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Abstract

A linear stability analysis of a gravity-driven miscible two-fluid flow with matched density and different viscosities, containing a

thin mixed layer between the two fluids, down a slippery inclined plane is considered. Results reveal the stabilizing effects on the

surface (S ), the overlap (O1 and O2) and the TS (not shown) modes that exist for a configuration with more viscous fluid adjacent

to the free surface under overlap conditions. There is a possibility of destabilizing the overlap mode (O1) when the mixed layer

is very close to the slippery wall, indicating the dual role played by the wall slip. The stabilizing characteristics of slip can be

favourably used to suppress the nonlinear breakdown that may happen due to the coexistence of the unstable modes in a flow over

a substrate with no slip.
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1. Introduction

Motivated by its relevance in several applications1, Ghosh et al.2 have addressed a linear stability of pressure driven

miscible two-fluid flow with same density and varying viscosity in a channel with velocity slip at the walls. Their

results suggest an effective strategy to control the flow system, in a channel with slippery walls. This conclusion is a

consequence of the dual role displayed by velocity slip at the wall in either promoting or suppressing the instabilities

that occur for the flow in a rigid channel3. This sparks the natural curiosity to examine the stability characteristics

of miscible two-fluid free-surface flow (MTF) with varying viscosity and matched density down an inclined substrate

with velocity slip. In addition, a single layer flow down an inclined slippery substrate is destabilized as compared

to that over a substrate with no slip at the onset of instability by lowering the critical Reynolds number; however,

beyond the instability threshold, slip has a stabilizing effect4. As the MTF over a rigid substrate5 exhibits stability

characteristics different from immiscible fluids (sudden jump in viscosity) and infinite miscible fluids (finite viscosity

gradient throughout the film), in the sense that, apart from the usual surface mode, the TS mode and a new type of
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overlap mode (the O-mode, similar to that observed by Craik6 in Couett flow) exist due to the overlap of the mixed

layer with the critical layer, it is of interest to see the role of slip on MTF and this is analyzed in the present study.
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Fig. 1. Schematic of the flow system considered over a slippery inclined plane

2. Formulation and Discussion

We consider a gravity-driven two-dimensional free-surface flow of two miscible, incompressible, Newtonian fluids

of matched density (ρ) and different viscosities down an inclined slippery substrate. The angle of inclination to the

horizontal is θ. Fig. 1 presents the geometric structure of the flow system and the location of fluid-i, i = 1, 2 with

respect to the Cartesian coordinate system whose x-axis (y = 0) is at the unperturbed free surface. y = f (x, t) is the

equation of the free surface at time t and μi (i = 1, 2) is the viscosity of fluid-i. A local viscosity stratification is created

by a thin layer (mixed layer) of thickness q between the two fluids and it occupies the region h ≤ y ≤ h + q (h is the

thickness of fluid layer-2). The Peclet number is assumed to be high and this allows us to neglect the downstream

growth of the mixed layer thickness.

2.1. Governing equations

The flow dynamics is governed by the continuity, the Navier-Stokes and a scalar-transport (for viscosity) equations.

The boundary conditions are the Navier-slip condition7 at the inclined plane; normal, shear stress balance and the

kinematic conditions at the free surface. The set of dimensional equations and boundary conditions are given below.

ux + vy = 0, (1)

ρ
[

ut + uux + vuy

]

=
∂

∂x

[

−p + 2μux

]

+
∂

∂y

[

μ(uy + vx)
]

+ ρg sin(θ), (2)

ρ
[

vt + uvx + vvy

]

=
∂

∂x

[

μ(uy + vx)
]

+
∂

∂y

[

−p + 2μuy

]

+ ρg cos(θ), (3)

μt + uμx + vμy = χ
[

μxx + μyy

]

. (4)

On the free surface y = f (x, t),

p =
2μ

(1 + fx
2)

[

vy − vx fx + ux fx
2 − uy fx

]

+
σ fxx

(1 + fx
2)3/2
, (5)
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μ(1 − fx
2)(uy + vx) − 4μux fx = 0, (6)

v = ft + u fx (7)

and on the slippery substrate y = H,

u = lsuy, v = 0. (8)

Here u, v are velocity components along the x and y directions respectively; p, σ and g correspond to the pressure,

the surface tension coefficient and the gravity; ls is the slip length. The base state solution can be derived from the

above equations after non-dimensionlization by using H as the length scale, μ1 as the viscosity scale and U as the

velocity scale which is the average velocity over the film. The temporal stability characteristics of the base flow are

examined using a linear stability analysis by giving an infinitesimal perturbation to the flow variables. Applying the

two-dimensional disturbances in normal mode form as,

(u, v, p, s) = (UB(y), 0, PB(x), μB(y)) + (û, v̂, p̂, μ̂)(y)eiα(x−ct), (9)

one can derive the following modified Orr-Sommerfeld5,8 system (after suppressing hat ( ˆ ):

iαRe
[

φ′′(UB − c) − α2φ(UB − c) − UB
′′φ
]

= μBφ
′′′′
+ 2μB

′φ′′′ + (μB
′′ − 2α2μB)φ′′−

2α2μB
′φ′ + (α2μB

′′
+ α4μB)φ + UB

′μ′′ + 2UB
′′μ′ + (UB

′′′
+ α2UB

′)μ,
(10)

iα Pe
[

(UB − c)μ − μB
′φ
]

= (μ′′ − α2μ), (11)

φ′ = − βφ′′, φ = μ = 0 at y = 1, (12)

φ′′ + α2φ + UB
′′η = 0 at y = 0, (13)

αRe(UB − c)φ′ + iμB(φ′′′ − 3α2φ′) + iμB
′(φ′′ + α2φ) + 2iUB

′′μ − α(Gcotθ + σα2)η = 0 at y = 0, (14)

φ + (UB − c)η = 0 at y = 0, (15)

where prime (′) denotes differentiation with respect to y; i ≡
√
−1; φ, μ and η are respectively the amplitudes of

the disturbances of the stream function, viscosity and free surface. β =
ls

H
is the dimensionless slip parameter and

Pe = UH
χ

(χ is the mass diffusivity), Re =
ρUH

μ1
(U is the velocity scale) and S c = Pe/Re are the Peclet, the Reynolds

and the Schmidt number respectively. UB, μB are the base state velocity and viscosity profiles with

μB(y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪



m if 0 ≤ y ≤ h,

μm(y) if h ≤ y ≤ h + q,

1 if h + q ≤ y ≤ 1,

(16)

where m = μ2/μ1 and μm(y) is given by a tangent hyperbolic profile. The flow is linearly unstable if Im(c) > 0, where

c is the wave speed and α (real and positive) is the wave number. In the absence of slip, the above system reduces to

those by Usha et al.5 and when Pe is set to infinity, to those by Craik and Smith9.

2.2. Results

The numerical solutions of the system (10)−(15) are computed using Chebyshev spectral collocation method10

with suitable grid stretching3. The open source software LAPACK is used for obtaining eigenvalues. The code

recovers exactly the results of Samanta et al.4 for a film over a slippery substrate ( m = 1; Fig. 2(a), curves with

symbols) after taking into account the velocity scale used by them. Slip destabilizes the surface mode (S ) at the onset

of instability and beyond this, at higher Reynolds numbers (Re), it stabilizes the flow by decreasing the bandwidth of

unstable wave numbers (Fig. 2(b)). The computations for the present study show the existence of surface mode when

a more viscous fluid is adjacent to the free surface (m = 1.5). In contrast to the single layer case, the surface mode

is stabilized at the onset as well as beyond, by the presence of velocity slip. Also, the miscible two-fluid flow system

(m = 1.5, S c = Pe/Re = 20) over a slippery substrate is more stable than the single layer flow (m = 1.0, S c = 0)
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Fig. 2. (a) Neutral stability curves (Surface mode) for h = 0.4, q = 0.2, m = 1.5, S c = Pe/Re = 20 and θ = 10; (b) zoom of Fig. 2(a); (c) base

velocity (UB) and viscosity profile (μB; curve with star symbols) . The curves with plus symbols correspond to single fluid flow (m = 1) over a

slippery substrate. The solid curve (β = 0) corresponds to the results for MTF over a rigid substrate 5 .
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Fig. 3. Effect of velocity slip (β) on the neutral stability boundaries for h = 0.4, q = 0.2, m = 1.5, S c = 20 and θ = 10: (a) O1 mode; (b) O2 mode.

down a slippery substrate. The corresponding base velocity (μB) and base viscosity (UB) profiles are given in Fig.

2(c). There is no change in base viscosity (curve with star symbols) with slip parameter β but base velocity is affected

by β. Fig. 2(c) clearly indicate that the base velocity near the wall increases with β, as a result wall shear is less for

the case of slippery wall (β � 0) than that for rigid wall (β = 0).

For the same configuration (m = 1.5, h = 0.4, q = 0.2), when the phase speed is smaller than the free surface

velocity, the simultaneous existence of two other modes (O1 and O2) are also observed due to the overlap of the

critical layer with the mixed layer (Fig. 3). Fig. 3(a) shows the effects of slip on the O1 mode. O1 mode is also

stabilized by the slip at the onset; however, the unstable region becomes larger with an increase in β. The unstable

region extends to higher Re and the range of unstable wave number increases in this region, with slip. The same trend

is exhibited by the O2 mode also, with respect to slip (Fig. 3(b)). The difference is that, O2 mode exists for smaller
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wave numbers and the unstable region has no upper bound for Re. For this configuration, the surface mode is the

dominant mode and it is stabilized by slip.

Fig. 4 presents the variation of growth rate (ωi) as a function of wave number (α) for different Re values. The other

parameters are the same as in Fig. 2. It is to be noted that the range of α values considered in this figure corresponds

to the growth rate of O1 mode. In Fig. 4(a) (for Re = 200) growth rate (ωi) decreases with an increase in β; as a

result for this Re, wall slip (β) has a damping effect on the flow system. On the other hand, Fig. 4(b) indicates the

destabilizing effects of wall slip for Re = 1300 as ωi becomes positive and takes higher values with an increase in β.
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Fig. 4. Growth rate (ωi = αc) curves for different β (slip) for h = 0.4, q = 0.2, m = 1.5, S c = 20 and θ = 10: (a) Re = 200 and (b) Re = 1300.
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Fig. 5. Effect of β on the neutral stability boundaries for q = 0.2, m = 1.5 and θ = 10: (a) O and Surface (S ) modes, h = 0.4, S c = 100; (b) O1

mode, h = 0.75, S c = 20.

If however, when S c is increased to S c = 100, the coalescence of the O1 and the O2 modes occur and it is observed

to be the most dangerous mode (Fig. 5(a)). Still, slip stabilizes this overlap mode as well as the surface mode. Fig.

5(b) presents the O1 mode when the mixed layer is located very close to the slippery substrate (h = 0.75). It is

interesting to observe the destabilizing role of β for this configuration (Fig. 5(b), h = 0.75, S c = 20).

3. Conclusions

Velocity slip on the substrate has a dual role on the stability of miscible two fluid flow (MTF) down an inclined

slippery substrate and the beheviour is influenced by the location of mixed layer (h) and the diffusivity of two fluids

(S c). The study is exploring whether the stabilization that we obtain under some situations can be enhanced to the

point of becoming useful as a passive control option for MTF, by designing the substrate as a hydrophobic11 or a

rough12 or a porous substrate with small permeability13. The mechanism for the dual role of slip in this study can be

examined via the energy budget analysis.
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