Header menu link for other important links
X
A Defocus Based Novel Keyboard Design
P. Gupta, T. Goswamy, , K.S. Venkatesh
Published in Springer
2020
Volume: 12182 LNCS
   
Pages: 363 - 379
Abstract
Defocus based Depth estimation has been widely applied for constructing 3D setup from 2D image(s), reconstructing 3D scenes and image refocusing. Using defocus enables us to infer depth information from a single image using visual clues which can be captured by a monocular camera. In this paper, we propose an application of Depth from Defocus to a novel, portable keyboard design. Our estimation technique is based on the concept that depth of the finger with respect to our camera and its defocus blur value is correlated, and a map can be obtained to detect the finger position accurately. We have utilised the near-focus region for our design, assuming that the closer an object is to our camera, more will be its defocus blur. The proposed keyboard can be integrated with smartphones, tablets and Personal Computers, and only requires printing on plain paper or projection on a flat surface. The detection approach involves tracking the finger’s position as the user types, measuring its defocus value when a key is pressed, and mapping the measured defocus together with a precalibrated relation between the defocus amount and the keyboard pattern. This is utilised to infer the finger’s depth, which, along with the azimuth position of the stroke, identifies the pressed key. Our minimalistic design only requires a monocular camera, and there is no need for any external hardware. This makes the proposed approach a cost-effective and feasible solution for a portable keyboard. © 2020, Springer Nature Switzerland AG.