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Abstract Correlations exhibited by neutrino oscillations

are studied via quantum-information theoretic quantities. We

show that the strongest type of entanglement, genuine mul-

tipartite entanglement, is persistent in the flavor changing

states. We prove the existence of Bell-type nonlocal fea-

tures, in both its absolute and genuine avatars. Finally, we

show that a measure of nonclassicality, dissension, which is

a generalization of quantum discord to the tripartite case, is

nonzero for almost the entire range of time in the evolution of

an initial electron-neutrino. Via these quantum-information

theoretic quantities, capturing different aspects of quantum

correlations, we elucidate the differences between the flavor

types, shedding light on the quantum-information theoretic

aspects of the weak force.

1 Introduction

The study of correlations in quantum systems has a vast liter-

ature and draws its practical importance from potential appli-

cations to quantum technologies such as quantum cryptog-

raphy and teleportation [1]. Recently, there has been a move

toward extending these studies to systems in the domain of

particle physics [2–21]. The neutrino is a particularly inter-

esting candidate for such a study (see e.g. the review on flavor

oscillation [22]). In Nature, neutrinos are available in three

flavors, viz, the electron-neutrino νe, muon-neutrino νµ, and

tau-neutrino ντ . Owing to their nonzero mass, they oscillate

from one flavor to another. This has been confirmed by a
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plethora of experiments, using both natural and “man-made”

neutrinos.

Neutrino oscillations are fundamentally three-flavor oscil-

lations. However, in some cases, they can be reduced to effec-

tive two-flavor oscillations [21]. These elementary particles

interact only via weak interactions; consequently the effect of

decoherence, as compared to other particles widely utilized

for quantum-information processing, is small. Numerous

experiments have revealed interesting details of the physics

of neutrinos [23–28]. This paper asks what type of quantum

correlations is persistent in the time evolution of an initial νe

or νµ or ντ . It presents a systematic study of the many-faceted

aspect of quantum correlations. Herewith, it contributes to the

understanding how Nature processes quantum information in

the regime of elementary particles and, in particular, which

aspect of quantum information is relevant in weak interaction

processes.

Three-flavor neutrino oscillations can be studied by map-

ping the state of the neutrino, treating it as a three-mode

system, to that of a three-qubit system [16,17]. In particu-

lar, it was shown that the neutrino oscillations are related to

the multi-mode entanglement of single-particle states which

can be expressed in terms of flavor transition probabilities.

Here we take the study of such foundational issues further

by characterizing three-flavor neutrino oscillations by quan-

tum correlations. This is non-trivial as quantum correlations

in three-qubit systems are much more involved compared to

their two-qubit counterparts.

The present study of quantum correlations in three-flavor

neutrino oscillations can be broadly classified into three cat-

egories:

– Entanglement: We study various types of the in-separabili-

ty properties of the dynamics of neutrino oscillations via
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the von Neumann entropy and in terms of a nonlinear

witness of genuine multipartite entanglement introduced

in Ref. [29].

– Genuine multipartite nonlocality: Nonlocality—which is

considered to be the strongest manifestation of quantum

correlations—is studied in both its absolute and genuine

tripartite facets, characterized by the Mermin inequali-

ties [30] and Svetlichny inequalities [31].

– Dissension: A tripartite generalization of quantum discord

which is a measure of nonclassicality of correlations [32].

The plan of the paper is as follows. In Sect. 2, we pro-

vide a brief introduction to the phenomenology of neutrinos

and introduce the three-flavor mode entangled state which

will be analyzed using information theoretic tools. The core

of the paper is Sect. 3, where we characterize three-flavor

neutrino oscillations in terms of various facets of quantum

correlations. We then conclude by providing an outlook.

2 Three-flavor neutrino oscillations

The three flavors of neutrinos, νe, νµ, and ντ , mix to form

three mass eigenstates ν1, ν2, and ν3:

⎛

⎝

νe

νµ

ντ

⎞

⎠ = U

⎛

⎝

ν1

ν2

ν3

⎞

⎠ , (1)

where U is the 3 × 3 PMNS (Pontecorvo–Maki–Nakagawa–

Sakata) mixing matrix parameterized by three mixing angles

(θ12, θ23, and θ13) and a C P violating phase δ (C…charge

conjugation, P…parity). Neglecting the C P violating phase

(which has not yet been observed) the mixing matrix can be

written as

U =

⎛

⎝

c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

⎞

⎠ ,

(2)

where ci j and si j denote cos θi j and sin θi j , respectively.

Therefore, each flavor state is given by a linear superpo-

sition of the mass eigenstates,

|να〉 =
∑

k

Uαk |νk〉 , (3)

where α = e, µ, τ ; k = 1, 2, 3. As the massive neutrino

states |νk〉 are eigenstates of the Hamiltonian with energy

eigenvalues Ek , the time evolution of the mass eigenstates

|νk〉 is given by

|νk(t)〉 = e− i
h̄

Ek t |νk〉 , (4)

where |νk〉 are the mass eigenstates at time t = 0.

Straightforwardly, the time evolution of flavor neutrino

states is computed to be

|να(t)〉 = aαe(t) |νe〉 + aαµ(t)
∣
∣νµ

〉

+ aατ (t) |ντ 〉 , (5)

with

aαβ(t) =
∑

k

Uαk e− i
h̄

Ek t U∗
βk . (6)

For example, if an electron-neutrino is produced at time

t = 0, then its time evolution is given by

|νe(t)〉 = aee(t) |νe〉 + aeµ(t)
∣
∣νµ

〉

+ aeτ (t) |ντ 〉 , (7)

where

aee(t) = |Ue1|2e− i
h̄

E1t + |Ue2|2e− i
h̄

E2t + |Ue3|2e− i
h̄

E3t ,

aeµ(t) = Ue1U∗
µ1e− i

h̄
E1t +Ue2U∗

µ2e− i
h̄

E2t +Ue3U∗
µ3e− i

h̄
E3t ,

aeτ (t) = Ue1U∗
τ1e− i

h̄
E1t +Ue2U∗

τ2e− i
h̄

E2t + Ue3U∗
τ3e− i

h̄
E3t .

If we assume that the detected neutrinos have an energy

of at least 1 MeV (the electron/positron mass), namely being

in the ultrarelativistic regime, the flavor eigenstates are well

defined in the context of quantum mechanics [16]. In this

approximation the survival probabilities take the form

Pνα→να = 1 − 4
∑

k> j

|Uαk |2|Uα j |2 sin2

(

∆m2
k j c

4

4h̄c

L

E

)

, (8)

and the oscillation probabilities

Pνα→νβ
= −4

∑

k> j

Re{U∗
αkUβkUα j U

∗
β j } sin2

(

∆m2
k j c

4

4h̄c

L

E

)

,

(9)

where ∆m2
k j = m2

k − m2
j . As in the neutrino oscillation

experiments, the known quantity is the distance L between

the source and the detector and not the propagation time t ;

therefore the propagation time t is replaced by the source

and detector distance L in the above equation. This is a

valid approximation as all detected neutrinos in the oscil-

lation experiments are ultrarelativistic.

The allowed ranges of the six oscillation parameters,

three mixing angles and three mass squared differences, are

obtained by a global fit to solar, atmospheric, reactor, and

accelerator neutrino data within the framework of three-

flavor neutrino oscillations. For normal ordering, the best

fit values of the three-flavor oscillation parameters are [33]

θ12 = 33.48◦, θ23 = 42.3◦, θ13 = 8.50◦, (10)
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∆m2
21c4

10−5 eV2
= 7.50 ,

∆m2
31(≃ ∆m2

32)c
4

10−3 eV2
= 2.457 . (11)

Following Ref. [16] we introduce the occupation number

of neutrinos by making the following correspondence:

|νe〉 ≡ |1〉e ⊗ |0〉µ ⊗ |0〉τ ≡ |100〉 ,
∣
∣νµ

〉

≡ |0〉e ⊗ |1〉µ ⊗ |0〉τ ≡ |010〉 ,

|ντ 〉 ≡ |0〉e ⊗ |0〉µ ⊗ |1〉τ ≡ |001〉 . (12)

Consequently, we can view the time evolution of a flavor

eigenstate α = e, µ, τ as a three-qubit state, i.e.,

|Ψ (t)〉α = aαe(t) |100〉 + aαµ(t) |010〉 + aατ (t) |001〉 .

(13)

Therefore, flavor oscillations can be related to the time vari-

ation of the tripartite entanglement of single-particle states.

3 Study of quantum-information theoretic properties

in neutrino oscillations

Separability or the lack of separability, i.e., entanglement, is

defined for a given state according to its possible factorization

with respect to a given algebra [34]. The separability prob-

lem is in general a NP-hard problem, and only necessary but

not generally sufficient criteria exist to detect entanglement.

For bipartite quantum systems it suffices to ask whether the

state is entangled or not. In the multipartite case the problem

is more involved, since there exist different hierarchies of

separability (defined later). We have defined the algebra by

introducing the occupation number of the three flavors and

our first goal is to understand the time evolution of neutrino

oscillation in terms of tools for classifying and detecting dif-

ferent types of entanglement.

The next step would be to take potential measurement

settings into account and analyze the different facets of the

correlations in the dynamics of the neutrinos. In particu-

lar, we are interested whether there are correlations stronger

than those predicted by any classical theory. The correlations

are studied via two different approaches, one based on the

dichotomy between predictions of quantum theory and dif-

ferent hidden parameter theories, and the other one quantifies

the various information contents via entropies.

3.1 Study of the entanglement properties

Entanglement measures quantify how much a quantum state

ρ fails to be separable. Axiomatically, it must be a nonnega-

tive real function of a state which cannot increase under local

operations and classical communication (LOCC), and which

is zero for separable states. An entropic function generally

Fig. 1 Plot of the (normalized) flavor entropy (solid line, red) and

the three probabilities (νe → νe (pink, dashed) [survival probability,

Eq. (8)], νe → νµ (light blue, dashed), νe → ντ (light green, dashed)

[oscillation probabilities, Eq. (9)] for an initial electron-neutrino state

|Ψ (t = 0)〉e = νe(0) as a function of the distance traveled per energy

L/E

quantifies the average information gain by learning about

the outcome obtained by measuring a system. The von Neu-

mann entropy, a quantum mechanical analog of the Shannon

entropy, is defined by S(ρ) = −ρ log ρ and is zero for pure

states and log(d) for the totally mixed state, where d is sys-

tem dimension, and the log function usually refers to base 2.

The entanglement content can be computed by the entropy

of the subsystems since the full system is pure.

Considering the three possible partial traces of the three-

qubit state under investigation, we obtain a concave function

of the single-mode probabilities |aαβ(t)|2, i.e., with ρ j :=
Trall but not subsystem j |Ψ (t)〉α〈Ψ (t)|α

Sflavor(|Ψ (t)〉α) = −
∑

j=e,µ,τ

Tr(ρ j log ρ j )

= −
∑

β=e,µ,τ

|aαβ(t)|2 log |aαβ(t)|2

−
∑

β=e,µ,τ

(1 − |aαβ(t)|2) log(1 − |aαβ(t)|2), (14)

which we call the flavor entropy. This function is plotted

in Fig. 1 together with the survival probabilities νe → νe,

Eq. (8), and the oscillation probabilities νe → νµ, νe → ντ ,

Eq. (9).

Since the flavor entropy Sflavor(|Ψ (t)〉e) is nonzero for

almost all time instances, the state is entangled. For this and

all the following plots, we use the oscillation period of an

electron- to a muon-neutrino as a unit. Since there are tiny

changes in the behavior in one period due to the existence

of the third flavor, we always plot two periods. When the

amount of all three probabilities, both the survival as well as

the oscillation probabilities, become nearly equal, the flavor

entropy becomes maximal. Then the νµ and ντ oscillation

probabilities become greater than the survival probability of

νe, resulting in a decrease in the uncertainty of the total state

followed by an increase, when the probabilities get closer.
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Fig. 2 Plot of the (not-normalized) flavor entropy Sflavor, Eq. (14), for the three initial flavor states a νe, b νµ, c ντ in terms of the distance traveled

per energy L/E in units of the oscillation period of the two lightest neutrinos. The horizontal (dotted) line corresponds to the value of the W -state

Next, the uncertainty in the total state drops again and the

pattern is repeated.

The entropy of all three neutrino flavors are compared

in Fig. 2 showing that for the muon- and tau-neutrinos the

entropy is nonzero for almost all time instances. Compared

to the electron-neutrino evolution, the flavor uncertainty of

the other two flavors oscillates more rapidly and with higher

amplitudes, reaching the maximal value more often.

Let us now refine the picture by investigating the type of

entanglement in neutrino oscillations. A tripartite pure state

can, for example, be written as

|ψk=3〉 = |φA〉 ⊗ |φB〉 ⊗ |φC 〉,
|ψk=2〉 = |φA〉 ⊗ |φBC 〉, |φB〉 ⊗ |φAC 〉,

or |φAB〉 ⊗ |φC 〉,
|ψk=1〉 = |ψ〉ABC , (15)

where k gives the number of partitions dubbed the k-

separability. If k equals the number of involved states, in

our case k = 3, the joint state is called fully separable,

else it is partially separable. An important class of states are

those that are not separable within any bipartition; they are

called genuinely multipartite entangled. In general they allow

for applications that outperform their classical counterparts,

such as secret sharing [35,36]. It should be noted that since

a k = 3-separable state is necessarily also k = 2-separable,

k-separable states have a nested-convex structure.

Among the genuinely multipartite entangled states, there

are two subclasses known for three-qubit states, the GHZ-

and W-type of states. In Ref. [29] a general framework was

introduced to detect and define different relevant multipartite

entanglement subclasses and refined in several follow ups. In

particular it has been shown to allow for a self-consistent clas-

sification also in a relativistic framework [37]. Generally, one

would expect from a proper classification of different types

of entanglement that for a relativistically boosted observer,

which causes a change of the observed state, but not of the

expectation value, it remains in a certain entanglement class.

We will therefore investigate this Lorentz invariant criterion,

though let us emphasize that we do not take any relativistic

effects of a boosted observer into account in this contribution.

The necessary criterion for a tripartite qubit state with one

excitation (“1”) to be bipartite reads

Q1
Dicke(ρ) = 2 |〈001|ρ|010〉| + 2 |〈001|ρ|100〉| + 2 |〈010|ρ|100〉|

−
(

〈001|ρ|001〉 + 〈010|ρ|010〉 + 〈100|ρ|100〉

+2
√

〈000|ρ|000〉 · 〈011|ρ|011〉 + 2
√

〈000|ρ|000〉 · 〈101|ρ|101〉

+2
√

〈000|ρ|000〉 · 〈110|ρ|110〉
)

≤ 0. (16)

If this criterion is violated the state ρ has no bipartite decom-

positions, i.e., it is genuinely multipartite entangled. The pos-

itive terms are exactly the only nonzero off-diagonal terms

of the W -state, |W 〉 = 1√
3
{|100〉 + |010〉 + |001〉}, with one

excitation in the computational basis, whereas the negative

terms are only diagonal terms. Note that these negative terms

are all zero for the W -state in the given basis such that only

this state obtains the maximum value.

Obviously, this criterion depends on the basis representa-

tion of the state ρ and has therefore to be optimized over all

local unitary operations. Indeed, taking the “flavor basis” as

the computational basis, Eq. (13), the unoptimized criterion

becomes

2|aαe(t)aαµ(t)| + 2|aαe(t)aατ (t)| + 2|aαµ(t)aατ (t)|
− (|aαe(t)|2 + |aαµ(t)|2 + |aατ (t)|2)

︸ ︷︷ ︸

=1

≤ 0, (17)

which is not violated for all times. Consequently, optimiza-

tion over all local unitaries has to be taken into account for

each time point and is plotted for an initial electron-, muon-,

and tau-neutrino in Fig. 3. We find that the states at each

time point are always genuine multipartite entangled if at

least two amplitudes of the state, Eq. (13), are nonzero, i.e.,

for almost all time instances. The results depicted in Fig. 3

also prove that in the course of the time evolution the genuine

multipartite W state (all amplitudes equal to 1√
3
) is reached.

Hence, Nature exploits the maximum genuine multipartite

entanglement in the occupation number basis.
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(a) (b) (c)

Fig. 3 Plot of the criterion Q1
Dicke detecting genuine multipartite entan-

glement, Eq. (16), optimized over local unities for the three initial flavor

states a νe, b νµ, c ντ with respect to the distance traveled per energy

L/E in units of the oscillation period of the two lightest neutrinos (300

data points). The criterion detects genuine multipartite entanglement if

it is greater than 0 and is maximal (=1) only for the W -state

(a) (b) (c)

Fig. 4 Plot of the Svetlichny criteria detecting genuine multipartite

nonlocality, Eq. (19), optimized over possible bipartitions and opti-

mized over all six different observables for the three initial flavor states

a νe, b νµ, c ντ as a function of the distance traveled per energy L/E

in units of the oscillation period of the two lightest neutrinos (300 data

points). The criterion detects genuine multipartite nonlocality if the

value is above 4

3.2 Genuine multipartite mode-nonlocality

We now ask the question whether in the course of the fla-

vor oscillations, Bell-type nonlocality, a mode-nonlocality,

is persistent, i.e., there are correlations stronger than those

predicted by any classical hidden variable theory. For that

we investigate the Svetlichny inequalities [31] which are a

sufficient criterion for proving genuine tripartite nonlocal-

ity. In short, the idea is whether by measuring three observ-

ables A, B, C and obtaining the results a, b, c, the probability

P(a, b, c) can be assumed to be factorizable as

P(a, b, c) =
∫

f(ab|λ) · h(c|λ) dω(λ), (18)

where f, h are probabilities conditioned to the hidden variable

λ with the probability measure dω. The factorization, here

chosen between the partitions A, B versus C , corresponds to

Bell’s locality assumption in his original derivation if con-

sidered for two systems. [The requirement of a full factoriza-

tion, i.e., the additional factorization f(ab|λ) = q(aλ)·r(bλ),

which corresponds to absolute locality, is explored later by

the inequalities (20).] Then the necessary criteria for such

a factorization of the conditioned probabilities are given

by

I a(ρ) = Tr
(

(ADC + AD′C ′ + A′D′C − A′ DC ′)ρ
)

≤ 4,

I b(ρ) = Tr
(

(AD′C + AD′C ′ − A′DC ′ − A′ D′C ′)ρ
)

≤4,

(19)

with D = B+B ′ and D′ = B−B ′. Note that we are not inter-

ested in a particular hidden parameter model, such as (eν|τ ).

Consequently the above equations must be satisfied for any

bipartitions, namely (eν|τ ), (eτ |ν), and (ντ |e). In Fig. 4 we

have plotted the maximum of I a and I b, over all biparti-

tions, for the time evolution of an initial electron-, muon-,

and tau-neutrino. In addition, each data point corresponds to

the maximum of the optimization over all possible observ-

ables A, B, C . In the case of an initial electron-neutrino we

find regions in the time evolution when the criterion does not

detect genuine mode-nonlocality, whereas for the two other

neutrino flavors we observe a stronger oscillating behavior.

Summing up, whereas genuine mode-nonlocal correlation is

largely present in the time evolution, there are specific time

regions when it vanishes.

Requiring that for all three measurements a hidden param-

eter model should exist can be revealed by the following set

of inequalities [30]:

Ma(ρ) = Tr
(

(ADC + AD′C)ρ
)

≤ 2 ,

Mb(ρ) = Tr
(

(A′ D′C − A′DC ′)ρ
)

≤ 2 , (20)

which are connected to the Svetlichny inequality by I a =
Ma + Mb (see Refs. [31,38]). These are the Mermin inequal-
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(a) (b) (c)

Fig. 5 Plot of the maximum of Ma and Mb, Eq. (20), optimized over

all involved operators for the three initial flavor states a νe, b νµ, c ντ in

terms of the distance traveled per energy L/E in units of the oscillation

period of the two lightest neutrinos (300 data points). The criterion is

above 2 if and only if no hidden variable model exists

ities and their violation is an indicator of absolute nonlo-

cality. Again we are interested in finding a contradiction to

any hidden parameter model, thus we consider all biparti-

tions and take the maximum. The results are plotted in Fig. 5

(including an optimization over all four arbitrary operators

A, D, C, D′). For all times (except when the state is sep-

arable) the two inequalities are violated when optimized

over all measurement settings. This shows that assuming

that the mode correlations can be simulated by an ensem-

ble where all three subsystems are correlated to each other

for all time instances is not possible. In contrast, correlations

simulated by a hybrid mode-nonlocal–local ensemble, cap-

tured by inequalities (19), may exist for time instances close

to the separable state, however, only for the electron-neutrino

dynamics (Fig. 4).

It is tempting to think that this is a failure of the method,

in any case we can conclude that the full time evolution of

a single neutrino cannot be described by a hybrid mode-

nonlocal–local ensemble for all times. Since the violation of

the Svetlichny inequality is only a sufficient witness of gen-

uine tripartite nonlocality, but not a necessary condition, it is

in principle possible that the time-window where the inequal-

ity is satisfied may indeed contain this form of strong nonlo-

cality. In any case, it seems safe to say that it should vanish

close to the points where the neutrino state is characterized

by a single flavor, and that genuine tripartite nonlocality is

likely to be absent even in regions where genuine tripartite

entanglement and absolute nonlocality may be present.

To sum up, except for small time regions, neutrino oscil-

lations exhibit all the strong correlations, entanglement, and

Bell-type mode-nonlocality that are considered to give an

advantage to quantum theory over classical theories for a

number of information processing tasks. For completeness,

in the next section we investigate the behavior of a measure

of nonclassicality weaker than entanglement.

3.3 Dissension—a measure of nonclassicality

Classical mutual information, quantifying the information

between two random variables A and B, can be defined by

I (A:B) = H(A)− H(A|B), where H(A) = −
∑

i pi log pi

is the Shannon entropy of the probabilities p of the outcomes

of A and H(A|B) := H(A) − H(A, B) represents the clas-

sical conditional entropy and H(A, B) is the joint entropy

of the pair of random variables (A, B) (see, e.g., Ref. [1]).

Mutual information can be generalized for three random

variables A, B, C by any of the following three equivalent

expressions [39]:

I1(A:B:C) = H(A, B) − H(B|A) − H(A|B) − H(A|C)

−H(B|C) + H(A, B|C),

I2(A:B:C) = H(A) + H(B) + H(C) − H(A, B) − H(A, C)

−H(B, C) + H(A, B, C),

I3(A:B:C) = H(A) + H(B) + H(C) − H(A, B)

−H(A, C) + H(A|B, C) . (21)

While the second of these expressions suggests a straight-

forward quantum generalization, by replacing the Shannon

entropy by the corresponding von Neumann entropy S(ρ) ≡
−Tr(ρ log ρ), the first and third expressions lead to compli-

cations, since the average conditioned entropy depends on

the basis chosen and on the choice of the random variables

A, B, C . Let us point out that in strong contrast to the bipar-

tite mutual information the tripartite mutual information may

also be negative. This is the case if for instance knowing

the random variable C enhances the correlation between A

and B. Following the concept of quantum discord [40,41],

which quantifies nonclassical correlations, in Ref. [32] two

measures for nonclassicality, called dissension, were intro-

duced:

D1(A:B:C) = J1(A:B:C) − J2(A:B:C),

D2(A:B:C) = J3(A:B:C) − J2(A:B:C) , (22)

where the Ji are the quantum analogs of the classical tripartite

mutual information Ii , Eq. (21), namely

J1(A:B:C) = S(A, B) − S(B|Π A) − S(A|Π B) − S(A|ΠC )

−S(B|ΠC ) + S(A, B|ΠC ),

J2(A:B:C) = S(A) + S(B) + S(C)

−S(A, B) − S(A, C) − S(B, C) + S(A, B, C),
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(a) (b)

Fig. 6 Plots of the dissensions, Eq. (24), minimized over all projective

measurements for the time evolution of an initial νe as a function of the

distance per energy L/E : a single-mode measure D1 and b two-mode

measure D2. The colors encode the dependence on the reference mode:

(red νe), (blue νµ), (green ντ ). The horizontal lines corresponds to the

optimized values of the W -state, respectively. Curiously, the measures

are always nonzero, detecting nonclassical correlations, and exceed the

value of the W -state in both cases

J3(A:B:C) = S(A) + S(B) + S(C) − S(A, B) − S(A, C)

+S(A|Π B,C ) . (23)

Here S(A|Π B) =
∑

k pk S(ρA|Π B
k
) with ρA|Π B

k
= (Π B

k ρAB

Π B
k )/pk and pk ≡ Tr(Π B

k ρAB) is the probability that out-

come k is obtained. It is assumed that the basis of Π B
k is

chosen such as to minimize the uncertainty. A given state is

denoted to be nonclassical for any departure of D1 or D2 from

0. Here D1 and D2 deviations from zero can be associated

to nonclassicality accessed by only one-mode or two-mode

measurements, respectively.

We find that J2 is always zero, since S(A, B, C) is

zero because the total state is pure and since S(A) =
S(B, C), S(B) = S(A, C), S(C) = S(A, B), this being

a particularity of the W class of states. Furthermore, any per-

mutation of the entropy S(A|Π B,C ) = 0 is zero, since any

projection onto the two-mode subspace gives a pure state

which has zero uncertainty. Consequently, the relevant mea-

sures reduce in our case to

D1(Ψα) =
{

S(e, µ) − S(e,Πµ) − S(e,Π τ ) − S(µ,Πe)

−S(µ,Π τ ), S(e, τ ) − S(e,Πµ) − S(e,Π τ )

−S(τ,Πe) − S(τ,Πµ), S(µ, τ) − S(µ,Πe)

−S(µ,Π τ ) − S(τ,Πe) − S(τ,Πµ)
}

,

D2(Ψα) =
{

S(e), S(µ), S(τ )
}

. (24)

Here the three terms in the bracket of D1 refer to the sin-

gle electron-neutrino, single muon-neutrino, and single tau-

neutrino mode measurements, respectively. The three terms

in the bracket of D2 refer to joint bipartite measurements in

the muon–tau, electron–tau, muon–electron mode subspaces,

respectively (which are minimized to zero).

In Fig. 6 we plot the dissensions D1, D2 minimized over

all projective measurements for the time evolution of an ini-

tial electron-neutrino. The first notable point is that both

measures are very sensitive to whether the nonclassicality

is accessed by single or bipartite measurements and both

measures are nonzero for almost all times. Interestingly, we

find that for both measures min D1, min D2 and all mea-

surement types there are time regions for which the value

exceeds the corresponding value for the W -state, which has

(min D1, min D2) = (−1.738, 0.918). For single measure-

ments dissension D1 is still considerably smaller than the

values for the GHZ state (min D1 = −3), in contrast to D2

where min D2 = 1. Moreover, a strong “twin-humped” pat-

tern of D2 in the time evolution is found for joint measure-

ments in the subspace of the two heavier neutrinos showing

the existence of the third neutrino flavor (τ ).

4 Conclusions and outlook

To sum up, we have computed several information theoretic

quantities detecting and classifying correlations for the time

evolution of an initial electron-, muon- or tau-neutrino. We

find that for almost all time instances the neutrino states

exhibit genuine quantum features.

We have analyzed in detail the dynamics of initial neutrino

states via various types of entanglement properties, correla-

tions that cannot be simulated by realistic hidden variable the-

ories and nonclassical correlations revealed by mutual infor-

mation measures. In particular, dissension turned out to be

larger than that for the perfect W -state (Dicke state), for some

time values, in strong contrast to the measures not involv-

ing measurements, i.e., the flavor entropy and the criterion

detecting genuine multipartite entanglement. What physical

significance this carries, if any, remains to be seen.

Qualitatively, there are differences between an initial

electron-neutrino and the other two neutrinos, i.e., with the

former showing less nonclassical features when compared
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to its heavier counterparts, a point that may merit further

scrutiny. In detail we have shown that even though a genuine

mode-nonlocal correlation is usually present, there are spe-

cific time regions when it vanishes. This could be described as

a possible failure of the method. In any case we have proven

that for the full time evolution no hybrid mode-nonlocal–

local theory can be constructed.

Summing up, we can conclude that foundational issues

are more prominent in accelerator experiments (mainly pro-

ducing muon-neutrinos) than in reactor experiments (mainly

producing electron-neutrinos).

The weak force, being one of the four known fundamental

forces in Nature, dominant in the flavor changing process of

neutrinos, reveals strong genuine quantum features such as

also shown for weakly decaying spinless K -mesons [42] or

for the weakly decaying half integer spin hyperons [43]. The

next step would be to understand how and whether Nature

takes advantage of these strong quantum correlations for

information processing in a natural setting.
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