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Abstract

The number and importance of intrinsically disordered proteins (IUP), known to be involved in various human disorders, are
growing rapidly. To test for the generalized implications of intrinsic disorders in proteins involved in Neurodegenerative
diseases, disorder prediction tools have been applied to three datasets comprising of proteins involved in Huntington
Disease (HD), Parkinson’s disease (PD), Alzheimer’s disease (AD). Results show, in general, proteins in disease datasets
possess significantly enhanced intrinsic unstructuredness. Most of these disordered proteins in the disease datasets are
found to be involved in neuronal activities, signal transduction, apoptosis, intracellular traffic, cell differentiation etc. Also
these proteins are found to have more number of interactors and hence as the proportion of disorderedness (i.e., the length
of the unfolded stretch) increased, the size of the interaction network simultaneously increased. All these observations
reflect that, ‘‘Moonlighting’’ i.e. the contextual acquisition of different structural conformations (transient), eventually may
allow these disordered proteins to act as network ‘‘hubs’’ and thus they may have crucial influences in the pathogenecity of
neurodegenerative diseases.
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Introduction

Of late there has been a considerable shift in the protein

sequence-structure-function paradigm. With the ever emerging

population of Disordered, Natively Unfolded or Intrinsically

Unstructured Proteins (IUPs), it is now generally understood that

the structure-function correlation is a contextual phenomenon for

a protein molecule. For a metabolic enzyme with an ‘‘ordered’’

structure, the particular conformation required for ‘‘induced fit’’

may have a very high negative conformational free energy chosen

by evolutionary selection pressure over time and thus the issue of

‘‘context’’ may appear to be irrelevant in these cases. Although

exceptions to these classical views had been reported earlier where

a well characterized enzyme was found to have altogether different

function in a different context, and conform to a somewhat

polymorphic model [1–3].

IUPs do not form a fixed three dimensional structure under

physiological conditions either in their entireties or they may

contain Intrinsically Disordered Regions (IDRs). Their structures

resemble the denatured states of ordered proteins, best described

as an ensemble of rapidly interconverting alternative structures,

which nevertheless, are their native, functional states [4]. They

take up different structures upon binding to different targets, and

thereby exhibit functional flexibility through the formation of

fuzzy complexes [2]. The extent of structural variations, upon

functional binding of a ligand, ranges from slight conformational

adjustments seen in allosterism to a drastic conformational switch

or loss of structure [1]. Interestingly it is also known that intrinsic

disorder is more prevalent (35–51%) in eukaryotic organisms

whereas only 7–33% and 9–37% of bacteria and archaea proteins,

respectively, contain long unstructured regions as calculated by

disorder prediction tool PONDR VL-XT [5]. Paradoxically this

observation conforms to the fact that the number of components

in the genome and the proteome for an organism are uncorrelated.

Considering the enormous complexity of functions that a

eukaryotic proteome needs to handle starting with the information

from a single gene sequence, IUPs provide another level of

variation in its portfolio in addition to other known events like

alternative splicing or post-translational modifications. Under-

standably, this is the case for higher organisms having limited

genome size.

The conformational promiscuity or ‘‘pliability’’ of the IUPs

makes them capable of ‘‘multitasking’’ or ‘‘moonlighting’’ [3].

Although these proteins lack regular structures, the IUPs carry out

important biological functions including regulation of cell division,

chaperone activity, signaling and transcriptional and translational

control [6]. In an intricate protein-protein interaction network,

they, therefore, play the role of ‘‘hubs’’ or ‘‘nodes’’ and provide

‘‘robustness’’. From a systems biology point of view, alterations

(e.g., mutations) in the genes coding for the ‘‘hub’’ protein would

not be advantageous as they might lead to partial or complete

collapse of the network. This network ‘‘failure’’ might, in turn, lead

to several functional abnormalities promulgating disease patho-

genesis. Evaluating the involvement and influence of IUPs in

monogenic as well as multifactorial complex disorders of late onset

type may give us important clues about the disease mechanisms.

Recently, it has been found that disorder is very common in

complex human diseases. Iakoucheva et al. predicted, using the
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neural network predictor PONDR VL-XT, that 79% of the

cancer associated proteins contain regions of disorder of $30

residues. In contrast, only 13% of proteins from a set of proteins

with well-defined ordered structures contain such long regions of

predicted disorder [6]. In the same study 66% of cellular signaling

associated proteins were found to be enriched in disorder. In

another study using the same tool, Cheng et al. have shown that

57% of the cardiovascular disease associated proteins contain 30

or more consecutive residues, predicted to be disordered [7]. They

also used PONDR VL-XT as the disorder prediction tool. Thus

disorder was found to be significantly higher among these disease-

associated proteins than the total pool of eukaryotic proteins in

SwissProt database, 47% of which contained disordered regions by

the same definition. In another study, Cheng et al., using the same

algorithm, estimated that among human disease-associated

proteins, including autoimmune diseases, cancer, cardiovascular

diseases, diabetes, and neurodegenerative diseases, approximately

69% were expected to contain disorder regions of$30 consecutive

amino acid residues using PONDR VL-XT algorithm [8]. Among

those disease associated proteins, 21% were identified to have roles

in cell signaling pathways and were found to contain long

disordered regions, compared to rest 8% of the cell signaling

proteins that were predicted to be predominately ordered. For the

entire set of disease-associated proteins with long disordered

regions, 48% were predicted to be not participating in signaling

[8].

The group of neurodegenerative disorders currently comprise of

about 32 known types of different diseases. Interestingly, in many

of the neurodegenerative diseases, the common feature is

misfolding and aggregation of proteins, the major contributory

factor of neurotoxicity [9]. They exert toxicity by disrupting

intracellular transport, overwhelming protein degradation path-

ways, and/or disturbing vital cell functions [10]. Some of the key

proteins that cause neurodegenerative diseases like APP, SNCA or

Htt contain IDRs or they themselves are IUPs [11–17]. Recently

we have provided evidence that HYPK, an interacting partner of

Htt, whose mutation causes HD, is an IUP [11]. It would be

interesting therefore to evaluate the potential role of IUPs in

disease processes [18]. In this article, we have dealt with three of

them; e.g. Huntington’s disease (HD), Alzheimer’s disease (AD)

and Parkinson’s disease (PD). They are the commonest among

human neurodegenerative diseases, significantly affecting a large

population [19]. HD is an autosomal dominant disease caused by

a trinucleotide (CAG) repeat expansion beyond 36 in the

Huntingtin (htt) gene that produces an altered form of the Htt

protein. The elongated poly Q sequence thus produced is believed

to initiate protein misfolding resulting in nuclear aggregation in

the cells of striatum and cortex [20,21]. Alzheimer’s disease is

characterized by the presence of two lesions: the plaque, an

extracellular lesion made up largely of the b-amyloid (Ab) peptide,

and the tangle, an intracellular lesion made up largely of the

cytoskeletal protein tau. The pathological hallmark of Parkinson’s

disease is the deposition of Lewy bodies, cytoplasmic inclusions

composed largely of a-synuclein, within the dopaminergic neurons

[19]. Using bioinformatics tools here we have characterized the

IUPs involved in these diseases and analyzed their functional

significance.

Results

Unstructured Proteins are Prevalent in
Neurodegenerative Diseases
Following the protocols described in the methods section, we

developed six independent datasets. After stringent filtering of the

retrieved data from literature and interaction databases, three

disease datasets, named ‘‘HD dataset’’, ‘‘PD dataset’’, and ‘‘AD

dataset’’, were generated. Three control datasets were also

constructed. ‘‘Control dataset 1’’ comprised of 17159 hits from

SwissProt (release 55.0), ‘‘control dataset 2’’ comprised of 264

human enzymes which have known PDB structures and ‘‘control

dataset 3’’ consisted of 117 human proteins implicated in breast

cancer which were also derived from SwissProt.

Using the described selection criteria, the disorder indices of the

proteins in all six independently constructed datasets were

calculated. It was immediately apparent that unstructuredness

was significantly (at 95% level of significance) prevalent among

proteins of ‘‘AD dataset’’ and ‘‘HD dataset’’ with respect to the

‘‘control dataset 1’’. For the ‘‘PD dataset’’, however, the

prevalence was not significant (the data was found to be significant

at the 90% level) with respect to the ‘‘control dataset 1’’. The

‘‘control dataset 2’’ was constructed to ensure that ‘‘unstructured-

ness’’ may not be necessary for all the genetic diseases, for example

in metabolic disorders, where the involved proteins are predom-

inantly structured enzymes. When compared to ‘‘control dataset

2’’, unstructuredness was found to be significantly prevalent in all

the disease datasets. We constructed the ‘‘control dataset 3’’ to

check whether the involvement of IUPs was specific for

neurodegenerative diseases or it generally related to disease.

Intriguingly, unstructuredness was not significantly enriched (at

95% level of significance) in the ‘‘control dataset 3’’, which

comprised of proteins implicated in breast cancer, compared to

‘‘control dataset 1’’; whereas in comparison to ‘‘control dataset 2’’

it was significant. The summary of these results, along with the Z

scores calculated is shown in Table 1.

When we considered all the 352 proteins that have experimen-

tally validated implications in HD, PD or AD (i.e., a non-

redundant combination of ‘‘HD dataset’’, ‘‘PD dataset’’ and ‘‘AD

dataset’’ – designated as ‘‘disease dataset’’), we found ,80% of

them were unstructured compared to 73.4% and 47.7% in

‘‘control dataset 1 and 2’’ respectively (Figure 1A). Z values

calculated for the 352 proteins compared to ‘‘control dataset 1 and

2’’ were 3.27 and 6.5 respectively signifying prevalence (at 99%

level of significance) of unstructured proteins in disease datasets. It

was then prudent to ask whether the proteins designated as

‘‘disordered’’ in the disease datasets contained lengthier unstruc-

tured regions compared to the disordered proteins in ‘‘control

dataset 1 and 2’’. We plotted percentage of proteins containing

disordered regions against the number of consecutive amino acids

residues predicted to be disordered and found in comparison to

‘‘control dataset 1’’, a significant prevalence of lengthier

unstructured regions in proteins from ‘‘HD dataset’’ only but

compared to ‘‘control dataset 2’’, all the disease datasets were

enriched in lengthier unstructured proteins. (Figure 1B).

Unstructuredness is Prevalent in Hub Proteins in the HD,
PD and AD datasets
There is an intuition that with increasing disorderedness,

number of interactors of a protein would also increase [22,23].

In order to see whether the number of interactors of a protein

increased with unstructuredness, we initially counted the numbers

of ‘‘hub’’ and ‘‘end’’ proteins among the proteins which have

experimentally validated influence in disease processes and present

in HD, PD and AD datasets. Almost 49% (72 out of 147), 51% (33

out of 65) and 53% (74 out of 140) proteins of HD, PD and AD

datasets respectively were found to have more than 10 interactors

(hub proteins). Among these hub proteins 92, 85 and 88% of the

proteins in HD, PD and AD datasets, respectively, were found to

be unstructured. In contrast, 74, 65 and 76% of the end proteins in

IUPs in Neurodegeneration
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HD, PD and AD datasets respectively were unstructured. When

we considered all the hub and end proteins in these three disease

datasets together, unstructured proteins were found to be

significantly (P value = 0.0133) prevalent among the hub proteins

in the disease datasets (88.3%) compared to the end proteins

(71.6%) (Figure 1C).

However, to ensure that all possible biasness was eliminated, we

used a validation protocol where the same calculations were done

with varying cutoff values to define ‘‘hub’’ and ‘‘end’’. Interest-

ingly, with these independent analyses also a similar trend was

observed. Here, rather than defining a protein with more than 10

interactors as a ‘‘hub’’, those with more than 5 or 20 interactors in

the disease datasets were defined as ‘‘hubs’’ respectively (similarly

those with less than 5 or 20 interactors were termed ‘‘ends’’

respectively), in two consecutive cases, and the ‘‘hub proteins’’

from all these three datasets were considered together to estimate

the number of unstructured proteins among them. Almost 86% of

the ‘‘hub proteins’’ were found to be unstructured when proteins

with more than 5 interactors were defined as ‘‘hubs’’ (Figure 1D).
In contrast 65% of the ‘‘end proteins’’ were found to be

unstructured. Likewise 89.6% of the ‘‘hub proteins’’ were found

to be unstructured when proteins with more than 20 interactors

were called ‘‘hubs’’. In contrast 73.8% of the ‘‘end proteins’’ were

found to be unstructured (Figure 1E).

Functions of the IUPs in Neurodegenerative Diseases
(HD, PD and AD)
We carried out functional annotations of the proteins in the

disease datasets using the ‘‘Biological Process’’ annotation tool

available in ‘‘PANTHER’’ database. Primarily we looked for the

processes which were significantly enriched in disease proteins

compared to total human proteome dataset. Subsequently we

investigated whether those processes were enriched with unstruc-

tured proteins or not. Interestingly, processes like neuronal

activities, signal transduction, cell cycle, intracellular traffic,

apoptosis, protein targeting and metabolism etc., appeared to be

the major processes involved in disease pathogenesis. Proteins

participating in these processes were significantly enriched in

disease datasets as well as they were populated with unstructured

proteins.

The proteins in ‘‘HD dataset’’ were found to have significantly

enriched participation in ‘‘biological processes’’ like neuronal

activities, cell proliferation and differentiation, cell structure and

motility, apoptosis and its regulation, carbohydrate metabolism,

protein metabolism, cell cycle, intracellular protein traffic, electron

transport and protein targeting and localization etc. (Figure 2).
When the contribution of unstructuredness among these proteins

was investigated, interestingly, it was found that except for

carbohydrate metabolism and electron transport, proteins in-

volved in all other important processes in the HD were

significantly enriched in unstructured proteins (Figure 3A).

Likewise proteins in ‘‘PD dataset’’ were found to have

significantly enriched participation in neuronal activities, signal

transduction, cell proliferation and differentiation, immunity and

defense, apoptosis and its regulation, protein metabolism, cell cycle

(Figure 2) and the proteins involved in these processes were

largely unstructured (Figure 3B).

Analysis of the proteins in ‘‘AD dataset’’ revealed significantly

enriched participation in neuronal activities, signal transduction,

developmental processes, cell proliferation and differentiation,

coenzyme and prosthetic group metabolism, immunity and

defense, apoptosis and its regulation, oncogenesis, transport,

protein metabolism and modification, cell cycle and intracellular

protein traffic etc (Figure 2). Barring processes like coenzyme

and prosthetic group metabolism and immunity and defense,

proteins involved in all other important processes in the AD were

significantly unstructured (Figure 3C).

Discussion

Computational estimates suggest that eukaryotic proteomes

have a significantly higher occurrence of disordered proteins

relative to prokaryotic proteomes [4]. The prevalence of

intrinsically unstructured proteins in eukaryotes is likely to be

due to more complex signaling and regulatory pathways that

heavily rely on disordered proteins [24]. While much has been

studied about the general mechanisms of protein-protein interac-

tions, the specific structural features that account for differences in

protein interactivity has recently been ascribed to ‘‘fuzzy’’ complex

formation and are largely unknown [2]. In case of disordered

proteins this interaction network is much more complex and vast

compared to that of the ordered/globular proteins [24]. These

proteins do not have a fixed structure and hence they are flexible

with a tendency to interact with many other proteins.

It has been established by other groups that partially or fully

disorderd proteins are prevalent in complex disorders like

neurodegenerative diseases [25], cancer, cardiovascular disease

or diabetes [8] and led to the ‘‘disorder in disorder (D2)’’ concept

[26]. Here we have investigated the content of unstructuredness in

HD, PD and AD datasets, the commonest of neurodegenerative

diseases, which shows significantly high prevalence of unstructured

proteins in most of these diseases and the extent of unstructured-

ness is comparable to the previous reports. Proteins in Hunting-

ton’s disease (HD dataset) were found to be most unstructured.

HD being a monogenic disorder, this is somewhat expected as all

the pathologically important proteins should interact with the

Table 1. Prevalence of Unstructured proteins in HD, PD and AD.

Type Size of dataset Percentage unstructuredness Z values* [C1] Z values* [C2]

HD 147 81.6 1.80 6.8

PD 65 75.4 NS# 3.3

AD 140 80.7 1.94 5.3

Control dataset 1 [C1] 17159 73.4 – –

Control dataset 2 [C2] 264 47.7 6.39 –

Control dataset 3 [C3] 117 76.9 NS# 4.6

*Z tests were done at 95% level of significance [52].
#NS: Not Significant.
doi:10.1371/journal.pone.0005566.t001
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single hub. In case of AD or PD, where several genes are

implicated, multiple hubs should be there and we considered only

one such hub. It has earlier been reported that a correlation exists

between unstructuredness and the complexity of an organism

[4,27]. It is speculated that for a particular protein, the more it is

unstructured, the more is its possibility to interact with diverse

partners, and hence the interaction network of the protein

becomes large and complex [28]. Analysis of unstructuredness

among HD, PD and AD dataset reveals that the hub proteins in

these datasets (those interacting with 10, 5 or 20 partners) are

more unstructured than the end proteins (Figures 1C, 1D and

1E). It has been previously reported that hubs should have more

unstructured residues [22]. Our findings from a different perspective

conform to that. It also subscribes to the evolutionary model of

network organization by hub proteins [23], possibly through ‘‘fuzzy’’

complex formation [2]. It can be suggested that in a disease protein

network, loss of interactions around the hub over time could

ankylose the network leading to its failure. However, this could just

be an indirect consequence of the prevalence of unstructured

proteins in the network and hence it would be premature to guess the

impacts of ‘‘hubs’’ on such networks.

Interestingly, the types of ‘‘biological processes’’, where the

components of the individual datasets are found to participate

significantly, are very much characteristic of the functional/

Figure 1. Intrinsically unstructured proteins are prevalent in neurodegenerative disease dataset. A: Considering all the 352 members of
the disease datasets, about 80% of the proteins were found to be unstructured compared to 73.4% and 47.7% in ‘‘control datasets 1 and 2’’
respectively. Level of significance was calculated by Z-test and the Z-values indicate that unstructuredness is highly prevalent in the disease dataset
compared to ‘‘control datasets 1 and 2’’ (denoted by * and #). B: The percentage of proteins in HD, PD and AD datasets with $40 to $100
consecutive residues unstructured compared to ‘‘control datasets 1 and 2’’. Levels of significance was calculated by Z-test throughout indicating
significant prevalence of proteins having $40 to $100 consecutive residues unstructured in the HD datasets compared to ‘‘control dataset 1’’ and
denoted by $ in each cases. In PD and AD dataset no such significant prevalence was observed. However, compared to ‘‘control dataset 2’’ proteins
having $40 to $100 consecutive residues unstructured are significantly enriched in HD, PD and AD datasets and denoted by #. C, D & E:
Unstructuredness is significantly prevalent in the ‘‘hub’’ proteins involved in neurodegenerative diseases. All the proteins in HD, PD
and AD datasets were analyzed for the presence of ‘‘hub’’ and ‘‘end’’ proteins and the percentage of IUPs among the ‘‘hub’’ and ‘‘end’’ proteins in the
disease datasets were calculated and plotted. Irrespective of the definition of ‘‘hub’’ (protein with$10 interactors (C), protein with$5 interactors (D)
or protein with$20 interactors (E), IUPs were significantly prevalent among ‘‘hub’’ proteins. Levels of significance were calculated by Student’s t-test
and P values were 0.014 (C), 0.011 (D) and 0.012 (E) respectively, indicated by * in each panel.
doi:10.1371/journal.pone.0005566.g001

IUPs in Neurodegeneration
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phenotypic imbalances recorded for the concerned diseases. We

found that components participating in these biological processes

are also enriched with unstructuredness. Consequently, it could be

summarized that not only these neurodegenerative disease datasets

are enriched in unstructured proteins but also most of these

unstructured proteins play pivotal role in the disease pathogenesis

by participating in vital biological processes.

Conventional wisdom suggests that genes known to cause

disease should predominantly encode ‘‘hubs’’ [29–31]. Expanding

their analysis to include human orthologs of mouse genes involved

in pre- or post-natal lethality, Goh K.–I. et al. [32], however,

observed an ‘‘unexpected peripherality’’ of the disease causing

genes in the sense that essential genes were found to be clustered

into ‘‘hubs’’ and were not involved in diseases. In a later study

Feldman I. et al. [33] pointed out that the correlation between the

parameters ‘‘essentiality’’ and ‘‘connectivity’’ should not be

deterministic. Using a bigger size of data (Goh K. -I. et al. used

a limited number of data from OMIM) Feldman I et al. did notice

functional clustering of disease genes despite the limited knowledge

of the human interactome. In our study, excepting the single

disease causing genes for each disorder, we did not categorize

other components in terms of their ability to cause disease. Rather

we focused on constructing the network in terms of protein

structural disorder and the ‘‘essentiality’’ parameter has not been

considered. How exactly the clustering, that we observed, would

be correlated to ‘‘essentiality’’ is not a simple question to address

and would demand a separate analysis. But in the IUP scenario,

where the proteins are multitasking and the functions are context

based, it would be interesting to apply Goh et al.’s approach and to

see how the boundary between the ‘‘disease’’ and ‘‘essential’’ genes

are drawn.

Interestingly, even if the disorder in the overall ‘‘disease dataset’’

was significantly high (Figure 1A) in comparison to ‘‘control

dataset 1’’, the ‘‘PD dataset’’ failed to show this behavior. This is

probably due to insufficient experimental data available for PD or

the interactome of a-synuclein could be highly underrepresented

in the databases. In recent times a lot of efforts are being given in

understanding the biology of PD [34 and references therein] and it

is realized that the disease may be an outcome of the dynamic

interplay between a-synuclein and its close homologue b-

synuclein, both unstructured proteins. The discrepancy that we

noticed in the PD dataset may also be a result of a different

interaction pattern in this disease. Similar trend was observed in

breast cancer proteins when ‘‘control dataset 3’’ was compared to

‘‘control dataset 1’’ although it is reported that unstructuredness is

prevalent in cancer [6]. It is to be noted further that we considered

the human proteome alone as control for our analysis, whereas a

selection of the whole eukaryotic proteome would have less

disorder, as it was the case (,35–51%) in the analysis by Dunker

A.K. et al. [4] using PONDR tools, since the disorder contribution

from lower eukaryotes was much less there. To justify, we used a

‘‘biased’’ ‘‘control dataset 2’’ (comprising of metabolic enzymes

which have known PDB structure) throughout where the

distribution was different, as expected. What we observed in the

Figure 2. Functional annotations of the proteins in disease datasets. All the protein IDs for HD, PD and AD datasets were submitted
separately in batch to annotate the biological process by the ‘‘PANTHER biological process’’ annotation tool and the results were tabulated and
analyzed. Biological processes that were significantly enriched with proteins in HD, PD and AD protein datasets compared to total human proteome
dataset are indicated in figure by # (for HD), * (for PD) and $ (for AD). Level of significance in each case was calculated by Chi-square test. Chi-square
test was performed and p values were calculated with the aid of ‘‘GraphPad QuickCalcs’’ (http://www.graphpad.com/quickcalcs/chisquared1.cfm).
doi:10.1371/journal.pone.0005566.g002

IUPs in Neurodegeneration
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Figure 3. Prevalence of unstructuredness in biological processes enriched with proteins from HD, PD and AD datasets. A: Except for
carbohydrate metabolism and electron transport, proteins involved in all other important biological processes, as indicated, are significantly enriched
in unstructured proteins in HD. Levels of significance were calculated by Z-test indicating confidence level of 95% in each case. B: Proteins involved in
all the important processes in PD as shown in figure are significantly enriched in unstructured proteins. Levels of significance were calculated by Z-
test indicating confidence level of 95% in each case. C: Except processes like coenzyme and prosthetic group metabolism and immunity and defense,
proteins involved in all other important processes in AD, as mentioned, are significantly enriched in unstructured proteins.
doi:10.1371/journal.pone.0005566.g003

IUPs in Neurodegeneration
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diseased datasets, therefore, was a significant enrichment in

disorder. In other words, it not only confirms the robustness of

the tool we used but also our data suggests that in higher

organisms disorder is more prevalent leading to increasing

interaction complexity.

Additionally, longer stretches of unstructured regions are more

prevalent in proteins of ‘‘HD dataset’’. It is not clear whether it has

anything to do with HD pathogenesis. However, increasing length

of polyQ stretch in Htt is directly correlated with the age at onset

of the disease [35] and intrinsic unstructuredness in the polyQ

region [15]. It is also reported that in lower organisms the polyQ

length is smaller [36]. A tripartite model correlating the length of

protein unstructuredness, its influence on disease outcome and the

network complexity, is still elusive.

In conclusion, the fact that ‘‘unstructured’’ proteins are

prevalent in ‘‘complex’’ disorders and not necessarily in any kind

of genetic disorder, and the observation that they cluster around

network ‘‘hubs’’, may have far reaching consequences in the

pursuit of a ‘‘specific’’ solution to these diseases.

Methods

Construction of datasets
For analysis, databases were constructed using the following

criteria: (A) Proteins involved in HD, PD and AD were retrieved

directly from the NCBI’s (Http://ww.ncbi.nlm.nih.gov) Entrez

Gene database using keywords ‘‘Huntington disease Homo

sapiens’’, ‘‘Parkinson disease Homo sapiens’’ and ‘‘Alzheimer

disease Homo sapiens’’, respectively, for the three diseases. (B)

Extensive literature survey was done for reports of proteins

interacting with the hubs of the diseases (Huntingtin (Htt) in HD,

Amyloid precursor protein (APP) in AD and a-synuclein in PD),

primarily determined through high to moderate throughput

protein-protein interaction (PPI) or expression studies (e.g., co-

immunoprecipitation [37] or microarray analysis [38]) (C) Both

the datasets, (A) and (B), were now combined. In case of AD or PD

the number of novel hits from step (B) were less, whereas about

115 interactors were incorporated from literature in case of HD

(see Table S1 and S2 for references). These enriched datasets were

now checked for non-redundancy, any repetition was eliminated,

and they were further filtered to remove genetic association results.

We realized that the datasets obtained through keyword ‘‘text’’

search carry a finite probability of false positives as well as

inadvertent ‘‘misses’’. In addition, those retrieved through ‘‘high-

throughput’’ (genomics or proteomics) studies reportedly contain

large number of false positives [39]. Thus, understandably to some

extent, the datasets would be ‘‘noisy’’ and biased towards network

‘‘hubs’’ chosen. To avoid this problem, we adopted a stringent

filtering criteria where each protein of these datasets were checked

to ascertain that their interaction was either physically validated by

some other experiment or they had a direct functional implication

in the disease pathogenesis as reported in the literature. Some of

these studies reported physical interactions of Htt, APP or a-

synuclein with mouse proteins. In the dataset we incorporated the

human homologues of these proteins, if available. The refined

subsets of proteins now had a direct relevance to the diseases and

were designated as ‘‘HD dataset’’ (Table S1 and S2), ‘‘PD dataset’’

(Table S3 and S4) and ‘‘AD dataset’’ (Table S5 and S6)

respectively. Individual protein sequences were extracted from

SWISSPROT database (release 55.0) (http://www.SwissProt.org)

using protein IDs.

Along with these datasets, three control datasets were

constructed. This first one, ‘‘control dataset 1’’ consisted of

17159 human proteins obtained using SwissProt sequence retrieval

system (SRS) by searching the query ‘‘[swiss_prot-Organism:

homo sapiens*] ! [swiss_prot-Keywords: disease*]’’. This control

dataset was constructed to check the trend for all human proteins

from the SwissProt database that are not annotated to be involved

in any disease.

A second control (‘‘control dataset 2’’) (Table S7) was

constructed which was biased in favor of the conventional wisdom

of the ‘‘structure-function’’ paradigm. Initially the dataset

consisted of all the enzymes (presumed to have more ordered

structure) taken from databases like ‘‘Brenda’’ (Http://www.

brenda.uni-koeln.de/) and KEGG, (Http://www.genome.jp/

kegg/), involved in various metabolic and biosynthesis pathways

like Glycolysis/Gluconeogenesis, TCA cycle, PPP pathway, Starch

metabolism, Urea cycle, Fatty acid synthesis, Fatty acid metab-

olism, Purine metabolism, Pyrimidine metabolism, Bile acid

synthesis. Galactose metabolism, Sterol biosynthesis, Nucleotide

sugar metabolism, Lysine biosynthesis, Gly-Ser, Thr metabolism,

Fructose mannose metabolism, amino sugar metabolism, sphin-

golipid metabolism, degradation and synthesis of ketone bodies,

glutamate metabolism, tyrosine metabolism, histidine metabolism,

inositol metabolism, Glycerophospholipid metabolism, Cysteine

metabolism, Valine, Leucine, Isoleucine biosynthesis, Phenylala-

nine metabolism, Alanine metabolism, Valine leucine isoleucine

degradation, Arginine proline metabolism, Beta alanine metabo-

lism, Riboflavin metabolism, Lipopolysaccharide biosynthesis,

Folate Biosynthesis, Porphyrin metabolism and N-glycan biosyn-

thesis. This raw dataset (consisting of 380 enzymes) was filtered to

contain only those enzymes which have known structures

submitted to PDB (http://www.rcsb.org). This ‘‘control dataset

2’’ (see Table S7), consisting of 264 metabolic enzymes with

known structures, was non-homologous to our disease datasets as

these were not the types of proteins usually involved in

neurodegenerative processes. We included this control in our

analysis to compensate for false positives/negatives.

The third control dataset, ‘‘control dataset 3’’, consisted of 117

human proteins obtained using SwissProt sequence retrieval

system (SRS) by searching the query ‘‘[libs = {swiss_prot

trembl}-Organism: homo sapiens*] & [libs-Description: breast*

& cancer*] ’’ (see Table S8). This control dataset was constructed

to check the trend for the proteins involved in a non-

neurodegenerative disease to validate if the involvement of IUP

was specific for neurodegeneration or more generally related to

diseases.

Disorder Prediction
Several disorder prediction tools are available to find out

disorder regions in proteins [40–48]. Several studies [44–49]

compared the efficacies of these tools and the general conclusion

was that performances of FoldIndex and PONDR VL-XT were

comparable. FoldIndex uses charge-hydropathy classification

originally proposed by Uversky and gives a single index (R) for

the entire protein, with a reported accuracy rate of 77% [44]. On

the other hand, PONDR-VLXT gives a per residue output based

on a neural network prediction with a reported accuracy rate of

72% [44]. We did a random statistical analysis of a few easily

available tools [40–48] and found out that FoldIndex is definitely

one of the better ones (see Text S1). Even though an updated

version of PONDR is now available, due to the ease of use in

batch through a customized Perl script, we used FoldIndex to

classify proteins in terms of unstructuredness. Considering the fact

that a large number of false positives/negatives would occur in our

constructed datasets, due to conspicuous incompleteness of

experimental information, we realized that as predictions were

done on the basis of sequence features, use of a single binary
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classifier might compromise the sensitivity of our prediction. We

noted that in the dynamic models of ‘‘fuzzy’’ complexes [2], just a

stretch of intrinsic disordered region (IDR) could be sufficient for a

protein to behave as an IUP. Hence, occurrence of a stretch of 30

continuous residues in a protein, whether or not FoldIndex

classified the protein as an IUP as a whole, was also considered as

a metric for IUP in our model. Therefore, we considered a protein

to be ‘‘unstructured’’ if (A) it was indexed by FoldIndex (R,0) as

an IUP and/or (B) it contained a stretch of 30 consecutive

unstructured residues. The unstructured datasets were constructed

based on these criteria as described in Table 1.

Interaction and function
The basis of our analysis was the disease datasets, comprising of

unique interactors of disease-gene products, which were manually

verified as described before. We searched the interaction database

BIOGRID v. 2.0.36 [50] to find out the possible number of

interactors, reported till date, of the proteins that are present in the

disease datasets. HD being a monogenic disease, huntingtin (htt)

gene was considered to be the ‘‘hub’’ in the network. For AD and

PD, mutations in multiple genes (APP, PS1, PS2) are implicated,

while specific allele of APOE4 consistently increase the risk of

familial AD (,5% of total AD incidence). In PD, disease causing

mutations at a-synuclein, b-synuclein, PARK2, PARK5 and

PARK7 have been identified. However, the genetic reasons

behind a large number of familial PD cases are still unknown.

Therefore, for these two diseases, the network architecture would

have multiple ‘‘hubs’’ with overlaps. To avoid confusions, the two

main unambiguously known causative genes i.e., APP and a-

synuclein for AD and PD respectively, were considered to

construct the respective datasets. Considering that many novel

Htt interacting proteins present in the HD dataset obtained from

the literature were hardly studied and hence very little or no

information was available about their interactions and functions in

BIOGRID. Similar were the findings for several AD and PD

dataset proteins. On the other hand, for several functionally

significant proteins extensive information was already available.

There is a definite possibility of biasness during the measurement

of the correlation between disorderedness and the number of

interactors of the proteins. However, following Haynes et al., we

chose ten partners as a cutoff value for a protein designated to be a

‘‘hub protein’’ [24]. But deviating from Haynes et al., we

designated all the proteins with less than 10 interactors as ‘‘end

proteins’’. To eliminate any possible biasness in the definition of

‘‘hub’’ and ‘‘end’’ proteins, we varied the cutoff values for ‘‘hub’’

proteins in two consecutive validation analyses and rather than

defining a protein with more than 10 interactors as a ‘‘hub’’, those

with more than 5 or 20 interactors in the disease datasets were

defined as ‘‘hubs’’ respectively. In each case ‘‘end proteins’’ were

defined as those having less than 5 or 20 interactors respectively.

We calculated the percentage of IUPs among the ‘‘hub’’

proteins in the three disease datasets separately, grouped them,

calculated the mean and the standard deviation, and defined the

value as percentage of IUPs in neurodegenerative disease datasets.

To test significant abundance of IUPs among hub proteins

Student’s t-test was performed and p values were calculated with

the aid of ‘‘GraphPad QuickCalcs’’ (Http://www.graphpad. com/

quickcalcs/ttest1.cfm?Format = SD). The percentage unstructu-

redness in End proteins was calculated in a similar way.

Functional Classification of Unstructured Proteins in
Neurodegenerative Diseases
To decipher the range of functions where the IUPs

participate, functional annotations were done using PANTHER

server (Http://www.pantherdb.org/). PANTHER is a compre-

hensive database designed to relate protein sequences to

functions [51]. Functions were searched for all the proteins in

the disease (HD, PD and AD) datasets. All the protein IDs for

the three disease-datasets were submitted separately in batch to

annotate the biological process in the ‘‘PANTHER’’ annotation

tool and the results were tabulated and analyzed. To find

significant contribution of any ‘‘biological processes’’ in the

disease datasets, the annotations were compared with that for

the total human proteome and chi-square tests were performed

to calculate the p values. Also to find out significant

contribution of unstructuredness in any biological processes,

we needed to compare the entire ‘‘unstructured’’ protein

population with respect to the ‘‘structured’’ population under

each process category and Z-tests were carried out according to

Spiegel et al [52].

Supporting Information

Text S1 Statistical Analysis Prior to Disorder Prediction

Found at: doi:10.1371/journal.pone.0005566.s001 (0.01 MB

PDF)

Table S1 Huntington’s disease Protein Dataset. Proteins that

contain %30 amino acids residues unstructured at a stretch are

tabulated here

Found at: doi:10.1371/journal.pone.0005566.s002 (0.01 MB

PDF)

Table S2 Huntington’s disease Protein Dataset. Proteins that

contain &30 amino acids residues unstructured at a stretch are

tabulated here

Found at: doi:10.1371/journal.pone.0005566.s003 (0.02 MB

PDF)

Table S3 Parkinson’s disease Protein Dataset. Proteins that

contain %30 amino acids residues unstructured at a stretch are

tabulated here

Found at: doi:10.1371/journal.pone.0005566.s004 (0.01 MB

PDF)

Table S4 Parkinson’s disease Protein Dataset. Proteins that

contain &30 amino acids residues unstructured at a stretch are

tabulated here

Found at: doi:10.1371/journal.pone.0005566.s005 (0.01 MB

PDF)

Table S5 Alzheimer’s disease Protein Dataset. Proteins that

contain %30 amino acids residues unstructured at a stretch are

tabulated here

Found at: doi:10.1371/journal.pone.0005566.s006 (0.01 MB

PDF)

Table S6 Alzheimer’s disease Protein Dataset. Proteins that

contain &30 amino acids residues unstructured at a stretch are

tabulated here

Found at: doi:10.1371/journal.pone.0005566.s007 (0.02 MB

PDF)

Table S7 Control dataset 2 consisting of metabolic enzymes

with known structures

Found at: doi:10.1371/journal.pone.0005566.s008 (0.01 MB

PDF)

Table S8 Control dataset 3 consisting of proteins involved in

Breast Cancer

Found at: doi:10.1371/journal.pone.0005566.s009 (0.08 MB

PDF)
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42. Dosztányi Z, Csizmók V, Tompa P, Simon I (2005) The Pairwise Energy
Content Estimated from Amino Acid Composition Discriminates between
Folded and Intrinsically Unstructured Proteins. J Mol Biol 347: 827–839.
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