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The Ising model is known widely for studying equilibrium behavior. We show that the model is also
useful for studying nonequilibrium behavior in some speial situations. The method of reurrene
relations has been applied to obtain the time evolution of a non-ommuting spin operator. Also
obtained are the struture funtions and their time dependent behavior. It is shown that the
transverse omponent of the stati suseptibility an be obtained from the dynami results.

I Introdution

As is well known, the Ising model has been traditionally
studied for a variety of equilibrium properties. Can it
be used to study nonequilibrium properties also? Is the
Ising model as useful perhaps for studying nonequilib-
rium behavior?

Our model onsists of spin-1/2 operators, loalized
at D dimensional lattie sites. The internal energy is
limited to pairwise oupling of the z-omponents of the
spins whih are nns. This is a quantum mehanial
version of the standard Ising model.

Sine the z omponents of spins ommute with one
another, all the spin states of the energy are stationary.
Thus they do not evolve in time. This is well known as
a basi property of the Ising model.

If a transverse external �eld (better yet just in the
x-diretion) is turned on momentarily, it will ouple
with the x-omponents of the spins imparting an exter-
nal energy to the system. If the �eld is turned o�, it
is as if a state of the x-omponents of spins has been
\reated" arrying an extra energy.

The situation that has been reated is muh like a
dynamial piture that is desribed by linear response
theory [1℄. Sine there is no longer an external �eld,
the averaging is done with respet to the internal en-
ergy only.

What happens now to this state of the x ompo-
nents of the spins? Let us onsider the spin at just one
lattie point (say at 0) sine they are all equivalent by
translational invariane. Evidently [H;Sx0 ℄ 6= 0. Hene

the state of this spin is nonstationary and must now
evolve in time unlike the state of Sz0 .

The time evolution here means that this spin state
is attempting to restore itself to a stationary state by
giving o� the aquired energy to its neighboring spins
to whih it is oupled by the exhange interations. It
attempts to do so by pushing the neighboring spins into
a nonstationary state. Sine the neighboring spins are
already in a stationary state, they resist aepting this
energy and return it to the soure at site 0. This proess
goes on inde�nitely. What happens is a loalization of
the energy, trapped about site 0. This is unique to the
Ising model. In the XY model, for example, the energy
would beome deloalized.

The time dependent spin-spin orrelation funtion
will thus be periodi, never deaying. The trajetories
(see Se. II) will be losed. The nonequilibrium behav-
ior will not be ergodi in the sense of the usual mean-
ing of that term. The loalization may be desribed in
terms of dynami modes of di�erent frequenies, muh
like the normal modes of vibration. The omplexity of
these modes evidently will inrease with the oordina-
tion number.

How an one study the time dependent behavior in
this quantum Ising model? Clearly we must solve the
Heisenberg equation of motion. Sine the model is Her-
mitian, this an be done most simply by the reurrene
relations method [2-4℄.

Ordinarily one requires stati properties to obtain
dynami behavior. It is thus of interest to note that
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for loalized problems suh as in this Ising model some
stati properties are implied by dynami properties as
we shall demonstrate. We shall onentrate on the 1D
model. The dynamis is basially similar to that in 1D.

II Reurrene relations method

In this setion we shall briey review the reurrene re-
lations method for solving the Heisenberg equation of
motion if a system is Hermitian. This general method
was introdued in the early 1980s and there have been
a number of appliations made sine to study the time
evolution in a variety of Hermitian many-partile sys-
tems [5-16℄.

We are interested in obtaining the time depen-
dent behavior of a transverse spin-spin orrelation fun-
tion < Sx

0 (t)S
x
0 (0) >, where S�

i is the � omponent
(� = x, y, or z) of the spin-1/2 operator at the ith

lattie site, the brakets denote the anonial ensem-
ble average with respet to the Ising Hamiltonian H =
�J
P

(ij) S
z
i S

z
j , where (ij) denotes nn pairs in a lattie.

A more general time dependent orrelation funtion is
the relaxation funtion (Sx

0 (t); S
x
0 (0)), where the inner

produt means the Kubo salar produt. Note that if
t = 0, this inner produt de�nes the xx omponent of
the suseptibility. As noted in Setion I, [H;Sx

0 ℄ 6= 0.
Hene Sx

0 (t) = exp(iHt)Sx
0 (t = 0) exp(�iHt) 6= Sx

0 (t =
0), where we have set ~ = 1. The time evolution of the
operator Sx

0 an give a omplete piture of the time de-
pendent behavior. Hene we shall onentrate on this
quantity rather than the struture funtions.

Let us denote by A the dynamial variable at t = 0,
i.e., Sx

0 (t = 0) = A. Sine we are interested in t � 0
only, we an de�ne A(t) = 0 if t < 0. Aording to
the reurrene relations method A(t) at t � 0 may be
regarded as a vetor in a realized Hilbert spae of d di-
mensions provided that H is Hermitian (as is for the
Ising Hamiltonian). Thus, A(t) may be given an or-
thogonal expansions in this spae as

A(t) =

d�1X
k=0

ak(t)fk: (1)

Here ffkg is a omplete set of basis vetors whih span
the realized spae. That is,

(fk; fk0) = 0 if k0 6= k; (2)

where the inner produt means the Kubo salar prod-
ut [3℄. Also fak(t)g is a omplete set of linearly inde-
pendent funtions of time. They represent the magni-
tudes of the projetion of A(t) on to the basis vetors
at time t. The Hermitiity requirement implies that
jjA(t)jj = jjA(0)jj for all t > 0, known as the Bessel
equality. It means that the magnitude or the length of
the vetor is a onstant of motion. This is a useful prop-
erty, e.g., for the veri�ation of the result. The spae

on whih we are operating is not abstrat but realized.
Hene d may be �nite as we shall see in this problem.

Sine there is always one degree of freedom in hoos-
ing one basis vetor initially, we hoose f0 = A. This
hoie yields boundary onditions on ak(t)'s:

ak(t = 0) =

�
1 if k = 0
0 if k = 1; 2; : : :

(3)

Observe also that the orthogonality property gives

a0(t) =
(A(t); A)

(A;A)
; (4)

sometimes known as the relaxation funtion, the most
basi time dependent funtion as we shall see.

Given Eqs. (1), (2) and (3), the reurrene relations
method rests on the following fat: If the inner produt
means the Kubo salar produt, both fk and ak satisfy
ertain unique reurrene relations. They are three-
term reurrene relations exept the basal ones (k = 0)
whih have only two terms. They are given below: For
k = 0; 1; : : : ; d� 1,

fk+1 = _fk +�kfk; (5)

�k+1ak+1(t) = � _ak(t) + ak�1(t); (6)

where �k = jjfkjj=jjfk�1jj, f1 = a�1 � 0, �0 � 1.
Here jjf jj = (f; f). These ratios of suessive norms are
alled reurrants . Notie that our de�nition of a norm
is nonstandard but more onvenient for our purposes.
There will be no onfusion by this usage. Equations (5)
and (6) are referred to in the literature as the RR1 and
RR2, respetively.

Observe that given f0, the other or higher fk's an
be obtained quite systematially. The basis vetors are
thus hierarhi, suessively representing inreasing di-
mensions of the realized spae. The projetion oeÆ-
ients annot enjoy this property sine the basal one
a0(t) is not known.

The reurrene relations methods means that Eqs.
(5) and (6), or RR1 and 2, are to be solved. Their solu-
tions are then the solutions for Eq. (1). This has been
already demonstrated in numerous examples [5-15℄.

There is one partiularly important relation, whih
follows from Eq. (6),

�1 a1(t) = � _a0(t): (7)

This is one of the basal relations, whih follows from
Eq. (6) by setting k = 0. The right hand side (rhs) of
Eq. (7) denotes the relaxation funtion (see Eq. (4)).
The left-hand-side (lhs) of Eq. (7) denotes the response
funtion or utuations, e.g., < A(t)A >. The onne-
tion between these two physial quantities is entral to
dynami theory, known as the utuation dissipation
theorem [17℄.
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Let us de�ne ~ak(z) = Lak(t), where L is the Laplae
transform operator. If L is applied to Eq. (6), we ob-
tain

~a0(z) = 1=z+�1=z+�2=z+: : :+�d�1=z � 1=z+�1
~b1(z);
(8)

a ontinued fration of order d � 1. The seond term
on the rhs of Eq. (8), a ontinued fration of order
d � 2, is known as the memory funtion in the gener-
alized Langevin equation [18℄. There is a onvolution
relation between a1 and b1.

III Appliation to the Ising

model

Heneforth we shall adopt the notation Sx
i = xi, S

y
i =

yi, and Sz
i = zi, whih will simplify our presentation.

We aution that the subsripts on fk (k = 0; 1; 2; : : :)
are not to be onfused with the subsripts on, e.g., xj .
There are no relations between the two.

In this setion we will onsider the Ising model in
1D (linear hain) with periodi boundary onditions
imposed. This 1D model is found to ontain the basi
struture of the Ising dynamis. Hene we will show
expliit details of our alulation. Afterward we will
remark how the onlusion is generalized to higher D's.

III.1 Reurrene relations analysis for 1D
Ising model

In terms of our new notation, for 1D

H = �J
X
i

Sz
i S

z
i+1 = �J

X
i

zizi+1; (9)

f0 = A = Sx
0 = x0: (10)

Using the RR1 (Eq. (5)),

f1 = J(y0 z1 + z�1 y0): (11)

Hene,

jjf1jj =
J2

2
[(x0; x0) + 4(x0; z�1x0z1)℄; (12)

�1 =
jjf1jj

jjf0jj
=

J2

2
(1 + 4	); (13)

where

	 =
(x0; z�1x0z1)

(x0; x0)
: (14)

Note that the xx omponent of the suseptibility �xx �
� = N (x0; x0), where N is the total number of spins in
the system. We an also alulate Eq. (13) by Kubo's
theorem [1℄,

jjf1jj = (f1; f1) = i��1 < [f1; f0℄ >=
2J

�
< z0z1 >;

(15)

where

< z0z1 >=
1

4
tanhK; (16)

where K = �J=4 and � = 1=kBT [19℄. We shall later
exploit the equality between Eqs.(12) and (15) to ob-
tain an expliit form for 	, an important quantity for
the dynami analysis.

Given �1 by Eq. (13), we are now in the position
to obtain f2 by the RR1,

f2 = _f1 +�1f0: (17)

Using Eqs. (11) and (13) in Eq. (17), we obtain

f2 = 2J2(	x0 � z�1x0z1); (18)

jjf2jj =
J2

4
(1� 16	2); (19)

and

�2 =
J2

2
(1� 4	2): (20)

Continuing this way we next look at f3 by the RR1

f3 = _f2 +�2f1: (21)

Using Eqs. (11), (18), and (20) in Eq. (21) we �nd that

f3 = 0; (22)

hene also �3 = 0..

Thus we have arrived at an essential result that the
realized Hilbert spae for A(t) = x0(t) has but three di-
mensions, spanned by f0, f1, and f2 only. The shape of
the spae is determined by the two reurrants �1 and
�2. The trajetory of this vetor, whih is onstrained
to the surfae of this spae, is losed.

Given the two reurrants, we an now obtain a0, a1
and a2 by the RR2 (Eq. (6)) or also ~a0 by Eq. (8) and
then by inverse transform L�1. They are

a0(t) =
1

!2
(�2 +�1 os!t); (23)

a1(t) =
sin!t

!
; (24)

a2(t) =
1

!2
(1� os!t); (25)

where ! = J=~ (but ~ = 1), and �1 and �2 given up
to the funtion 	 by Eqs. (13) and (20), respetively.
Observe that Eqs. (23) to (25) satisfy the boundary
onditions (see Eq. (3)). In addition, Eqs. (23) and
(25) satisfy the basal RR2 (see Eq. (7)).

Finally we an write down the total time evolution

x0(t) = a0(t)f0 + a1(t)f1 + a2(t)f2; (26)
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where for eah term on the rhs we have found an ex-
pliit expression. The validity of Eq. (26) an be fur-
ther tested through the Bessel equality jjx0(t)jj = jjx0jj.
Noting the orthogonality, we obtain

jjx0(t)jj

jjx0jj
= (a0)

2 + (a1)
2�1 + (a2)

2�1�2 = 1; (27)

where the �nal result is obtained by substituting vari-
ous identities already obtained above.

III.2 Dynamial impliations

Using Eq. (26) we an obtain a number of dynami-
al results. For example, we an immediately determine
the dynami struture funtion < x0(t)x0 > as follows:
From Eq. (26)

S(t)

N
=< x0(t)x0 >=

1

4
a0(t)� iJ < z0z1 > a1(t)+

J2

2
(	� < z1z2 >)a2(t); (28)

where we have used < f1x0 >= �iJ < z0z1 > and
< f2x0 >= J2=2 (�� < z0z2 >). If we de�ne

~S(z) = LS(t) = ~R(z) + i ~I(z); (29)

the real and imaginary parts ~R and ~I (whih an be
read o� from Eq. (28)) are related through Kramers-
Kronig relations [1℄.

As a sattering problem, the term ~I(z) would denote
the absorptive part. Thus the dynami suseptibility
~�(z) is ontained in ~I(z) whih we shall prove below:
From the reurrene relations theory [10℄

�1 ~a1(z) =
~�(z)

�
; (30)

where � = N (x0; x0). Now

�1 =
J2

2
(1 + 4	) =

2J

�

< z0z1 >

(x0; x0)
; (31)

where the seond equality is obtained by applying the
Kubo theorem to jjf1jj (see Eq. (15)). Hene,

2J < z0z1 >= ��1(x0; x0): (32)

Observe that the lhs of the above is the stati term on-
jugate to a1(t), the seond term in the rhs of Eq. (28),
thus together orresponding to �(t) = L�1 ~�(z).

One an also obtain the dynami suseptibility us-
ing Eq. (26) in the de�nition [1℄: For t > 0,

�(t) = i < [x0(t); x0℄ >= ia1(t) < [f1; x0℄ >= �jjf1jja1(t);
(33)

where jjf1jj = (2J=�) < z0 z1 >= (J=2�) tanhK.
Hene,

~�(z = 0) =
�

J
jjf1jj: (34)

We shall see in Setion IV that ~�(z = 0) < �T , where
�T means the isothermal suseptibility.

III.3 Higher dimensions [20℄

The time evolution of x0 in higher dimensions may
be obtained in a similar manner as for 1D. The essen-
tial aspet in 1D is that the realized Hilbert spae has
d = 3. As alluded in Setion I, the Hilbert spae dimen-
sions turn out to be simply related to the oordination
number. For the Ising model in D lattie dimensions
the Hilbert spae dimensions are:

d = q + 1; (35)

where q is the oordination number [20℄. Thus, for ex-
ample, in the honeyomb lattie there is but one more
basis vetor than in the linear hain. The orrelation
funtions that enter depend on the lattie dimensions
D. Otherwise the dynami strutures are determined
solely by q alone.

If q ! 1, the model is known as the spin van der
Waals model [21℄. At this limit the dynamial piture
hanges drastially. As d ! 1, the time orrelation
funtions are no longer periodi. It has already been
found through a reurrene relations analysis that if
T > T

ak(t) =
tk

k!
e�t2 ; (36)

where  > 0 is a onstant.

IV Statis from Dynamis

To obtain dynami properties one ordinarily needs
stati properties as for example Eq. (26). Thus to
think that stati properties an be dedued from dy-
nami properties would seem quite unusual if not likely.
But if the Hilbert spae dimensionality d is �nite as in
the Ising model (see Setion III), we an in fat obtain
ertain stati properties from dynami results as we will
illustrate here.

Consider the xx omponent of the stati susepti-
bility �,

� = (
X

xi;
X

xj) = N(x0; x0): (37)

(Note that � = ��1 �T , where �T is the isothermal sus-
eptibility.) The suseptibility has this form, di�erent
from the zz omponent, sine [H; x0℄ 6= 0. The inner
produt appearing in Eq. (37) is a kind of temperature
integral, i.e.,

(x0; x0) = ��1
Z �

0

< x0(�)x0 > d�; (38)

where

x0(�) = exp(�H)x0 exp(��H): (39)
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Hene if we know the \temperature" evolution of x0,
the rhs of Eq. (38) may be evaluated. But we al-
ready know the time evolution of x0 (see Eq. (26)).
If t! �i� therein,

x0(�) = a0(�i�)f0 + a1(�i�)f1 + a2(�i�)f3; (40)

where a0, a1 and a2 an be immediately obtained from
Eqs. (23), (24) and (25). If Eq. (40) is substituted in
Eq. (38), we obtain

� (x0; x0) =
1

4
I0 + i < f1x0 > I1+ < f2x0 > I2; (41)

where I0, I1 and I2 are \temperature" integrals, eas-
ily evaluated. Using < f1x0 >= �iJ < z0z1 > and
< f2x0 >= J2=2(	� < z0z2 >) (see Setion III), we
obtain

� (x0; x0) =
1

8
[(1 +

sinhu

u
+ 8

(1� oshu)

u
< z0z1 >

� (1�
sinhu

u
) < z0z2 >℄; (42)

where u = �J . Observe that the rhs does not on-
tain 	. Using the results < z0z1 >= 1=4 tanhu=4,
< z0z2 >= (1=4 tanhu=4)2, and after some rearrange-
ments we obtain

8 (x0; x0) = seh2K +
tanhK

K
; (43)

where K = u=4. We have reovered the known result
[22℄.

The above result may be used to obtain an expres-
sion for 	. From the de�nition, Eq. (13) or (32),

1 + 4	 =
2 tanhK=K

tanhK=K + seh2K
: (44)

Hene,

	 = (x0; z�1x0z1) =
1

4

1� 2K sh2K

1 + 2K sh2K
: (45)

Finally omparing with the zero-frequeny limit of the
dynami suseptibility ~�(z = 0) (see Eq. (34)), we note
the inequality [23℄

�T > ~�(z = 0): (46)

In higher dimensions one an obtain, e.g., the sus-
eptibility. But sine the stati orrelation funtions
are not known exept in 2D, these new results may not
be as interesting as in 1D. However they an yield,
e.g., high temperature expansions muh more simply
than the standard method [20℄.

We ought to mention that the stati suseptibility
�(K) (see Eq. (43)) satis�es the bounds due to Falk
and Bruh [24℄,

tanh p=p �
�(K)

Y (K)
� 1; (47)

where

Y (K) = N < x22 >= N=4 (48)

and

p0 tanh p0jp = 2K tanhK: (49)

The lhs of Eq. (47) is known as a stronger lower bound.
Our solution, Eq. (43), suggests that the stronger lower
bound of Falk-Bruh may not be strong enough.

V Disussion

That the time evolution of x0 = Sx0 requires a �nite
number of the basis vetors is perhaps most remark-
able. It implies dynamially that if energy is imparted
to this spin by some external perturbation, it does not
beome deloalized. This energy goes bak and forth
between its neighbors, desribing in e�et a periodi
motion. From the perspetive of the Hilbert spae, it
delineates a losed trajetory. We must onlude there-
fore that the time evolution in this ase is not ergodi
in the sense of the usual meaning of this word.

If the interations ontained other terms (e.g., XX
interations), the dynamis would hange [25℄. The
energy would beome deloalized as there are numer-
ous other nonstationary spin states. The dimensions of
the realized Hilbert spae would beome in�nitely large
and the trajetory would be no longer losed, but open.
In ertain stati limits some exat solutions have been
found by the reurrene relations method [5-16℄.

We have demonstrated in some detail for 1D that
the reurrene relations method is a powerful yet sim-
ple tehnique for obtaining very profound desriptions
of dynamis for Hermitian systems. There are other
properties suh as the memory funtion, subspaes, not
explored in this paper, whih are of speial signi�ane
to dynamial proesses [26℄.
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