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The Ising model is known widely for studying equilibrium behavior. We show that the model is also
useful for studying nonequilibrium behavior in some spe
ial situations. The method of re
urren
e
relations has been applied to obtain the time evolution of a non-
ommuting spin operator. Also
obtained are the stru
ture fun
tions and their time dependent behavior. It is shown that the
transverse 
omponent of the stati
 sus
eptibility 
an be obtained from the dynami
 results.

I Introdu
tion

As is well known, the Ising model has been traditionally
studied for a variety of equilibrium properties. Can it
be used to study nonequilibrium properties also? Is the
Ising model as useful perhaps for studying nonequilib-
rium behavior?

Our model 
onsists of spin-1/2 operators, lo
alized
at D dimensional latti
e sites. The internal energy is
limited to pairwise 
oupling of the z-
omponents of the
spins whi
h are nns. This is a quantum me
hani
al
version of the standard Ising model.

Sin
e the z 
omponents of spins 
ommute with one
another, all the spin states of the energy are stationary.
Thus they do not evolve in time. This is well known as
a basi
 property of the Ising model.

If a transverse external �eld (better yet just in the
x-dire
tion) is turned on momentarily, it will 
ouple
with the x-
omponents of the spins imparting an exter-
nal energy to the system. If the �eld is turned o�, it
is as if a state of the x-
omponents of spins has been
\
reated" 
arrying an extra energy.

The situation that has been 
reated is mu
h like a
dynami
al pi
ture that is des
ribed by linear response
theory [1℄. Sin
e there is no longer an external �eld,
the averaging is done with respe
t to the internal en-
ergy only.

What happens now to this state of the x 
ompo-
nents of the spins? Let us 
onsider the spin at just one
latti
e point (say at 0) sin
e they are all equivalent by
translational invarian
e. Evidently [H;Sx0 ℄ 6= 0. Hen
e

the state of this spin is nonstationary and must now
evolve in time unlike the state of Sz0 .

The time evolution here means that this spin state
is attempting to restore itself to a stationary state by
giving o� the a
quired energy to its neighboring spins
to whi
h it is 
oupled by the ex
hange intera
tions. It
attempts to do so by pushing the neighboring spins into
a nonstationary state. Sin
e the neighboring spins are
already in a stationary state, they resist a

epting this
energy and return it to the sour
e at site 0. This pro
ess
goes on inde�nitely. What happens is a lo
alization of
the energy, trapped about site 0. This is unique to the
Ising model. In the XY model, for example, the energy
would be
ome delo
alized.

The time dependent spin-spin 
orrelation fun
tion
will thus be periodi
, never de
aying. The traje
tories
(see Se
. II) will be 
losed. The nonequilibrium behav-
ior will not be ergodi
 in the sense of the usual mean-
ing of that term. The lo
alization may be des
ribed in
terms of dynami
 modes of di�erent frequen
ies, mu
h
like the normal modes of vibration. The 
omplexity of
these modes evidently will in
rease with the 
oordina-
tion number.

How 
an one study the time dependent behavior in
this quantum Ising model? Clearly we must solve the
Heisenberg equation of motion. Sin
e the model is Her-
mitian, this 
an be done most simply by the re
urren
e
relations method [2-4℄.

Ordinarily one requires stati
 properties to obtain
dynami
 behavior. It is thus of interest to note that
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for lo
alized problems su
h as in this Ising model some
stati
 properties are implied by dynami
 properties as
we shall demonstrate. We shall 
on
entrate on the 1D
model. The dynami
s is basi
ally similar to that in 1D.

II Re
urren
e relations method

In this se
tion we shall brie
y review the re
urren
e re-
lations method for solving the Heisenberg equation of
motion if a system is Hermitian. This general method
was introdu
ed in the early 1980s and there have been
a number of appli
ations made sin
e to study the time
evolution in a variety of Hermitian many-parti
le sys-
tems [5-16℄.

We are interested in obtaining the time depen-
dent behavior of a transverse spin-spin 
orrelation fun
-
tion < Sx

0 (t)S
x
0 (0) >, where S�

i is the � 
omponent
(� = x, y, or z) of the spin-1/2 operator at the ith

latti
e site, the bra
kets denote the 
anoni
al ensem-
ble average with respe
t to the Ising Hamiltonian H =
�J
P

(ij) S
z
i S

z
j , where (ij) denotes nn pairs in a latti
e.

A more general time dependent 
orrelation fun
tion is
the relaxation fun
tion (Sx

0 (t); S
x
0 (0)), where the inner

produ
t means the Kubo s
alar produ
t. Note that if
t = 0, this inner produ
t de�nes the xx 
omponent of
the sus
eptibility. As noted in Se
tion I, [H;Sx

0 ℄ 6= 0.
Hen
e Sx

0 (t) = exp(iHt)Sx
0 (t = 0) exp(�iHt) 6= Sx

0 (t =
0), where we have set ~ = 1. The time evolution of the
operator Sx

0 
an give a 
omplete pi
ture of the time de-
pendent behavior. Hen
e we shall 
on
entrate on this
quantity rather than the stru
ture fun
tions.

Let us denote by A the dynami
al variable at t = 0,
i.e., Sx

0 (t = 0) = A. Sin
e we are interested in t � 0
only, we 
an de�ne A(t) = 0 if t < 0. A

ording to
the re
urren
e relations method A(t) at t � 0 may be
regarded as a ve
tor in a realized Hilbert spa
e of d di-
mensions provided that H is Hermitian (as is for the
Ising Hamiltonian). Thus, A(t) may be given an or-
thogonal expansions in this spa
e as

A(t) =

d�1X
k=0

ak(t)fk: (1)

Here ffkg is a 
omplete set of basis ve
tors whi
h span
the realized spa
e. That is,

(fk; fk0) = 0 if k0 6= k; (2)

where the inner produ
t means the Kubo s
alar prod-
u
t [3℄. Also fak(t)g is a 
omplete set of linearly inde-
pendent fun
tions of time. They represent the magni-
tudes of the proje
tion of A(t) on to the basis ve
tors
at time t. The Hermiti
ity requirement implies that
jjA(t)jj = jjA(0)jj for all t > 0, known as the Bessel
equality. It means that the magnitude or the length of
the ve
tor is a 
onstant of motion. This is a useful prop-
erty, e.g., for the veri�
ation of the result. The spa
e

on whi
h we are operating is not abstra
t but realized.
Hen
e d may be �nite as we shall see in this problem.

Sin
e there is always one degree of freedom in 
hoos-
ing one basis ve
tor initially, we 
hoose f0 = A. This

hoi
e yields boundary 
onditions on ak(t)'s:

ak(t = 0) =

�
1 if k = 0
0 if k = 1; 2; : : :

(3)

Observe also that the orthogonality property gives

a0(t) =
(A(t); A)

(A;A)
; (4)

sometimes known as the relaxation fun
tion, the most
basi
 time dependent fun
tion as we shall see.

Given Eqs. (1), (2) and (3), the re
urren
e relations
method rests on the following fa
t: If the inner produ
t
means the Kubo s
alar produ
t, both fk and ak satisfy

ertain unique re
urren
e relations. They are three-
term re
urren
e relations ex
ept the basal ones (k = 0)
whi
h have only two terms. They are given below: For
k = 0; 1; : : : ; d� 1,

fk+1 = _fk +�kfk; (5)

�k+1ak+1(t) = � _ak(t) + ak�1(t); (6)

where �k = jjfkjj=jjfk�1jj, f1 = a�1 � 0, �0 � 1.
Here jjf jj = (f; f). These ratios of su

essive norms are

alled re
urrants . Noti
e that our de�nition of a norm
is nonstandard but more 
onvenient for our purposes.
There will be no 
onfusion by this usage. Equations (5)
and (6) are referred to in the literature as the RR1 and
RR2, respe
tively.

Observe that given f0, the other or higher fk's 
an
be obtained quite systemati
ally. The basis ve
tors are
thus hierar
hi
, su

essively representing in
reasing di-
mensions of the realized spa
e. The proje
tion 
oeÆ-

ients 
annot enjoy this property sin
e the basal one
a0(t) is not known.

The re
urren
e relations methods means that Eqs.
(5) and (6), or RR1 and 2, are to be solved. Their solu-
tions are then the solutions for Eq. (1). This has been
already demonstrated in numerous examples [5-15℄.

There is one parti
ularly important relation, whi
h
follows from Eq. (6),

�1 a1(t) = � _a0(t): (7)

This is one of the basal relations, whi
h follows from
Eq. (6) by setting k = 0. The right hand side (rhs) of
Eq. (7) denotes the relaxation fun
tion (see Eq. (4)).
The left-hand-side (lhs) of Eq. (7) denotes the response
fun
tion or 
u
tuations, e.g., < A(t)A >. The 
onne
-
tion between these two physi
al quantities is 
entral to
dynami
 theory, known as the 
u
tuation dissipation
theorem [17℄.
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Let us de�ne ~ak(z) = Lak(t), where L is the Lapla
e
transform operator. If L is applied to Eq. (6), we ob-
tain

~a0(z) = 1=z+�1=z+�2=z+: : :+�d�1=z � 1=z+�1
~b1(z);
(8)

a 
ontinued fra
tion of order d � 1. The se
ond term
on the rhs of Eq. (8), a 
ontinued fra
tion of order
d � 2, is known as the memory fun
tion in the gener-
alized Langevin equation [18℄. There is a 
onvolution
relation between a1 and b1.

III Appli
ation to the Ising

model

Hen
eforth we shall adopt the notation Sx
i = xi, S

y
i =

yi, and Sz
i = zi, whi
h will simplify our presentation.

We 
aution that the subs
ripts on fk (k = 0; 1; 2; : : :)
are not to be 
onfused with the subs
ripts on, e.g., xj .
There are no relations between the two.

In this se
tion we will 
onsider the Ising model in
1D (linear 
hain) with periodi
 boundary 
onditions
imposed. This 1D model is found to 
ontain the basi

stru
ture of the Ising dynami
s. Hen
e we will show
expli
it details of our 
al
ulation. Afterward we will
remark how the 
on
lusion is generalized to higher D's.

III.1 Re
urren
e relations analysis for 1D
Ising model

In terms of our new notation, for 1D

H = �J
X
i

Sz
i S

z
i+1 = �J

X
i

zizi+1; (9)

f0 = A = Sx
0 = x0: (10)

Using the RR1 (Eq. (5)),

f1 = J(y0 z1 + z�1 y0): (11)

Hen
e,

jjf1jj =
J2

2
[(x0; x0) + 4(x0; z�1x0z1)℄; (12)

�1 =
jjf1jj

jjf0jj
=

J2

2
(1 + 4	); (13)

where

	 =
(x0; z�1x0z1)

(x0; x0)
: (14)

Note that the xx 
omponent of the sus
eptibility �xx �
� = N (x0; x0), where N is the total number of spins in
the system. We 
an also 
al
ulate Eq. (13) by Kubo's
theorem [1℄,

jjf1jj = (f1; f1) = i��1 < [f1; f0℄ >=
2J

�
< z0z1 >;

(15)

where

< z0z1 >=
1

4
tanhK; (16)

where K = �J=4 and � = 1=kBT [19℄. We shall later
exploit the equality between Eqs.(12) and (15) to ob-
tain an expli
it form for 	, an important quantity for
the dynami
 analysis.

Given �1 by Eq. (13), we are now in the position
to obtain f2 by the RR1,

f2 = _f1 +�1f0: (17)

Using Eqs. (11) and (13) in Eq. (17), we obtain

f2 = 2J2(	x0 � z�1x0z1); (18)

jjf2jj =
J2

4
(1� 16	2); (19)

and

�2 =
J2

2
(1� 4	2): (20)

Continuing this way we next look at f3 by the RR1

f3 = _f2 +�2f1: (21)

Using Eqs. (11), (18), and (20) in Eq. (21) we �nd that

f3 = 0; (22)

hen
e also �3 = 0..

Thus we have arrived at an essential result that the
realized Hilbert spa
e for A(t) = x0(t) has but three di-
mensions, spanned by f0, f1, and f2 only. The shape of
the spa
e is determined by the two re
urrants �1 and
�2. The traje
tory of this ve
tor, whi
h is 
onstrained
to the surfa
e of this spa
e, is 
losed.

Given the two re
urrants, we 
an now obtain a0, a1
and a2 by the RR2 (Eq. (6)) or also ~a0 by Eq. (8) and
then by inverse transform L�1. They are

a0(t) =
1

!2
(�2 +�1 
os!t); (23)

a1(t) =
sin!t

!
; (24)

a2(t) =
1

!2
(1� 
os!t); (25)

where ! = J=~ (but ~ = 1), and �1 and �2 given up
to the fun
tion 	 by Eqs. (13) and (20), respe
tively.
Observe that Eqs. (23) to (25) satisfy the boundary

onditions (see Eq. (3)). In addition, Eqs. (23) and
(25) satisfy the basal RR2 (see Eq. (7)).

Finally we 
an write down the total time evolution

x0(t) = a0(t)f0 + a1(t)f1 + a2(t)f2; (26)



728 Jo~ao Floren
io et al.

where for ea
h term on the rhs we have found an ex-
pli
it expression. The validity of Eq. (26) 
an be fur-
ther tested through the Bessel equality jjx0(t)jj = jjx0jj.
Noting the orthogonality, we obtain

jjx0(t)jj

jjx0jj
= (a0)

2 + (a1)
2�1 + (a2)

2�1�2 = 1; (27)

where the �nal result is obtained by substituting vari-
ous identities already obtained above.

III.2 Dynami
al impli
ations

Using Eq. (26) we 
an obtain a number of dynami-

al results. For example, we 
an immediately determine
the dynami
 stru
ture fun
tion < x0(t)x0 > as follows:
From Eq. (26)

S(t)

N
=< x0(t)x0 >=

1

4
a0(t)� iJ < z0z1 > a1(t)+

J2

2
(	� < z1z2 >)a2(t); (28)

where we have used < f1x0 >= �iJ < z0z1 > and
< f2x0 >= J2=2 (�� < z0z2 >). If we de�ne

~S(z) = LS(t) = ~R(z) + i ~I(z); (29)

the real and imaginary parts ~R and ~I (whi
h 
an be
read o� from Eq. (28)) are related through Kramers-
Kronig relations [1℄.

As a s
attering problem, the term ~I(z) would denote
the absorptive part. Thus the dynami
 sus
eptibility
~�(z) is 
ontained in ~I(z) whi
h we shall prove below:
From the re
urren
e relations theory [10℄

�1 ~a1(z) =
~�(z)

�
; (30)

where � = N (x0; x0). Now

�1 =
J2

2
(1 + 4	) =

2J

�

< z0z1 >

(x0; x0)
; (31)

where the se
ond equality is obtained by applying the
Kubo theorem to jjf1jj (see Eq. (15)). Hen
e,

2J < z0z1 >= ��1(x0; x0): (32)

Observe that the lhs of the above is the stati
 term 
on-
jugate to a1(t), the se
ond term in the rhs of Eq. (28),
thus together 
orresponding to �(t) = L�1 ~�(z).

One 
an also obtain the dynami
 sus
eptibility us-
ing Eq. (26) in the de�nition [1℄: For t > 0,

�(t) = i < [x0(t); x0℄ >= ia1(t) < [f1; x0℄ >= �jjf1jja1(t);
(33)

where jjf1jj = (2J=�) < z0 z1 >= (J=2�) tanhK.
Hen
e,

~�(z = 0) =
�

J
jjf1jj: (34)

We shall see in Se
tion IV that ~�(z = 0) < �T , where
�T means the isothermal sus
eptibility.

III.3 Higher dimensions [20℄

The time evolution of x0 in higher dimensions may
be obtained in a similar manner as for 1D. The essen-
tial aspe
t in 1D is that the realized Hilbert spa
e has
d = 3. As alluded in Se
tion I, the Hilbert spa
e dimen-
sions turn out to be simply related to the 
oordination
number. For the Ising model in D latti
e dimensions
the Hilbert spa
e dimensions are:

d = q + 1; (35)

where q is the 
oordination number [20℄. Thus, for ex-
ample, in the honey
omb latti
e there is but one more
basis ve
tor than in the linear 
hain. The 
orrelation
fun
tions that enter depend on the latti
e dimensions
D. Otherwise the dynami
 stru
tures are determined
solely by q alone.

If q ! 1, the model is known as the spin van der
Waals model [21℄. At this limit the dynami
al pi
ture

hanges drasti
ally. As d ! 1, the time 
orrelation
fun
tions are no longer periodi
. It has already been
found through a re
urren
e relations analysis that if
T > T


ak(t) =
tk

k!
e�
t2 ; (36)

where 
 > 0 is a 
onstant.

IV Stati
s from Dynami
s

To obtain dynami
 properties one ordinarily needs
stati
 properties as for example Eq. (26). Thus to
think that stati
 properties 
an be dedu
ed from dy-
nami
 properties would seem quite unusual if not likely.
But if the Hilbert spa
e dimensionality d is �nite as in
the Ising model (see Se
tion III), we 
an in fa
t obtain

ertain stati
 properties from dynami
 results as we will
illustrate here.

Consider the xx 
omponent of the stati
 sus
epti-
bility �,

� = (
X

xi;
X

xj) = N(x0; x0): (37)

(Note that � = ��1 �T , where �T is the isothermal sus-

eptibility.) The sus
eptibility has this form, di�erent
from the zz 
omponent, sin
e [H; x0℄ 6= 0. The inner
produ
t appearing in Eq. (37) is a kind of temperature
integral, i.e.,

(x0; x0) = ��1
Z �

0

< x0(�)x0 > d�; (38)

where

x0(�) = exp(�H)x0 exp(��H): (39)
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Hen
e if we know the \temperature" evolution of x0,
the rhs of Eq. (38) may be evaluated. But we al-
ready know the time evolution of x0 (see Eq. (26)).
If t! �i� therein,

x0(�) = a0(�i�)f0 + a1(�i�)f1 + a2(�i�)f3; (40)

where a0, a1 and a2 
an be immediately obtained from
Eqs. (23), (24) and (25). If Eq. (40) is substituted in
Eq. (38), we obtain

� (x0; x0) =
1

4
I0 + i < f1x0 > I1+ < f2x0 > I2; (41)

where I0, I1 and I2 are \temperature" integrals, eas-
ily evaluated. Using < f1x0 >= �iJ < z0z1 > and
< f2x0 >= J2=2(	� < z0z2 >) (see Se
tion III), we
obtain

� (x0; x0) =
1

8
[(1 +

sinhu

u
+ 8

(1� 
oshu)

u
< z0z1 >

� (1�
sinhu

u
) < z0z2 >℄; (42)

where u = �J . Observe that the rhs does not 
on-
tain 	. Using the results < z0z1 >= 1=4 tanhu=4,
< z0z2 >= (1=4 tanhu=4)2, and after some rearrange-
ments we obtain

8 (x0; x0) = se
h2K +
tanhK

K
; (43)

where K = u=4. We have re
overed the known result
[22℄.

The above result may be used to obtain an expres-
sion for 	. From the de�nition, Eq. (13) or (32),

1 + 4	 =
2 tanhK=K

tanhK=K + se
h2K
: (44)

Hen
e,

	 = (x0; z�1x0z1) =
1

4

1� 2K 
s
h2K

1 + 2K 
s
h2K
: (45)

Finally 
omparing with the zero-frequen
y limit of the
dynami
 sus
eptibility ~�(z = 0) (see Eq. (34)), we note
the inequality [23℄

�T > ~�(z = 0): (46)

In higher dimensions one 
an obtain, e.g., the sus-

eptibility. But sin
e the stati
 
orrelation fun
tions
are not known ex
ept in 2D, these new results may not
be as interesting as in 1D. However they 
an yield,
e.g., high temperature expansions mu
h more simply
than the standard method [20℄.

We ought to mention that the stati
 sus
eptibility
�(K) (see Eq. (43)) satis�es the bounds due to Falk
and Bru
h [24℄,

tanh p=p �
�(K)

Y (K)
� 1; (47)

where

Y (K) = N < x22 >= N=4 (48)

and

p0 tanh p0jp = 2K tanhK: (49)

The lhs of Eq. (47) is known as a stronger lower bound.
Our solution, Eq. (43), suggests that the stronger lower
bound of Falk-Bru
h may not be strong enough.

V Dis
ussion

That the time evolution of x0 = Sx0 requires a �nite
number of the basis ve
tors is perhaps most remark-
able. It implies dynami
ally that if energy is imparted
to this spin by some external perturbation, it does not
be
ome delo
alized. This energy goes ba
k and forth
between its neighbors, des
ribing in e�e
t a periodi

motion. From the perspe
tive of the Hilbert spa
e, it
delineates a 
losed traje
tory. We must 
on
lude there-
fore that the time evolution in this 
ase is not ergodi

in the sense of the usual meaning of this word.

If the intera
tions 
ontained other terms (e.g., XX
intera
tions), the dynami
s would 
hange [25℄. The
energy would be
ome delo
alized as there are numer-
ous other nonstationary spin states. The dimensions of
the realized Hilbert spa
e would be
ome in�nitely large
and the traje
tory would be no longer 
losed, but open.
In 
ertain stati
 limits some exa
t solutions have been
found by the re
urren
e relations method [5-16℄.

We have demonstrated in some detail for 1D that
the re
urren
e relations method is a powerful yet sim-
ple te
hnique for obtaining very profound des
riptions
of dynami
s for Hermitian systems. There are other
properties su
h as the memory fun
tion, subspa
es, not
explored in this paper, whi
h are of spe
ial signi�
an
e
to dynami
al pro
esses [26℄.
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