
ues of β and considered the β with the highest accuracy to be optimal for
the target subject. After achieving the optimal β, we performed validation
on the validation set as described in algorithm 2. The performance of the
proposed RRM framework is also analyzed on BCI Competition IV data set
2a (data set II) with a similar procedure, as explained in algorithms 1 and 2.

3 Results

3.1 Performance Analysis of the Proposed Novel Low-Complex Clas-
sifier without the Persistent Decision Engine Algorithm. In this section,
we analyze the performance of the proposed novel low-complex classifier
without the PDE algorithm in terms of CAand kappa value. We considered
data sets I and II for the performance analysis. Row 1 of Table 3 shows the
CAs of data set I using RRM classification framework. From Table 3, it can
be observed that the proposed RRM framework achieves an overall classi-
fication accuracy of 74.30% when validated using data set I.

The performance of the proposed RRM framework is also analyzed us-
ing data set II. Table 4 shows the performance comparison of the proposed
RRM framework with other studies (Dong, Zhu et al., 2017; Zanini et al.,
2018; Yang, Sakhavi, Ang, & Guan, 2015; Lawhern et al., 2018; Schirrmeis-
ter et al., 2017). In Table 4, SESN-1 and SESN-2 represent the session 1 and
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session 2 data sets of data set II. Zanini et al. (2018) developed an affine
transformation alongwith theminimumdistance tomean (MDM) andmix-
ture of gaussian distribution-based classification for improving the CAs.
Dong, Zhu et al. (2017) considered a kernel-based mechanism to increase
the MI CAs. Yang et al. (2015), Schirrmeister et al. (2017), and Lawhern
et al. (2018) obtained a four-class MI mean CA of 69.00%, 68.00%, and
69.27% (rows 3, 4, and 5, respectively) using a convolutional neural net-
work (CNN). The proposed RRM algorithm outperforms when compared
with the previous methods and achieved a mean CAof 70.24% for the eval-
uation data set (SESN-2) of data set II. The same can be observed from row
6 of Table 4.

Row 6 of Table 4 provides the subject-wise CAs of the proposed RRM
classification framework in comparisonwithDong, Zhu et al. (2017), Zanini
et al. (2018), and Yang et al. (2015) (rows 1, 2, and 3, respectively). Zanini
et al. (2018) referred to the subjects highlighted in red as the bad subjects
due to their noisy EEG data leading to reduced CAs, whereas the subjects
in green were “good subjects.” We use this notation for analyzing the per-
formance of the proposed RRM framework.

On average, the proposed RRM classification framework achieves a
mean CAof 67.60% when validated using data set II (two sessions: SESN-1
and SESN-2), thereby outperforming both Zanini et al. (2018) and Dong,
Zhu et al. (2017). In terms of subjects’ performance, the proposed RRM
framework offers better CAs for five subjects (S2, S3, S4, S6, and S7) when
compared to Zanini et al. (2018) and Dong, Zhu et al. (2017). The proposed
RRM algorithm provides close CAs for subjects S1 and S8 when compared
with Yang et al. (2015). Yang et al. (2015) employed eight levels of frequency
band andobtained a high number of features for four-classMI classification,
whereas the proposed RRM algorithm provides only four discriminative
features using a single frequency band and classifies four-class MI using
a single SVM classifier, thereby achieving lower complexity. The regular-
ization of the proposed RRM framework leads to improved CAs for the
bad subjects while maintaining the CAs of the good subjects. To the best
of our knowledge, although many state-of-the-art methods for classifying
four-class MI improved overall accuracy, none of the methods were able to
improve the accuracy of every subject. Also, one major drawback of Zanini
et al.’s (2018) method is that it requires calculating affine transformed co-
variance matrix for every subject in every session of data collection, which
makes it impractical to use in real time. Themain advantage of the proposed
RRM algorithm is that it can be implemented in real time and classifies the
performed MI task with minimal latency.

3.1.1 Performance Comparison of the Proposed RRM Framework Using Kappa
Coefficient. The performance of the proposed RRM framework is also eval-
uated in terms of kappa values and compared with the studies in Table
5. From Table 5, it can be observed that the proposed RRM framework
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Table 5: Performance Comparison of Proposed RRM Framework with Existing
Studies When Validated Using SESN 2 Data of BCI Competition IV Data Set 2a
in Terms of Kappa Coefficient.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean

Ang et al. (2008) 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52
Guangquan et al. (2008) 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57
Barachant et al. (2012)

(30-fold CV)
0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68 0.52

Gaur et al. (2018) (5-fold
CV)

0.86 0.24 0.70 0.68 0.36 0.34 0.66 0.75 0.82 0.60

Jafarifarmand et al.
(2018) method 1

0.79 0.42 0.79 0.63 0.42 0.34 0.84 0.65 0.78 0.63

Jafarifarmand et al.
(2018) method 2

0.76 0.42 0.78 0.47 0.33 0.33 0.66 0.79 0.75 0.588

Jafarifarmand et al.
(2018) method 3

0.70 0.39 0.71 0.60 0.35 0.35 0.65 0.80 0.75 0.589

Proposed RRM
framework (10-fold
CV)

0.65 0.47 0.77 0.57 0.27 0.33 0.82 0.74 0.80 0.603

performswell when comparedwith the BCI Competition results (Ang et al.,
2008; Guangquan, Gan, & Xiangyang, 2008; Barachant et al., 2012). The pro-
posed algorithm obtained a close mean kappa value when compared with
the methods in Jafarifarmand et al. (2018) and Gaur et al. (2018). Gaur et al.
(2018) determined the relevant MI information in offline mode for every
subject in the preprocessing stage (hence, the frequency range is varied for
every subject) and proposed a subject-specific multivariate empirical mode
decomposition-based filtering method (SS-MEMDBF) for MI classification.
Hence, the SS-MEMDBFmethod cannot be used as a generalizedmodel for
multiclass MI classification in real time.

Jafarifarmand et al. (2018) proposed three methods using AR-BCSP +

SRSG-FasArt framework for multiclass MI classification. Although the per-
formance of method 1 in Jafarifarmand et al. (2018) results in a slightly
better kappa value when compared with the proposed algorithm, the com-
putational complexity of the methods the authors proposed is high when
comparedwith the proposed RRM framework. Theirmethods extracted the
features using CSP and classification using the logic systems (three clas-
sifiers) for four-class MI classification, whereas the proposed RRM frame-
work provides four distinguished features and uses only one SVM classifier
for multiclass classification. Moreover, the main advantage of the RRM al-
gorithm lies in the feasibility for real-time implementation with minimal
latency for decisions on the performed MI task.
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Figure 5: Data set I electrode positions considered for feature discrimination
analysis.

Figure 6: Data set II electrode positions considered for feature discrimination
analysis.

3.1.2 Feature Discrimination (FD) Analysis of the Proposed RRM Framework.
The Riemannian distances computed using the proposed RRM framework
are the features used for the classification. To provide a more detailed ex-
planation on the contribution of features, we analyzed the performance of
the proposed framework by analyzing the features extracted using 6-, 10-,
14- (15 for data set II), and 20- (22 for data set II) channel sampled data. Data
set I subjects S1 and S11 and data set II subjects S4 and S7 are considered
for the performance analysis. The electrode positions used to evaluate the
performance of the proposed framework is shown in Figures 5 and 6.

The mean value of all the features (i.e., Riemannian distances calculated
to the four regularized Riemannian mean matrices for the four MI classes
over all trials of subject S11 of data set I) is shown in Figure 7. From Figure
7, it is observed that the mean Riemannian distances to all four classes are
becoming increasingly distinguishable with the increase in the number of
channels. Figure 7d shows the variation among features when 20 channels
are used, and it can be observed that the features are highly distinguishable
when compared to the scenario where fewer electrodes are used. Due to the
fact that subject S11 of data set I has better distinguishable features when
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Figure 7: Feature discrimination of subject S11 of data set I with an increased
number of channels.

Figure 8: Feature discrimination of subject S7 of data set II with an increased
number of channels.

using 20 channels, a maximum classification accuracy of 97.08% is obtained
when the proposed framework is used (see row 1 of Table 3).

Subject S7 of data set II shows similar behaviorwhen the number of chan-
nels is increased (see Figure 8). Hence, subject S7 of data set II obtained a
better CA, 82.42% (see row 6 of Table 4), for 22-channel sampled data.
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Figure 9: Feature discrimination of subject S1 of data set I with an increased
number of channels.

We also evaluated, the performance of subject S1 of data set I and S4 of
data set II. The feature discrimination analysis results of these subjects are
shown in Figure 9. From Figure 9, it is observed that when the number of
channels is increased, the distinguishable aspect among the features did not
improve much. Hence, subject S1 of data set I has a low CA of 47.39% (see
row 1 of Table 3). Subject S4 of data set II shows moderate variation in the
mean feature value as the number of channels is increased (see Figure 10).
Hence, subject S4 of data set II obtainedmoderate accuracy, 60.00% (see row
6 of Table 4). Also, it can be observed that the CAs depend on the cognitive
state of the user, electrode placement, and subject-wise performance.

3.2 PersistentDecision Engine for FalseAlarmReduction. From row1
of Table 3, one can observe that the average CAobtained for data set I using
the proposed low-complex classifier is 74.30%. In a realistic scenario, where
the proposed architecture is used by those who are elderly or disabled, this
accuracy creates an unpleasant user experience. Because of the high mis-
classification rate (25.70%), the system toggles the state of the unintended
devices frequently. Hence, we propose a persistent decision-based classifi-
cation framework for improving confidence in decision making, which re-
duces the false alarms. To achieve this, we asked the users to perform the
sameMI task for an extended duration (varying from 4 s to 20 s) rather than
2 s. The EEG data collected over this extended duration (which we refer to
as a cycle hereafter) will now be divided into multiple trials with durations
of 2 s each. We then classified these trials using the RRM+LSVM classifier
rather than a single cycle.
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Figure 10: Feature discrimination of subject S4 of data set II with an increased
number of channels.

Using all the classified outputs, we make use of a threshold-based deci-
sion for generating the control action. For example, if a user has performed
right-handMI for a cycle of 20 s, it can be divided into 10 trials and each trial
can be classified into any one of the available four classes. Due to themoder-
ate accuracy of the classifier using the RRM framework, every trial will not
be classified as the true label (which is the right hand); instead, some trials
will be classified as other classes, such as left hand, feet, or tongue. Hence,
from the classifier outputs of the 10 trials, we will be calculating the class
that has the majority. If the majority exceeds the threshold, the entire cycle
is labeled with the majority class and the state of the respective appliance
is toggled. If the majority class does not exceed the threshold, the entire
cycle will be discarded and is labeled “NoMIT” (no motor imagery task).
The same is also considered while analyzing the CA. The advantage of this
mechanism is that the decision will be made if confidence is high, leading
to the user’s control of the intended appliance; otherwise, no appliance will
be controlled, thereby reducing the false alarms.

Figure 11 plots the performance of the proposed PDE algorithm consid-
ering a cycle duration of 20 s for the data set I subjects, varying the thresh-
old from 60% (at least 6 trials should be classified as majority class out of
10 output labels) to 100% (all the 10 trials should be classified as the same
class). For the analysis, we considered only the right-hand MI performed
by all subjects of data set I except S1 and S4. The trial data for this 20 s du-
ration are generated by concatenating 10 right-hand MI trials of every sub-
ject randomly. With a threshold of 60%, most of the subjects are performing
well, and false alarms are reduced significantly. For a threshold of 60%, the
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Figure 11: Performance of data set I (except S1 and S4) using the proposed RRM
framework with the PDE algorithm for the right-handMI with a cycle duration
of 20 s.

Figure 12: Performance of the subjects of data set II (except S5 and S6) using the
proposed RRM framework with the PDE algorithm for the feet MI with a cycle
duration of 20 s.

average CAobtained for the right-handMI is 94.33%, and the same can also
be observed from Figure 11.

The performance of the proposed PDE algorithm is also tested with the
seven subjects of data set II. Figure 12 shows the performance of the pro-
posed PDE framework with a cycle duration of 20 s for the feet MI task.
The mean CA of feet MI obtained with a threshold of 60% over 10 trials is
87.57%.When the threshold is increased to 90%, the CAreduces for subjects
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Figure 13: Performance of the proposed RRM-based PDE algorithm for data
set I (except subjects S1 and S4) and data set II (except subjects S5 and S6) with
the increase in cycle time—4 s (2 trials) to 20 s (10 trials)—for four MI classes in
terms of CA.

S4 and S8, as the chance of correctly classifying at least 9 trials from all the
10 feet trials is very low.

In order to understand the significance of the cycle duration (20 s), con-
sidered, we analyzed the performance of the proposed PDE algorithm for
five cycle durations ranging from 4 s to 20 s with a step size of 4 s. Although
the duration of the cycle is varied, the decision model is kept the same and
adheres to the majority and threshold approach. Hence, for the cycle dura-
tions 4 s (2 trials), 8 s (4 trials), 12 s (6 trials), 16 s (8 trials), and 20 s (10 trials),
the threshold adheres to the rule that the majority should be at least 2, 3, 4,
5, 6 trials, respectively, for the classification of the cycle into any of the four
MI tasks to happen. Otherwise, the entire cycle is discarded and labeled as
NoMIT. Figures 13a to 13d show the performance analysis of the proposed
PDE algorithm for data sets I and II for the four MI tasks. From Figure 13,
it can be observed that the accuracy of the four MI tasks (left hand, right
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Figure 14: Mean CA of four MI classes of data sets I (except S1 and S4) and II
(except S5 and S6) using the proposed RRM-based PDE algorithm.

hand, feet, and tongue) increases with the increase in cycle duration for the
two data sets and obtained maximum accuracy for the 20 s duration for all
four MI classes.

The overall mean classification accuracy of the four MI classes of data
sets I (except subjects S1 and S4) and II (except subjects S5 and S6) using
the PDE algorithm for cycle duration from 4 s (2 trials) to 20 s (10 trials) is
shown in Figure 14. The highest overall CA is obtained with a cycle dura-
tion of 20 s for both data sets, and it can also be observed in Figure 14. The
performance analysis shows that few subjects achieved high CAon a small
MI interval. We strongly believe that a slight improvement in latency for
increased classification accuracy will improve the user experience consid-
ering the current state-of-the-art CAs. From the analysis, it is also observed
that the CAs depend on the cognitive state of the user, electrode placement,
and subject-wise performance. From row 1 of Table 3 and rows 1, 2, and
6 of Table 4, it is observed that data set I subjects S1 and S4 and data set
II subjects S5 and S6 delivered poor performance. The EEG data of these
subjects show low cognitive MI information and, hence, low CA (<50%)
using the proposed RRM framework. The performance also follows a sim-
ilar trend with the existing studies as well. The proposed PDE algorithm
works on the principle of majority classification. Due to the fact that the CA
of bad subjects is less than 50%, the overall CA further degrades with the
use of the PDE. Therefore, we consider all the subjects of data sets I (except
subjects S1 and S4) and II (except S5 and S6) for analyzing the overall per-
formance. For the good subjects, where the CA is greater than 50%, the false
alarm reduction method improves the CA significantly. Hence, a mean CA
of 92.25% is achieved for data set I (except S1 and S4) and 82.54% for data
set II (except S5 and S6).

The MCM (mean confusion matrix) of data sets I and II with the
proposed RRM framework and RRM-based PDE algorithm is shown in
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Table 6: Mean Confusion Matrix (MCM) of Data Set I (In-House Recorded Mo-
tor Imagery Data).

A. MCM of Data Set I for the RRM Framework
without Persistent Decision Engine Algorithm

LHand R Hand Feet Tongue

L hand 76.25 15.38 4.89 3.48
R hand 11.93 75.88 8.11 4.08
Feet 3.81 8.22 71.17 16.80
Tongue 3.36 4.17 18.56 73.91

B. MCM of Data Set I with the RRM Framework
Using Persistent Decision Engine Algorithm, 20 s Cycle

L Hand R Hand Feet Tongue NoMIT
L hand 86.29 0.28 0.00 0.00 13.43
R hand 0.43 87.14 0.00 0.00 12.43
Feet 0.00 0.29 80.00 1.00 18.71
Tongue 0.00 0.00 1.42 85.58 13.00

C. MCM of Data Set I (except Subjects S1, S4) with the RRM
Framework Persistent Decision Engine Algorithm for a 20 s Cycle

L Hand R Hand Feet Tongue NoMIT
L hand 95.50 0.17 0.00 0.00 4.33
R hand 0.17 94.33 0.00 0.00 5.50
Feet 0.00 0.34 87.33 1.00 11.33
Tongue 0.00 0.00 1.50 91.83 6.67

Tables 6 and 7. Due to the limited number of trials in the two data sets for
the four MI tasks, we have used five-fold cross-validation for analyzing the
performance of the RRM-based PDE algorithm. From panel C in Table 6,
one can observe that the highest CA of 95.50% is obtained for the left MI of
data set I. Also, using the same algorithm, the feet MI of data set II achieved
a maximum accuracy of 87.57%. The same can also be observed from panel
C of Table 7. The proposed algorithms are implemented in Matlab running
on an Intel i5 processor with 16 GB RAM and 2.8 GHz clock. The inbuilt
Matlab function libsvm is used for the MI classification to implement the
LSVM classifier.

3.3 Real-Time Hardware Implementation of Proposed Architecture.
The hardware prototype of the proposedRRM framework is designedusing
Raspberry Pi 3 Model B+ and the Virgo EEG data acquisition system. From
the implementation, it is observed that the average latency required to clas-
sify the MI task (2 s) performed by the user in real time using the proposed
RRM framework is 57.667ms, and the same can also be observed fromTable
8, which also provides latency incurred for important individual functional
units present in the framework. The incurred latency can be further reduced
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Table 7: Mean Confusion Matrix (MCM) of Data Set II (BCI Competition IV
Four-Class Motor Imagery Data Set 2a).

A. MCM of Data Set II for the RRM Framework
without Persistent Decision Engine Algorithm

LHand R Hand Feet Tongue

L hand 65.84 17.20 9.37 7.60
R hand 15.47 65.08 10.75 8.70
Feet 8.99 9.08 69.45 12.48
Tongue 6.83 8.71 14.40 70.06

B. MCM of Data Set II with the RRM Framework Using
Persistent Decision Engine Algorithm for a 20 s Cycle

L Hand R Hand Feet Tongue NoMIT
L hand 66.34 1.78 0.44 0.00 31.44
R hand 1.89 65.33 1.00 0.00 31.78
Feet 0.11 0.67 73.56 0.44 25.22
Tongue 0.22 0.11 0.89 74.11 24.67

C. MCM of Data Set II (except Subjects S5, S6) with the RRM
Framework Persistent Decision Engine Algorithm for a 20 s Cycle

L Hand R Hand Feet Tongue NoMIT
L hand 78.29 2.00 0.43 0.00 19.28
R hand 1.71 80.71 1.14 0.00 16.43
Feet 0.00 0.86 87.57 0.57 11
Tongue 0.14 0.00 1.14 83.57 15.15

Table 8: Latency of Proposed Low-Complex BCE Architecture in Real Time.

Hardware Unit Latency (ms) Hardware Unit Latency (ms)

Fifth-order BPF 9.443 SCM 2.776
Riemannian distance features 43.016 LSVM 2.431
Average latency 57.667

by implementing the proposed architecture in anASIC (application-specific
integrated circuit) platform for the wearable EEG systems.

3.3.1 Online Data Acquisition and Real-Time Evaluation of Proposed Frame-
work. The two offline data sets were used for model training, validation,
and comparison of the proposed framework with existing studies. How-
ever, due to the fact that data sets I and II have different channel configu-
rations, for the real-time implementation, we used the model trained using
data set I because its channel configuration is similar to the Virgo EEG data
acquisition system used in the implementation. In general, the duration re-
quired to perform an MI task strictly depends on the subject, and usually
requires up to 1 s. Hence, to better classify the MI task, the collected data
should comprise the entire task information, which requires EEG data of 1 s
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Figure 15: (a) A subject involved in the real-time experiment. (b) The real-time
setup of proposed low-complex BCE architecture. (c) A developed array of
TRIAC switches being controlled by the ESP 8266 at the receiver.

duration. To avoid loss of information across the successive windows, we
considered a data duration of 2 s.

Figures 15a and 15b show the subject performing theMI task and the de-
veloped real-time prototype of the proposed low-complex BCE architecture
using the Virgo EEG data acquisition system along with the Raspberry Pi 3
Model B+, respectively. The Raspberry Pi aggregates the EEG data through
USART interface from the Virgo and classifies the performedMI task using
the architecture shown in Figure 1. The individual average latency required
to process the above operations is shown in Table 8. Hence, the end-to-end
average latency incurred using the proposed framework for the decision
making is observed to be 57.667 ms and the same is provided in Table 8.
Similarly, for the PDE algorithm, the low-complex classifier output is accu-
mulated over multiple trials and is fed to the PDE algorithm after of 20 s.
The output of the PDE algorithm is then transmitted to the receiver actua-
tion system to toggle the desired appliance for the performed MI task.

3.3.2 IoT Gateway. The developed IoT gateway is shown in Figure 15c.
On the receiver side, we have developed a TRIAC array controled by the
NodeMCU using the decision obtained from the proposed framework. Af-
ter the decision is made, Raspberry Pi communicates the control decision
to the IoT Gateway using Wi-Fi, and the NodeMCU toggles the state of the
electrical appliance associated with the MI task performed by the user.

4 Conclusion

In this article, we have developed a novel real-time implementable Health
4.0 architecture for brain-controlled IoT-enabled environments. We also
proposed a low-complex and persistent decision engine–based four-class
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MI classifier using RRM and LSVM. We considered the in-house recorded
MI EEG data (data set I with 14 subjects) and four-class MI data set 2a
from BCI Competition IV (data set II with 9 subjects) for analyzing the per-
formance of the proposed system architecture. The proposed RRM frame-
work obtained a mean CA of 74.30% for data set I and 67.80% for data set
II. When compared with the existing studies for data set II, the proposed
low-complex classifier achieved better accuracy for five subjects. To further
improve the accuracy of the proposed RRM framework, we developed a
persistent decision engine algorithm that uses probabilistic inferences to im-
prove theCA. ThemeanCAof 92.25% for 12 subjects of data set I and 82.54%
for 7 subjects of data set II is obtained using the proposed persistent deci-
sion engine algorithm. We also analyzed the performance of the proposed
architecture in real time using Raspberry Pi 3 Model B+. The hardware im-
plementation results show that the proposed architecture offers an average
latency of 57.667 ms to classify the performedMI task. Wewould like to de-
velop a more efficient framework that improves the classification accuracy
of every subject more than 50%. Also, we will work toward developing a
novel feature extraction and classification method for classifying four-class
MI using a minimal set of electrodes.
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