Header menu link for other important links
X
A Mechanism for Carbon Depletion at Bondline of High-Frequency Electric-Resistance-Welded X70 Pipeline Steel
, R. Kannan, L. Li, N. Anderson, M. Rashid, L. Collins, J.D. Poplawsky, R. Unocic
Published in Springer
2021
Volume: 52
   
Issue: 9
Pages: 3788 - 3798
Abstract
The bondline of electric-resistance-welded (ERW) linepipe steel, often etched white (i.e., ferrite) in optical microscopy, is generally believed to be carbon depleted. The mechanism for the carbon depletion, however, is not fully understood by researchers. To this end, atom probe tomography (APT) was used to measure elemental segregation of the as-welded and post-weld heat-treated bondline regions of X70 linepipe welds. The thin vertical features at the bondline in the as-welded condition were identified as carbon-rich martensite-austenite (M-A) constituents, and the majority ferrite phase in the bondline was identified as carbon-depleted ferrite. Following the post-weld normalization, all alloying elements, except Nb and Mo, are homogenized across the bondline and heat-affected zone. The carbon depletion in the ERW bondline was accurately measured. A new mechanism for carbon depletion has been proposed using Scheil calculations of elemental partitioning during weld formation. Segregation of elements in the heat-affected zone was shown to follow the negligible partitioning local equilibrium (NPLE) kinetics for bainite transformation. © 2021, The Minerals, Metals & Materials Society and ASM International.
About the journal
JournalData powered by TypesetMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
PublisherData powered by TypesetSpringer
ISSN10735623