This paper deals with the application of wavelet transforms for the detection, classification and location of faults on transmission lines. A Global Positioning System clock is used to synchronize sampling of voltage and current signals at both the ends of the transmission line. The detail coefficients of current signals of both the ends are utilized to calculate fault indices. These fault indices are compared with threshold values to detect and classify the faults. Artificial Neural Networks are employed to locate the fault, which make use of approximate decompositions of the voltages and currents of local end. The proposed algorithm is tested successfully for different locations and types of faults. © 2014 Elsevier Inc. All rights reserved.