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We present a computational model of altered gait velocity patterns in Parkinson’s Disease

(PD) patients. PD gait is characterized by short shuffling steps, reduced walking speed,

increased double support time and sometimes increased cadence. The most debilitating

symptom of PD gait is the context dependent cessation in gait known as freezing of gait

(FOG). Cowie et al. (2010) and Almeida and Lebold (2010) investigated FOG as the changes

in velocity profiles of PD gait, as patients walked through a doorway with variable width.

The former reported a sharp dip in velocity, a short distance from the doorway that was

greater for narrower doorways. They compared the gait performance in PD freezers at ON

and OFF dopaminergic medication. In keeping with this finding, the latter also reported

the same for ON medicated PD freezers and non-freezers. In the current study, we sought

to simulate these gait changes using a computational model of Basal Ganglia based on

Reinforcement Learning, coupled with a spinal rhythm mimicking central pattern generator

(CPG) model. In the model, a simulated agent was trained to learn a value profile over a

corridor leading to the doorway by repeatedly attempting to pass through the doorway.

Temporal difference error in value, associated with dopamine signal, was appropriately

constrained in order to reflect the dopamine-deficient conditions of PD. Simulated gait

under PD conditions exhibited a sharp dip in velocity close to the doorway, with PD

OFF freezers showing the largest decrease in velocity compared to PD ON freezers and

controls. PD ON and PD OFF freezers both showed sensitivity to the doorway width,

with narrow door producing the least velocity/ stride length. Step length variations were

also captured with PD freezers producing smaller steps and larger step-variability than PD

non-freezers and controls. In addition this model is the first to explain the non-dopamine

dependence for FOG giving rise to several other possibilities for its etiology.
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INTRODUCTION

Altered gait behavior is a motor impairment observed in patients

with Parkinson’s disease (PD), a neurodegenerative disorder that

involves a loss of dopaminergic neurons in the brain. PD gait is

characterized by the following features: (1) Reduced stride length,

reduced walking speed, increased cadence and increased double

support duration (Morris et al., 1998); (2) Exhibits flat foot strike,

and in rare conditions the “toe to heel strike” gait pattern is also

observed (Hughes et al., 1990); (3) Intra-individual variability in

foot strike patterns is lower in PD patients than in control subjects

(Kimmeskamp and Hennig, 2001); (4) Vertical ground reaction

force (VGRF) representing the normal force exerted on the foot

during gait, has two peaks in controls—one when the foot hits the

ground, and the other when it lifts off again. In early stages of PD,

the two peaks in VGRF are present but with lower intensity com-

pared to controls. In advanced PD, where the patients walk with

narrow shuffling steps, the two peaks in VGRF merge into one

(Koozekanani et al., 1987); (5) Postural instability is a common

feature in late stage PD. Postural sway is also reduced probably

due to reduced flexibility in adjusting one’s bodily responses to

changing posture (Morris et al., 2000). Abnormal postural sway

in PD might also be due to stiff joints. The degree of gait variabil-

ity as seen by any of the above mentioned features, is correlated

with gait severity in PD patients (Hausdorff et al., 1998).

In addition to the aforementioned features, a more debilitat-

ing and dramatic feature of PD gait is known as Freezing of Gait

(FOG). It is characterized by frequent falls (Latt et al., 2009),

and is an episodic phenomenon of cessation of gait triggered by

certain environmental contexts like narrow passages or crowded

places (Almeida and Lebold, 2010; Cowie et al., 2010). PD gait

features like reduced stride length and reduced walking speed

appear to be gradually aggravated under certain environmental

conditions, culminating in a motor block, or a freezing episode

(Chee et al., 2009). Some cases of PD patients (PD-freezers)

exhibit freezing in specific contexts such as facing transverse

lines on a road crossing or narrow doorways (Hughes et al.,
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1990; Morris et al., 1998), while the same transverse lines on a

treadmill alleviates freezing symptoms (Azulay et al., 1999). This

shows the importance of the higher level cortical control over the

rhythm generating spinal control in gait and FOG, since the visual

feedback can affect gait only through the cortical route.

Human motor function has three levels of control: cortical,

subcortical and spinal. Specifically gait is controlled by a complex

network of brain areas spanning all the three levels: the neocor-

tex (Sahyoun et al., 2004); subcortical areas including the basal

ganglia (BG), vestibular system, cerebellum; and the spinal cord

(Middleton and Strick, 2000; Lemon, 2008; Takakusaki et al.,

2008). Motor commands arising from the brain’s gait control

centers are strongly influenced by sensory feedback via visual,

proprioceptive and other sensory channels (Sahyoun et al., 2004).

At the level of spinal cord each limb is thought to be controlled

by a network of unit burst generators called Central Pattern

Generators (CPGs) (Ijspeert, 2008). This network of CPGs, which

acts under the top-down control from higher cortical motor areas,

and the proprioceptive and visual feedback, is thought to be the

ultimate driver of human gait. The broad picture of the neu-

ral substrates involved in gait control is shown in Figure 1A.

However, since the focus of the present study is PD gait, we limit

ourselves to a smaller architecture that highlights the role of BG

(Figure 1B). A more detailed description and justification of the

model architecture is presented in The Model.

Motor and other forms of impairment observed in PD are pri-

marily linked to dopamine deficiency caused by cell loss in the

Substantia Nigra pars compacta (SNc), a small but important

nucleus in BG (Kish et al., 1988). The BG is a group of subcorti-

cal nuclei performing vital roles of action selection, action gating,

motor preparation, among others (Chakravarthy et al., 2010). The

striatum is the major input port of BG affected by the activity of

the cortex and the limbic regions. This gets connected directly to

the output port (Globus Pallidus interna / Substantia Nigra pars

reticulata) via the direct pathway (DP), or through Sub-thalamic

Nuclei—Globus Pallidus externa network via the indirect path-

way (IP). The output nuclei project onwards to cortical targets

like prefrontal, premotor and the motor cortices via the thalamus

(Chakravarthy et al., 2010).

The idea that mesencephalic dopamine signal is linked to envi-

ronmental rewards (Houk et al., 1995; Schultz et al., 1997) opened

doors to the application of concepts from reinforcement learning

(RL) to model BG (Joel et al., 2002; Frank, 2005; Chakravarthy

et al., 2010). The basic tenet of RL is that stimulus-response pairs

that are rewarding are reinforced and those that are punitive are

attenuated. The mapping between stimuli and responses would

have been an easier problem, but for the fact that often reward

comes, not immediately after an action is performed, but after

a delay. In some cases, reward and punishment feedback arrives

after a long series of actions. It remains then to allocate credit

to past actions and determine which actions have contributed to

reward and to what action, a problem otherwise known as tempo-

ral credit assignment problem. Since reward comes after a delay,

for the simulated object (referred to here as agent) to select the

correct action at any given instant, RL theory offers a surrogate

to reward known as value function. The value function is defined

as the total expected future reward, with appropriate discounting

FIGURE 1 | (A) Architecture showing the hierarchy of control on gait

execution; (B) Model architecture considered in our study to understand

FOG.

of future. The RL component known as the ’Critic’ computes

value after repeatedly sampling the action space and receiving

rewards/punishments. Another key RL component known as the

’Actor’ uses the value information provided by the critic to select

correct or potentially rewarding actions. Many computational

models have been directed toward mapping RL concepts onto the

functional anatomy of BG (Joel et al., 2002).

According to the classical depictions of functional anatomy of

BG, the DP facilitates movement, and is hence dubbed the GO

pathway, while the IP inhibits movement and hence known as the

NOGO pathway (Albin et al., 1989; Frank, 2005). Signal trans-

mission between DP and IP is thought to be switched by striatal

dopamine: higher (lower) levels of striatal dopamine activate the

GO (NOGO) pathway. In earlier work, we proposed that the clas-

sical GO/NOGO picture of BG function needs to be expanded,

suggesting insertion of a third “EXPLORE” regime between GO

and NOGO (Sridharan et al., 2006; Chakravarthy et al., 2010;

Magdoom et al., 2011; Kalva et al., 2012). This EXPLORE regime

drives the stochastic exploration of action space, which is essential

for RL to work in complex environments. In the present study we

use this expanded GO/EXPLORE/NOGO (GEN) understanding

of BG functioning, to model PD gait.

Two experimental studies, that investigate the gait pattern of

PD patients as they approach a doorway, are simulated in the
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present study (Almeida and Lebold, 2010; Cowie et al., 2010). The

study of Cowie et al. (2010) shows a sharp dip in velocity as the

PD patient approaches the doorway, a dip that becomes sharper in

the case of narrower doorways (Cowie et al., 2010); this effect was

more pronounced in PD patients (ON and OFF freezers) than in

healthy controls. Almeida and Lebold (2010) consider a similar

setup but compare the gait patterns of PD freezers with non-

freezers in terms of step lengths and its variability (Almeida and

Lebold, 2010). The proposed BG model accounts for the above

mentioned velocity profiles and gait features (stride / step lengths)

of PD patients from these two experimental studies.

We model them at two stages of control: (1) the higher level

of control representing the cortico-basal-ganglia system, and (2)

the spinal level CPGs that translate the higher level gait com-

mands such as velocity into gait rhythm (Figure 1B). The BG

model is essentially simulated using the Actor-Critic architecture,

with the difference that the Actor is modeled by the GEN model

(Sridharan et al., 2006; Chakravarthy et al., 2010; Magdoom et al.,

2011; Kalva et al., 2012). The spinal CPGs are modeled by net-

works of hopf oscillators (Righetti and Ijspeert, 2006). The model

is used to simulate the results of two PD gait studies (Almeida and

Lebold, 2010; Cowie et al., 2010).

The paper is outlined as follows: the Model section describes

the modeling components and equations. The Result section

explains the experimental setup, the model implementation and

the simulation results. Velocity profiles of control subjects and

PD patients (ON/OFF, freezers / non-freezers) as they negotiate a

doorway are simulated and compared with experimental results.

Section Discussion finally discusses the results obtained, model

limitations, predictions and future work.

THE MODEL

The proposed model simulates the approach of a subject to a

doorway and computes the velocity profile along the track lead-

ing to the doorway. The agent repeatedly approaches a doorway,

walking along a short track. The agent aims at passing through

the doorway without bumping into the sides of the doorway. Due

to the well-known tradeoff between accuracy and speed in motor

function (Mackay, 1982; Bradshaw and Sparrow, 2000; Duarte

and Latash, 2007), rapid approaches to the doorway are more

likely to result in a collision. Therefore, in our model, the agent

learns to reduce its speed in the vicinity of the doorway, which it

does using RL mechanisms.

Figure 2 shows the block diagram of the proposed model,

which mainly consists of three components—the Cortico-BG sys-

tem, CPG, and locomotor apparatus. The Cortico-BG system,

shown inside the dashed box (Figure 2), takes a representation

of the view of the doorway, the “view vector,” from the posi-

tion, X, of the agent. It is obtained from the cortical module:

VISION. The block denoting τ denotes the time delay in the pas-

sage. The BG [consisting of the CRITIC, ACTOR (GEN), VALUE

DIFFERENCE, and the TD ERROR modules] uses the view vector

and updates the agent’s velocity (vx and vy). This velocity infor-

mation from the higher command centers is sent to the CPG

module, which translates the velocity into joint angles (θ). The

subsequent block labeled STRIDE uses the joint angle informa-

tion and orientation (vx and vy) and computes the next position.

FIGURE 2 | Block diagram detailing the Cortico-Basal Ganglia system

and the Central Pattern Generator module used in our study. The arrow

on the Critic represents the module training. The figure also projects the

Cortico-BG system, CPG, and locomotor apparatus in the shades of blue,

brown, and violet respectively.

The ENVIROMENT (doorway) module checks if the new posi-

tion results in a collision of the agent with the doorway. A positive

reward, r, is delivered if there is no collision, and a punishment

(negative r) in case of collision. The BG uses the view vector and

reward information to compute value, thereby completing the

cycle.

We now describe individual model components in detail.

THE CORTICO-BASAL GANGLIA SYSTEM: VISION

This module computes the state of the agent, the “view vector,”

φ, which codes the view of the doorway from the position [(x, y)

or X] of the agent (Figure 3). The calculations are given by the

Equations (1–5).

In our study, the field of vision (FOV) of the agent is fixed at

120◦. The FOV is divided into small sectors, denoting the size

of the view vector. In our case, the view vector is a 1x 50 array

and therefore FOV is spilt into 50 sectors (Figure 3). The position

of the agent (x, y) is the viewing point and the orientation vec-

tors vx and vy form the view direction of the agent from which

it can see 60◦ to the left and 60◦ to the right. Considering Ro as

the orientation vector (2 × 1) represented by vx and vy and the

angle subtended by each ith sector with respect to Roas �sec
i , the

orientation vectors of each of other 49 sectors is given by

Rsec
i = Omat.Ro (1)

where Omat is the orientation matrix (2 × 2) given by

Omat =
[

cos
(

�sec
i

)

, sin
(

�sec
i

)

;− sin
(

�sec
i

)

, cos
(

�sec
i

)]

(2)

The slope mi(Equation 3) of each of the Rsec
i is calculated with

respect to the agent’s current position (x, y).

mi =
[(

y + R
y
i

)

− y
]

/
[(

x + Rx
i

)

− x
]

(3)
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FIGURE 3 | View vector associated with different (x, y) positions and

orientation vector for (A) far from the doorway and (B) near the

doorway, for the fixed door size (dlength).

In order to identify if a given sector’s orientation hits the door

or a wall assuming the y coordinate of the door is ydoor
i , the x-

coordinate (xdoor
i ) of each of the orientation vectors is calculated

at ydoor
i as in Equation 4.

xdoor
i =

(

ydoor
i − y

)

/mi + x (4)

Using the xdoor
i coordinates of all the views, the view vector is given

as Equation 5.

if(xdoor
i ≥ −dposx

)∧(xdoor
i ≤ dposx

)

φi (t) = 1

else

φi (t) = 0

(5)

Therefore, the agent viewing the doorway from a given position

(X), would see more or less number of 1 s in its visual field,

depending on its orientation, distance to the doorway and the

width of the doorway (dlength) (Figure 3). The view vector is thus

ideally suited to be used as the state of the agent.

THE BASAL GANGLIA MODULE

The BG module is essentially simulated using the Actor-Critic

architecture (Joel et al., 2002) but with important deviations from

classical RL (Sutton and Barto, 1998) regarding the formulation

of the Actor.

Critic

The Critic computes the value “V” for the view vector [φ(t)]. It

is defined as an estimation of the predicted reward at any time, t,

for that state φ(t). The value function is denoted by Equation 6.

V(t) = E(rt + 1 + γrt + 2 + γ2rt + 3 + · · · ) (6)

Here, rt is the reward r obtained at time, t.

In our study, we approximated V(t) as in Equation 7.

V(t) = tanh
[

∑

Wi(t)φi(t)
]

(7)

The update equation for the above approximation (having weight

vector, W) is given by eqn. 8.

�W = ηδφ(t) (8)

Here, “δ(t)” denotes the TEMPORAL DIFFERENCE (TD) error

in value function, that is correlated to dopamine signaling

(Schultz, 2010). It is given by Equation 9 in which γ is the discount

factor.

δ = r(t) + γV(t) − V(t − 1) (9)

GO/EXPLORE/NOGO or GEN

The policy (Actor) used here is known as the

GO/EXPLORE/NOGO or GEN policy, the neurobiological

origins of which were described in earlier work (Sridharan et al.,

2006; Magdoom et al., 2011; Kalva et al., 2012). GEN essentially

represents an approach to action selection, by performing a

stochastic hill-climbing over the value function. In the doorway

problem that is presently studied, reward, r, is obtained at the

doorway when the agent passes through the doorway without

collision. Thus the value profile is expected to have a maximum at

the doorway. Therefore, value gradient can be used to approach

the doorway securely without colliding with the sides of the

doorway.

A quantity known as VALUE DIFFERENCE (Equation 10), δV ,

which is the gradient of the value,

δV = V(t) − V(t − 1) (10)

plays an important role in the process of hill-climbing over the

value profile.

Note the resemblance between the Value Difference in eqn. 10

and the TD error (Equation 9). It may be observed that, δ = δV ,

when γ = 1 and when the agent is not at the goal state (r = 0).

We assume that both δ and δV represent dopamine signals but
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perform distinct roles: while δ is used for training the value func-

tion as in the case of typical Actor-Critic models of BG, we assume

that δV is used for switching between DP and IP, which is thought

to be a function of striatal dopamine (Humphries and Prescott,

2010; Amemori et al., 2011). δV can be used to hill-climb over

value function using the following rules,

if(δV > Dhi)

�X(t) = +�X(t − 1) − “Go” (a)

elseif(δV > Dlo ∧ δV ≤ Dhi)

�X(t) = χ − “Explore” (b)

else (δV ≤ Dlo)

�X(t) = −�X(t − 1) − “NoGo” (c)

(11)

where X = (x, y) denotes the position of the agent on the track;

Dhiis a positive threshold and Dlo is a negative threshold; χ is a

uniform random variable. A similar rule for hill-climbing over

value function was used earlier in Magdoom et al. (2011), which

describes a model of Parkinsonian reaching movements.

The key difference in the classical RL implementation of Actor,

wherein the action is typically modeled as an explicit function of

the state φ, and the GEN policy, is that the action is computed by

following the value gradient over the position space, X. Although

value is a function of the view vector, φ(t), we perform the hill-

climbing over the position space, X, that is mapped onto the view

vector uniquely.

The 3 discrete regimes—GO, EXPLORE and NOGO—of

Equation 11 can be combined seamlessly into a single equation

as follows (Equation 12):

�X(t) = AGsig(λGδV )�X(t − 1)

+AEχ exp(−δ2
V/σ2

E)

−ANsig(λNδV )�X(t − 1)

(12)

where

sig(xsig) = 1/
[

1 + exp(−xsig)
]

(13)

The rationale behind Equations (11–13) (Sridharan et al., 2006;

Chakravarthy et al., 2010; Magdoom et al., 2011; Kalva et al.,

2012) may be described as follows. The “GO” regime, which

occurs when δV > Dhi, means that the previous position update,

X(t − 1), had caused significant increase in the value (δV ).

Therefore, according to Equation 11 above, �X(t) is in the same

direction as �X(t − 1), which justifies the form of the first term

in eqn. 12, that is a continuous version of rule Equation 11a,

as shown in Figure 4. The GO regime is thought to be imple-

mented by the DP, which is activated at higher levels of striatal

dopamine, δV . A low level of dopamine δV < Dlo implies that the

previous position update had caused significant decrease in the

value. Therefore, the position update is in the opposite direction

to the previous update. This mechanism is thought to be imple-

mented by the IP. This regime is denoted by the third logsig term

with a negative slope (λN) in the Equation 12, a continuous ver-

sion of the rule of Equation 11c. Intermediate levels of dopamine,

(Dhi < δV < Dlo), implies that the previous change in value is

not significant; therefore the subsequent position update occurs

FIGURE 4 | An illustration of the operation of GO, EXPLORE, NOGO

regimes. Each of the regimes represent a map between X(t−1) and X(t)

defined as X(t) = χ∗C(δv)∗X(t−1). (A) For GO regime, for δv > Dhi, C = 1;

else C = 0; χ = 1. The resulting step-like profile is approximated by a

sigmoid, shown as the first term on the RHS of Equation (12). (B) For

NOGO regime, for δv < Dlo, C = 1, else C = 0; χ = 1. The resulting

inverted step profile is approximated by the sigmoid defined as the third

term on RHS in Equation (12). (C) For the EXPLORE regime, for

Dlo < δv < Dhi, C = 1, else C = 0. This pulse-like profile of C is

approximated by a Gaussian function of δv a; χ is a random number

generated from a uniform distribution with range [−0.5 to 0.5] in this case.

in a random (χ) direction (Equation 11b). The second term in

Equation (12) is a continuous version of the rule of Equation 11b.

The parameters that define the GEN policy are AG, AN, AE,

λG, λN in Equation (12), the discount factor, γ in Equation

(9), and width, σ, of the Gaussian term in Equation (12). The

last parameter, σ, is known as the “exploration parameter” since

it controls the extent of exploration by the GEN policy. The

parameters that denote changes in dopamine corresponding to

PD OFF and ON conditions are δlim and δmed respectively.

These parameters are trained using genetic algorithms (Appendix

A) after imposing specific constraints related to various condi-

tions (controls, PD OFF and PD ON) as described in the later

sections.

Thus the GEN policy computes the update in position, �X.

The position update is represented as velocity components (vx

and vy) and passed onto the CPG module, which in turn com-

putes the hip and knee angles θ, for the calculation of the next

position.

THE CPG MODULE

CPGs are neural networks capable of producing coordinated

rhythmic activity in the spinal cord for driving rhythmic move-

ments like locomotion (Ijspeert, 2008). A network of coupled

non-linear oscillators, modeled using adaptive hopf oscillators

(Righetti and Ijspeert, 2006), is used here as a model of the CPG

network. The model assumes that the CPG controls the angle pro-

files of hip and knee joints that directly reflects the motor output,

producing the necessary activation and deactivation of muscles

producing gait. It is a simple kinematic model of the leg, where

the CPGs control the joint angles including those of the hip (θh)

and two knees (θk1 and θk2). The hip and knee joint angles are

approximations of the human locomotion obtained by Fourier
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analysis (De Pina Filho and Dutra, 2009). Figure 5B shows the

approximate profiles of hip and knee joints, modeled as truncated

Fourier series (De Pina Filho and Dutra, 2009). It represents the

training signals for the CPGs which are 500 steps in time for one

gait cycle (T). Since our aim is to reproduce the rhythms, dur-

ing training these are provided repeatedly to the network till it

converges to produce such gait cycles with appropriate amplitude,

frequency and phase relationship.

The motivation behind using the adaptive hopf network is

to have a smooth control over the amplitude and frequency

of the oscillators. Three pools are used to represent the CPG

network (where s = 3 and j = 1: s represents the hip, knee1,

and knee2 respectively). Each pool consists of optimal num-

ber of oscillators, two for the hip and three for each of the

knees (where N = 1 or N = 2 and i = 0: N, respectively), that

in total constitute the CPG network (Figure 6). The dynamics of

the adaptive hopf oscillators are given by Equations 14–21, for

the neurons (oscillators) in each pool j. Each variable is repre-

sented with the subscript i, j denoting the ith oscillator in the

FIGURE 5 | (A) The joint angle representation on the kinematic leg model

with the thigh (l1) and shank (l2) links representing the joint angles θh (hip),

θk1, θk2(two knees); (B) Variation of hip and knee angles with time and their

inter-phase relationships. Extrema (θh_ext ) in the hip angle are denoted by

numbers 1, 2, and 3.

jth pool. The intrinsic variables pi, jand qi, j of the oscillators

are in Equations 14, 15 with zi, j =
√

p2
i, j + q2

i, j. Fj(T) is the

error signal as described in Equation 18, where “T” denotes time

steps needed to complete one gait cycle, which in our study is

taken to be a vector of size [1 × 500]. It is weighted by a factor

ǫ, and is given as feedback to the oscillators through Equation

14. In Equations 14, 15, µ controls the amplitude of oscilla-

tions, and ξ controls the speed of recovery of the system after

perturbations.

pi,j = ξ(µ − z2
i,j)pi,j − ωi,jqi,j + εFj(T) + τ sin(θIP

i,j − ψi,j)

(14)

qi,j = ξ(µ − z2
i,j)qi,j − ωi,jpi,j (15)

The adaptation of the oscillators to a specific frequency (ωi,j) and

amplitude (αi,j)of an input signal is achieved by Equations 16 and

17 respectively. The learning rate ηafor the update equation for

αi,j (Equation 17) is set at 0.08.

ωi,j = −εFj(T)
qi,j

zi,j
(16)

αi,j = ηapi,jFj(T) (17)

Fj(T) describes the error signal (Equation 18) that is defined as

the difference between the teaching signal (Pteach,j) and the learnt

signal (Qlearned,j) at a time instant. The teach signals (a single gait

cycle) for the oscillators in a pool “j” represent the angle profile

of any one of the joints (either the hip, knee1, or knee2) seen in

Figure 5B and is vector of size (1 × 500) in time. Hence all the

FIGURE 6 | Training of the CPG network with the desired hip (h) and

knee (k1 and k2) angles (θ) represented in Figure 5B. The number of

hopf oscillators used to train the hip (ωh) and knee angles (ωk1 and ωk2) are

2 and 3 respectively. Phase difference within-CPGs is maintained by ψlocal

while across-CPGs is maintained by ψglobal. αs modulate the intrinsic CPG

rhythm to output the learnt joint angles.
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oscillators (i = 0: N) in a particular pool (j) receive the teach sig-

nal of the hip (if j = 1) or the knee 1 (if j = 2), knee 2 (if j = 3),

respectively.

Fj(T) = Pteach,j(T) − Qlearned,j(T) (18)

Fj(T) is provided to the oscillatory network only during the

adaptation stage (learning) and grows smaller as the learning pro-

gresses till it eventually becomes zero (Pteach,j = Qlearned,j). The

αi,j and ωi,j converge at this point, and the network still encodes

the pattern even after the removal of Fj(T). These variables can

be represented as α0
i,j and ω0

i,j where the superscript “0” denotes

the convergence to optimal values. The learnt signals which are

joint angles, expressed here by θh, θk1and θk2, are the output of

each oscillator pool represented by the dot product of α0
i,j and pi,j

(Equation 19).

Qlearned,j(T) =

N
∑

i = 0

α0
i,jpi,j (19)

Intra-pool phase relationship (i.e., within hip, within each knee)

is maintained via the internal variable ψi,j (Equation 20) where τ

forms the weight factor to maintain the phase relationship among

the oscillators (Equation 14) with respect to the 0th oscillator

within the pool (for a single “j” under consideration). This indi-

cates that each oscillator within that pool receives a scaled phase

input ψi,j from its respective reference oscillator ψ0,j

ψi,j = sin

(

ωi,j

ω0,j
θIP

0,j − θIP
i,j − ψi,j

)

(20)

where the instantaneous phase of an oscillator, θIP
i,j within a pool

is

θIP
i,j = sgn(pi,j) cos−1(−

qi,j

zi,j
) (21)

In addition to a local phase variable ψi,j (Equation 20), which

does not consider the phase maintenance across different pools

of oscillators (j = 1: s), a global/inter-pool phase relationship

(between the hip and two knees) is introduced via a new state

variable ψG
0,j, whose dynamics are governed by the following

equations (Equations 22, 23). The Equation 22 is similar to

Equation 14 with two changes that includes the variable p0,j, con-

trolling the dynamics of only the 0th oscillator of each pool and

the addition of the global phase variable ψG
0,j(Equation 23). These

equations represent phase maintenance by a scaled phase input

(ψG
0,j) across the pools of oscillators. In our case the global phase

is maintained with respect to one of the hip oscillators (the 0th

oscillator in the hip pool, i.e., ψG
0,1) as the reference oscillator. The

block diagram for training the CPG network is given by Figure 6,

and the Table 1 denotes the values of various parameters used in

the CPG model.

p0,j = (µ − z2)p0,j − ω0,jq0,j + τ sin(θIP
0,j − ψG

0,j) (22)

ψG
0,j = sin(θIP

0,j−1 − θIP
0,j − ψG

0,j) (23)

Table 1 | List of parameter values for simulating the network of

adaptive hopf oscillators (CPG model).

Parameters Hip (h) Knees (k1 and k2)

ξ 8 12

µ 1 1

ǫ 0.9 0.3

τ 2 1

The GEN equation yields velocity components vx and vy, pro-

viding information on the magnitude and the direction of the

agent’s movements. Since our aim is to model the aspect of stride

length, the magnitude of velocity obtained from the BG module is

used to control the α0
i,j of the oscillators through a proportionality

gain (k) (Equation 24). This provides a proxy for the magnitude of

velocity in terms of the joint angles. Since the joint angular veloc-

ity can be varied in terms of their amplitude (by changing α0
i,j),

it is very convenient to translate an indirect measure of velocity

obtained from the GEN module to a realistic motion of joints.

k(t) = Ak tanh(ck

√

v2
x + v2

y) (24)

where k(t) is the proportionality gain variable. Ak is the amplitude

factor for the gain and ck is the sensitivity/slope factor which are

set at 3 and 1 respectively in all conditions. The α0
i,j is modulated

by k(t) as in Equation 25

α
f
i,j(t) = α0

i,jk(t) (25)

Here α
f
i,j reflects the changes in α0

i,j on being modulated by a fac-

tor of k(t) in each step of a trial to the doorway. Now α
f
i,j takes

up the role of α0
i,j (as seen in Equation 19) and has an effect on

the output of the CPG network especially on dictating the ampli-

tudes of the hip and knee angles. On obtaining larger/smaller

values of velocity (vx and vy) from the GEN module the gain vari-

able k(t) is varied i.e., either increased/decreased which in turn

increases/decreases the amplitudes of the hip and knee angles by

modulating α0
i,j(Equation 25). Therefore, increased amplitude of

velocity obtained from the BG results in increased stride lengths

from the oscillator network and vice-versa. The stride module

then calculates the stride/step length using θh, θk1and θk2, which

is the actual displacement used to translate the agent’s position in

space. The stride length obtained as a function of the joint angles

is described in the section below. The connectivity between the

BG network and the CPGs for training is given by Figure 2. Once

the CPGs are trained, the gait execution is modeled as in Figure 7.

THE LOCOMOTOR APPARATUS: STRIDE

As depicted in Figure 2 the stride module uses the angles θi (espe-

cially θh) from the CPG network to determine the stride length.

Stride length in a gait cycle is defined as the distance between

the heel strike of one leg to the heel strike of the same leg and

thus covers two steps. The hip angle θh as seen in Figure 5B has

three peaks. Since θh is the angle between the two hips and knee
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FIGURE 7 | Obtaining stride from the combined BG and the CPG

network after training.

angles are almost 0 at the extremes (Figure 5B) each peak in the

hip angle represents a Step. Considering the first peak as the heel

strike of one the legs, the next two peaks would be the next two

steps or a Stride (Figure 5B). The thigh length, l1 is taken as 0.5 m

and the shank length, l2 as 0.6 m (Figure 5A) and is adapted from

Taga’s biped model (Taga et al., 1991). The stride length (SL) is

calculated as in Equation 26.

LSTR = 2(l1 + l2) sin(θh_ext2/2) + 2(l1 + l2) sin(θh_ext3/2) (26)

In order to simulate the step lengths, only a single peak (θh_ext2)

is considered; hence LSTRwill possess only the first term. As the

α0
i s are modulated, the amplitude of θh varies giving rise to dif-

ferent stride / step lengths. The stride / step length now supplies

the displacement information to the agent. The information for

direction is obtained from the unit vectors of vx and vy (ν̂x and

ν̂y) of GEN module, respectively. The stride length and the direc-

tion are combined to calculate the agent’s next position as in

Equation 27.

�x = LSTR
∗v̂x

�y = LSTR
∗v̂y

(27)

The change in position (performed by Equation 27) would

then trigger the VISION module to compute the new view vec-

tor, thus forming a loop. The trained Cortico-Basal ganglia, CPG

module along with the locomotor apparatus is then used for

testing the agent’s performance as shown in Figure 7.

RESULTS

We simulate the results of two experimental conditions that study

gait patterns of PD patients as a they walk towards a doorway

(Almeida and Lebold, 2010; Cowie et al., 2010). In both stud-

ies, PD patients were asked to walk through doorways of different

sizes (wide, medium and narrow), with the idea of understand-

ing the changes in gait velocity and the conditions that trigger

FOG. The Cowie et al. (2010) study shows significant differences

FIGURE 8 | (A) Effect of δlim on stride lengths (simulations are run for

γ = 0.8 and σ = 0.3) with other GEN parameters the same as that of the

controls; (B) Effect of different levels of γ and σ on stride length

(unclamped δ).

in the gait velocity and stride length, for healthy controls, PD

ON and PD OFF freezers. The velocity and stride lengths were

significantly different among the three subject groups. In this

study, the controls produce higher velocities of gait and higher

stride lengths than PD freezers, under all door conditions. PD

ON subjects show lesser velocities and stride lengths compared to

controls but higher than PD OFF, who show the lowest velocities.

The PD subjects (both ON and OFF) also produce significant dips

in their gait velocity especially near the doorway, showing signs

of freezing (Figures 9A, 10A). The Almeida and Lebold (2010)

study takes into account the gait patterns specifically of PD freez-

ers and PD non-freezers. The differences among the three groups

of subjects—controls, PD freezers and non-freezers—are evident

from their step length profiles. PD freezers produce significantly

low step lengths compared to controls and PD non-freezers. The

trend is exaggerated as the doorway width decreases with the nar-

row doorway producing the least step length (Figure 12A). They

also show increased variability among PD freezers in compari-

son to controls and non-freezers (Figure 13A). The experimental

paradigm is quite similar in both the above studies (Almeida and

Lebold, 2010; Cowie et al., 2010).

SIMULATING THE ENVIRONMENT

We start with a description of the doorway and the reward sched-

ule used in the ENVIRONMENT module of our model. The

agent’s state and action representation is in the form of view vec-

tor and the velocity vector respectively. The position vector limits

are: [-2, 2] for x-position across the breadth of the track, and

[0, 10] for y-position along the length of the track (Figure 3).

At the start, the agent is always positioned at y = 0.1 for a ran-

dom x, and is directly oriented toward the door, whose center is

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 190 | 8



Muralidharan et al. Computational model of PD FOG

FIGURE 9 | Normalized velocity profile for controls and PD freezers in

(A) Experiment (Cowie et al., 2010) and (B) simulation under different

doorway conditions. 100% velocity in the experimental results represents

the velocity profile under a no-door condition. In simulation results, the

velocity profiles are normalized by an average velocity far before (5–6 m)

from the doorway.

located at (x, y) = (0, 10) (Figure 3). The view vector φ(t) cor-

responding to any given position and orientation is given by eqn.

5, and the velocity is the action selected by following policy GEN

(Equation 12). The agent is presented with three door conditions

(wide, medium, and narrow).

In the Cowie et al. (2010) study, the door sizes are scaled to

the participant’s shoulders (100% shoulder width—narrow door;

125% shoulder width—medium door; 150% shoulder width—

wide door), while the Almeida and Lebold study uses doors

of fixed size (wide door—1.8 m; normal door—0.9 m; narrow

door—0.675 m). In our model, the agent has a circular body of

diameter 1 m and the door sizes (dlength) are 3 m for “wide,” 2.5 m

for “medium/normal” and 2 m for “narrow” cases. The agent

must control its movements through a distance of 10 m before

it encounters the door. The rewards/punishments are as follows:

r = 5 at the door for successful passage, and r = −1 for collision

with the sides of the door and the boundaries of the track; r = 0

elsewhere.

SIMULATING THE GEN

In the BG model, GEN parameters (A’s and λ’s: AG,

AN,AE,λG,λN) of Equation 12 are computed for all the doorway

cases (narrow, medium and “wide”) and medicated conditions

(ON/OFF). For all the doorways, once the above parameters are

first optimized for controls, they are then directly used for simu-

lating the PD condition. The optimization is done such that the

simulation results fall within the error of the experimental results.

The cost function chosen for optimization considers two ele-

ments: (a) the magnitude of stride / step length for each doorway

FIGURE 10 | Mean Stride lengths and Standard Errors for Controls, PD

On and PD Off under different doorway conditions in (A) experiments

(Cowie et al., 2010) and (B) simulations, reported with p < 0.005,

N = 50.

condition and (b) the stride / step length gradient between each

doorway in any medication condition, the details of which are

explained in Appendix A. The distinction between conditions

of PD freezers (ON and OFF) and non-freezers among the two

experiments is explained as follows.

In Cowie et al. (2010) study

Once the set for controls (AG, AN, AE, λG, λN, γ and σ) is

optimized, the set for the PD freezers is obtained as follows.

The parameters δlim (a status of limited dopamine availabil-

ity), δmed = 0 are treated specially for PD OFF case. Since δlim

controls the clamping of δ (Equation 9), a step that repre-

sents dopamine deficiency under PD conditions, we search for

the optimal δlim(Equation 28) to describe PD OFF gait results.

Furthermore, in PD OFF condition, we set δmed = 0 denoting

absence of medication. Additionally γ (discount factor) and σ

(exploration parameter) are also trained in PD OFF condition. In

summary, the parameters that are trained in PD OFF condition

are δlim, γ, and σ. The parameter δmed is simply set to 0. All these

parameters (A’s and λ’s from the control set, δlim, γ) are carried

over to PD ON from PD OFF case, except σ and δmed(Equation

29) which are trained. The optimized parameter values are as in

Table 2.

In Almeida and Lebold (2010) study

The controls set (AG, AN, AE, λG, λN, γ, and σ) is first opti-

mized as in the Cowie et al. case. Further as the experimental
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FIGURE 11 | Value function represented across space for a narrow

door (dlength = 2) in Controls (A,C) and PD Condition (B,D). The

graphs for (A) and (B) are obtained by using only the orientation vector

facing toward the door at all points in space, while that of (C,D) are

obtained by averaging the values corresponding to all the possible

orientations, at a point in space.

results for both freezers and non-freezers are in PD ON con-

dition, δlim, δmed, γ and σ are optimized for PD freezers. For

the PD non-freezers, all the PD freezers parameters are carried

over except for γ and σ that are also optimized to match the

experimental results. The optimized parameter values are as in

Table 3.

The effect of adjusting parameters such as γ and σ in addi-

tion to δ (δlim, δmed) for simulating PD freezers (ON / OFF as in

Cowie et al., 2010) and non-freezers (as in Almeida and Lebold,

2010) compared to controls is apart from conventional modeling

of PD condition where just the dopamine analogue δ in particular

δlim and δmed is varied. The motivation behind such a strategy is

explained in Rationale Behind Optimization Strategy and Model

Behavior Section.

The parameters including AG, AN , and AE are optimized to

2.5, 1 and 1 respectively; and the sensitivity to Go (λG) and NoGo

(λN) is fixed at 1 and -1, respectively for the controls, PD freezers

/ non-freezers irrespective of the door-widths dlength simulated.

Since PD is a dopamine-deficient condition, PD OFF conditions

are simulated in the model by clamping δ (Equation 9) to a low

value “δlim” (Equation 28). To the clamped δ, a medication fac-

tor δmed is added to simulate PD ON conditions (Equation 29).

A similar modeling approach to PD conditions was adopted ear-

lier in (Magdoom et al., 2011). Conceptually, if the range of δ

values for controls is represented as [a b], then PD OFF adopts

a range of [aδlim] where both a, δlim < b and PD ON takes

up the range of [a + δmed, δlim + δmed] where δlim + δmed < b.

In the simulations we set a and b as −1 and +1, respectively.

Tables 2, 3 show the parameter values for different condition

settings.

PDOFF :
If δ > δlim

δ = δlim
(28)

PDON :

If δ > δlim

δ = δlim + δmed

else

δ = δ + δmed

(29)

SIMULATING THE VELOCITY PROFILES, STRIDE / STEP LENGTHS

The Cowie et al. (2010) study suggests that there is no significant

change in cadence (steps/s) of the subjects involved in the study.

Therefore, frequency of the hopf oscillators is fixed such that the

output rhythm produces 2 steps/s or 1 stride. Moreover in order

to prevent the agent from making undesirable backward move-

ments away from the door, stride length/ step length is equated

to a small constant value whenever the velocity (vy) generated

from GEN is negative. In our simulation, this constant value is

taken to be 0.0001. (Note that in the other case, the velocities vx

and vy from GEN are translated into the corresponding stride /

step length by using the CPGs of section The CPG Module). The

model (cortico-BG system) simulation is discrete in time (t) i.e.,

each iteration is considered as execution of a single stride and a

single update of the velocity of the agent.

During training, the agent repeatedly walks along a track to the

doorway of specific size for 100 passes, and the value function is

built up by training the value weights, W (Equation 8). In testing

conditions, the pre-trained weights of the value function are used

and the agent is run for another 100 passes to obtain a velocity

profile along the track.
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FIGURE 12 | Mean and Standard Deviation of Step length profiles for

PD freezers and non-freezers under wide, medium and narrow door

conditions in (A) experiments (Almeida and Lebold, 2010; Cowie et al.,

2010), and (B) simulations. PD freezers show significantly reduced step

lengths compared to non-freezers (p < 0.05) and controls (p < 0.005) under

all door conditions (N = 50).

Since the model does not provide velocities at every point in

space, linear interpolation is conducted to fill in the gaps of vy,

which is averaged across the 100 passes to construct the velocity

profile. Here, if va and vb represent velocities at two discrete points

Xa and Xb, then the velocities for intervals in between Xa and Xb

is given by Equation 30.

vres = va + (vb − va)
Xres − Xa

Xb − Xa
(30)

The following results are averaged over a length of the track

starting from 2 m before the door till the doorway (in Y axis),

for 50 such velocity profiles. In order to maintain regional

consistency with each door size, the positions of the agent

taken into account for averaging the velocities are (1) the

position of the door itself and, (2) half of the door width

[−2dpos,2dpos] on either side of the door along the width of the

track.

RATIONALE BEHIND OPTIMIZATION STRATEGY AND MODEL

BEHAVIOR

PD is a condition marked by decreased dopamine levels in the

BG, and hence the simulations of the same from the controls are

first directed toward understanding the role of the parameter δlim.

The dopamine analogue δlim is varied between [−1, 1], where −1

represents highly depleted conditions and +1 is the unclamped

control conditions, and the stride length is determined at each

level of δlim as the model output. The simulations are carried out

FIGURE 13 | (A) Experimental Step length variability in controls, PD

freezers and PD non-freezers (Almeida and Lebold, 2010), (B) Simulated

Step length variability in controls, PD freezers and PD non-freezers. The

significance between the conditions (Controls, PD freezers, PD

non-freezers) and the cases (doorways: wide, medium, narrow) are

reported with p < 0.05, N = 50.

in a freeze-stimulating narrow door case (following simulation

criteria used for the Cowie et al. study, see Table 2) with all other

parameters kept constant at control levels. The model shows no

significant differences in the stride lengths on varying the param-

eter δlimas seen in Figure 8A. Incidentally the Cowie et al. study

makes an interesting observation between the velocity profiles of

PD OFF and PD ON freezing subjects. The presence of the medi-

cation is not able to affect the stride trends for different doorways

seen in both ON and OFF states (i.e., although PD ON subjects

have increased strides to PD OFF, both class of subjects show sen-

sitivity to doorway size), suggesting the involvement of factors

other than dopamine in freezing events (Figure 10A).

These observations then forced us to investigate other param-

eters which could bring about such a behavior trend seen in

the freezers. The discount factor γ and the exploration param-

eter σ are good modulatory candidates to explore apart from

dopamine, owing to the fact that they are related to the neural

correlates (Doya, 2002; Tanaka et al., 2007)—serotonin and nore-

pinephrine respectively and also that their levels have been shown

to be altered in PD and in medication conditions (Chalmers et al.,

1971; Fahn et al., 1971). Varying the values of γ and σ, individ-

ually starts to produce changes in the stride lengths as seen in

Figure 8B. These simulations (also following the simulation cri-

teria used for Cowie et al. study, see Table 2) are carried out at

unclamped or control level of δlim under a narrow doorway. The

variation in stride length encourages the necessity in optimizing

γ and σ in PD conditions to match the same trends seen in the

experiments.
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Table 2 | Parameter values for different condition settings for δlim, γ,

σ, and δmed for the Cowie et al. (2010) study.

Parameters Controls Freezers

PD OFF PD ON

δlim – −0.1 −0.1

γ 0.8 0.1 0.1

σ 0.3 0.01 0.15

δmed 0 0 0.12

Table 3 | Parameter values for different condition settings for δlim, γ,

σ, and δmed for the Almeida and Lebold (2010) study.

Parameters Controls PD ON

Non-freezers Freezers

δlim – −0.1 −0.1

γ 0.85 0.8 0.75

σ 0.23 0.22 0.02

δmed 0 0.12 0.12

The velocity profile obtained from the model of Cowie

et al. (2010) for controls and the PD condition is as shown in

Figures 9A,B respectively. In controls there seems to be a reduc-

tion in velocity on approaching the doorway which is exaggerated

in PD conditions. The velocity near the doorway is normalized

by the average velocity calculated far before the doorway (5–

6 m) as seen in Figures 9A,B. Additionally simulations show a

certain door-size dependent scaling of velocity in case of PD sub-

jects. The simulated stride length profile for controls, PD ON and

PD OFF under different doorway sizes is shown in Figure 10B,

and that of the experiments (Cowie et al., 2010) in Figure 10A.

The average stride length of controls is higher than that of the

PD patients. In the model, we also found that PD ON case has

higher mean velocities than PD OFF, in agreement with exper-

imental data. Our simulation results also show that there is a

significant difference in stride lengths (p < 0.005) between the

wide/medium door and the narrow door conditions in both PD

ON and PD OFF states (Figure 10). The shape of value function

profile for both the controls and PD shows marked differences

(Figure 11). Here, the value function for controls shows a posi-

tive gradient in the vicinity of the door suggesting the presence

of a reward at the door. In case of PD patients, the value func-

tion is inverted and dips before the doorway, indicating low

reward expectancy near the doorway. Since the GEN dynamics

(Equation 12) depend on the gradient of value function (rep-

resented by δV : Equation. 10), that negative gradient of value

function may be a factor contributing to the velocity dip near

the doorway.

Almeida and Lebold (2010) in their study show differences in

gait patterns between PD ON—freezers and non-freezers. The

experiments conducted in the ON condition report that the PD

freezers group produces significantly reduced step lengths, com-

pared to non-freezers and controls. This reduction in step lengths

is further amplified in the case of reduced door sizes (dlength). PD

freezers also show changes in step length variability, a clear con-

comitant feature of freezing (Almeida et al., 2007). Our model

captures this effect, and we present our results in terms of step

length and step length coefficient of variation (CV). PD freezers

show significantly reduced step lengths compared to non-freezers

(p < 0.05) and controls (p < 0.005) under all door conditions

(Figure 12). In order to capture the increased variability observed

in PD freezers, the coefficient of variation (CV) in step length

within a trial is determined (Figure 13B) throughout the corri-

dor facing the doorway, and is averaged across trials (N = 50).

Step length CV shows similar trends as seen in the original study

(Figure 13A) where the PD freezers show significantly higher CV

in comparison to controls and PD non-freezers in all the three

door conditions. The step length CV reported in Almeida and

Lebold (2010) is hypothesized to be a factor of unstable gait and

a voluntary control over it.

A conclusion that the experiments lead to is that dopamine

reduction, modeled here by clamping δ, alone cannot lead to FOG

(Almeida and Lebold, 2010; Cowie et al., 2010). The simulations

also reinforce the same conclusion. Therefore we studied the role

of other model parameters including γ and σ in bringing about

FOG (Almeida and Lebold, 2010; Cowie et al., 2010). This sug-

gests the involvement of several factors for an event like FOG,

and a single parameter (δ, γ, or σ) might not be sufficient to

produce the observed effect of freezing. A plausible neurobiolog-

ical interpretation of this modeling conclusion is presented in the

following section.

DISCUSSION

In this study, we model gait changes and the occurrence of

FOG in PD patients walking through doorways of different sizes.

Our model reproduces the results of the studies of Cowie et al.

(2010) and Almeida and Lebold (2010). The model shows sig-

nificant decrease in the velocities (as a dip in velocity) and

stride lengths for the PD (ON/OFF) compared to the Controls

as seen in Cowie et al. (2010). The decrease in velocity observed

in the controls and PD (ON/OFF) freezers, is also signifi-

cant with changing door sizes i.e., the reduction in the door

size increases the dip in velocity near the doorway. The step

length profiles of Controls, PD freezers and PD non-freezers are

also reproduced in concordance with the Almeida and Lebold

(2010) results. We show that PD freezers produce significantly

smaller steps than the controls and PD non-freezers in all the

doorway conditions. Furthermore within the PD freezers (dif-

ferent doorway conditions), there exists a doorway effect with

the narrowest door producing the least step length. In addi-

tion we replicate the trends observed that is the increased CV

in step length found in PD freezers compared to non-freezers

and controls.

FOG is a characteristic feature highlighting the cortical-BG

loop influence on the spinal rhythms in the gait generation (Lewis

and Barker, 2009; Naismith et al., 2010). Here, gait is a motor

function that can be driven by spinal circuits and the error

correcting systems like BG, with only a limited consciousness

and voluntary control from the motor cortical areas (Takakusaki

et al., 2008). Certain external conditions, for example confined

spaces, might force a shift toward increased voluntary control
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(Maruyama and Yanagisawa, 2006) on gait. Furthermore the

manifestation of FOG as start-hesitation, destination-hesitation

and obstacle avoidance have been thought to be a result of impair-

ment in willed / voluntary action (Maruyama and Yanagisawa,

2006). Lewis and Barker hypothesized that freezing might also

result from the depletion in the available dopamine (δ), on

induction of high cognitive loads (Lewis and Barker, 2009).

There are no existing computational models explaining the

FOG in PD, to our knowledge. Our model captures this feat

by carefully considering the impact of different levels of con-

trol on gait. The model consists of two stages of control: the

cortico-BG and CPG on the locomotor apparatus. The cortico-

BG module uses RL concepts for learning the environment in

which the agent is placed (for navigating through doorway of

variable widths). The BG dynamics are modeled through GEN

that has been tested in many of our earlier studies (Sridharan

et al., 2006; Magdoom et al., 2011; Kalva et al., 2012). This

module outputs a higher level control parameter such as veloc-

ity of gait to be passed on to the next in control: the CPGs.

The CPGs are modeled through dynamic adaptive hopf oscil-

lators (Righetti and Ijspeert, 2006) representing the rhythmic

spinal cord activity aiding the locomotion. Here the velocity

obtained from the cortico-BG module is translated to the joint

angle displacement during gait. This joint angle information is

converted to the translatory motion in terms of stride / step

lengths in the locomotor apparatus. This approach of model-

ing gives two major advantages: (1) It consolidates the essential

functioning of the two stages of control in an abstract man-

ner to explain the FOG, which a detailed model of only CPG

driven biped model of gait (Taga et al., 1991; Mori et al., 2004)

cannot reproduce. (2) It also explains the non-dopamine depen-

dence on the FOG seen in the experiments modeled in this

study (Almeida and Lebold, 2010; Cowie et al., 2010). The results

point out the implications of the other parameters used in the

study (γ and σ) for explaining the context dependent freezing

phenomenon.

INFLUENCE OF δ, γ AND σ PARAMETERS AND THEIR PLAUSIBLE

CORRELATES:

As discussed in the text above, δ is the dopamine functioning

correlate depicting the temporal difference error in value func-

tion. Since dopamine deficiency is generally considered the crucial

factor, the “star of the show” (Lewitt, 2012), responsible for PD

related impairment, RL-based computational models of BG func-

tion typically propose TD error (a dopamine correlate) as the key

variable that controls normal and pathological function. It has

to be noted that the study by Cowie et al. (2010) made an inter-

esting observation that the L-Dopa medication given to resurge

the dopamine levels of PD freezers did not have a significant

effect on the sensitivities to doorways. The same is captured by

our model effectively, as seen in Figure 8A. The figure backs the

non-dopamine dependence of FOG by showing no significant

changes in stride length simulated for narrow doorway (width

2 m) under various clamped δ conditions simulated for control

levels of γ and σ. It is also known that there are significant changes

in other key neuromodulators like norepinephrine, serotonin

and acetylcholine that is observed in PD, though these findings

have not sufficiently influenced mainstream thinking about PD

pathogenesis.

Norepinephrine is involved in important brain functions

like wakefulness, vigilance and circadian rhythms (Aston-Jones

et al., 1994; Yu and Dayan, 2005; Lewitt, 2012). Similar to

loss of dopaminergic cells in SNc, there is marked loss of

norepinephrine-releasing cells in Locus Coeruleus (LC) in PD

(Cash et al., 1987; Del Tredici et al., 2002). Loss of norepinephrine

is found to produce more pronounced motor impairment than

destruction of dopamine fibers caused by MPTP (Rommelfanger

and Weinshenker, 2007). Serotonin is known to be significantly

involved in a wide spectrum of activities ranging from moods like

anxiety, depression leading to major disorders such as bipolar dis-

order, major depression, schizophrenia, to reward- punishment

sensitivity and their prediction in action selection (Lopez-Ibor,

1992; Vaswani et al., 2003; Boureau and Dayan, 2011; Rogers,

2011). There is evidence for altered serotonergic transmission and

its involvement in motor impairment in PD (Fahn et al., 1971;

Kish et al., 2008). It would be interesting to have a theory of BG

function that combines the action of dopamine, norepinephrine

and serotonin.

There was indeed an attempt to accommodate the function

of all the four neuromodulators—dopamine, serotonin, nore-

pinephrine and acetylcholine—in a unified theoretical framework

based on RL (Doya, 2002). According to this view, dopamine rep-

resents TD error, norepinephrine represents exploration denoted

by the temperature parameter, β, serotonin represents discount

parameter, γ, and acetylchoine represents the learning rate, η.

Specifically, within BG circuitry, it was suggested that GP is the

substrate for exploration (Doya, 2002). GP is also known to have

high levels of norepinephrine (Russell et al., 1992). From a purely

dynamical point of view, chaotic dynamics of STN-GPe system

qualifies to serve as a source of exploratory drive, an idea that

has been investigated extensively using computational models

(Sridharan et al., 2006; Ranganathan et al., 2012). In the present

model, the exploration parameter, σ, denotes the extent of explo-

ration, and therefore may be described as a neural correlate for

norepinephrine in BG. Similarly serotonin has been linked to the

discount factor, γ, or the time-scale of reward integration, with

larger values of γ corresponding to higher levels of serotonin

(Tanaka et al., 2007). Low levels of serotonin were associated with

impulsivity, a behavior that may be thought to be a result of short-

term reward seeking (Rogers, 2011). Based on the arguments just

described, we adjust both γ and σ that represent serotonin and

norepinephrine respectively, in addition to δlim and δmed that

are related to dopamine levels, in the present model to capture

PD-related gait changes.

Therefore, in addition to incorporating PD-related changes

in δ (δlim and δmed) corresponding to ON and OFF conditions

respectively, we also explore the effect of the discount factor (γ)

and exploration parameter (σ) on the velocity profile of the agent.

These parameters have distinct roles in the model. By lowering σ

it is possible to produce the velocity dip and stride length decrease

as in Figures 8B, 9B. As a result PD freezers (ON / OFF) are

modeled with lower σ compared to controls (See Table 2). The

lower γ maintains the doorway effect between the controls and

PD freezers and also emphasizes the fact that smaller values of
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γ fit PD velocity profiles better in the model, reflecting reduced

serotonin levels in PD patients compared to controls (Figure 8B).

Specifically, the PD ON conditions are modeled by increased σ

compared to the PD OFF case and addition of δmed in the model

(described in Section Simulating the GEN). This assumption in

modulating σ in addition to δmed in PD ON implies that the

medication factor δmed increases the norepinephrine levels in the

BG. There is evidence pointing to this claim and that the nore-

pinephrine levels do increase on uptake of dopamine medication

(Chalmers et al., 1971). L-Dopa treated rats have been found

to have higher levels of norepinephrine mainly in the striatum,

hypothalamus, brainstem and cerebellum (Romero et al., 1972).

Taking into account these factors, the model incorporates the

changes in σ which gives much better match to the experimen-

tal data than just altering δmed. This further led us to believe that

even among PD subjects, the freezers could be hypothesized to

have decreased serotonin and norepinephrine compared to non-

freezers. Under the conditions of PD non-freezers, the γ and σ

level increase in comparison to the PD freezers (Table 3). This

results urge us to propose that γ and σ values may possibly reflect

the importance of considering the other neuromodulators like

serotonin and norepinephrine respectively, on context dependent

FOG.

We conclude that the loss of dopaminergic cells alone can-

not explain the FOG mechanism observed in PD patients. We

predict that altered levels of serotonin and norepinephrine may

contribute to freezing. Future work will be aimed at development

of more detailed network model of BG and its role in gait con-

trol. The model will elucidate the contributions of dopamine,

serotonin and norepinephrine to gait in normal and PD

conditions.
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APPENDIX

The Genetic Algorithm (Goldberg, 1989) option set for optimization is given in the following table. Optimization toolbox 6.0, Matlab

R2011a, The Mathworks Inc. is used.

Table A1 | Option set for the GA tool.

Option Value

Population size 20

Crossover fraction 0.8

Elite count 4

Generation time 1000

Function tolerance 1 e-6

Bounds AG AN AE ,λG λN γ σ δlim δmed

Upper 0 0 0 0 0 0 0 −1 0

Lower 10 10 10 1 −1 1 1 1 0.5

Cost function (Expt measure—Sims measure)2

C = _0.5
∑3

i = 1(exi − simsi )
2 + 0.5{[(ex1 − ex2) + (ex2 − ex3) + (ex1 − ex3)]−

[(sims1 − sims2) + (sims2 − sims3) + (sims1 − sims3)]}

“ex” here refers to the experimental stride length values at each of the doorway (1—wide, 2—medium and 3—narrow) and

“sims” is the model’s ouput to a set of parameter values. The details of the parameters optimized at any given condition is

described in section Result.

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 190 | 16


	A computational model of altered gait patterns in parkinson's disease patients negotiating narrow doorways
	Introduction
	The Model
	The Cortico-Basal Ganglia System: Vision
	The Basal Ganglia Module
	Critic
	GO/EXPLORE/NOGO or GEN

	The CPG Module
	The Locomotor Apparatus: Stride

	Results
	Simulating the Environment
	Simulating the Gen
	In Cowie et al. (2010) study
	In Almeida and Lebold (2010) study

	Simulating the Velocity Profiles, Stride / Step Lengths
	Rationale Behind Optimization Strategy and Model Behavior

	Discussion
	Influence of δ, γ and σ parameters and their plausible correlates:

	References
	Appendix


