Header menu link for other important links
A meso-scale discrete element method framework to simulate thermo-mechanical failure of concrete subjected to elevated temperatures
, Pulatsu B., Lourenço P.B., Azenha M., Pereira J.M.
Published in Elsevier Ltd
Volume: 239
This paper presents mesoscale thermo-mechanical analyses of plain (unreinforced) concrete based on the discrete element method (DEM). The proposed discontinuum modelling strategy represents the aggregates and matrix as a system of deformable polyhedral blocks, interacting along their boundaries. The nodal velocities of each block are calculated via the explicit integration scheme of DEM, and contact stresses are computed based on the relative contact displacements of the adjacent blocks. To better predict the thermo-mechanical behaviour of concrete, fracture energy-based contact constitutive models are implemented by considering temperature dependency at the zone and contact properties. First, the discrete meso models are tested under uniaxial compression loading at room temperature. Then, transient thermo-mechanical tests are performed considering different load levels. The results of the computational models are compared with the macroscopic response quantities of concrete obtained from the available experimental studies in the literature. The results indicate that the developed DEM framework predicts the complex mesoscale thermo-mechanical response history and the typical damage progression observed in concrete. Furthermore, the fracture patterns, crack propagation with temperature, and the differential thermal expansion phenomena are studied in detail. © 2020 Elsevier Ltd
About the journal
JournalData powered by TypesetEngineering Fracture Mechanics
PublisherData powered by TypesetElsevier Ltd
Open AccessNo