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Abstract

In this paper, an h/p spectral element method with least-square formulation for parabolic interface problem
will be presented. The regularity result of the parabolic interface problem is proven for non-homogeneous in-
terface data. The differentiability estimates and the main stability estimate theorem, using non-conforming
spectral element functions, are proven. Error estimates are derived for A and p versions of the proposed
method. Specific numerical examples are given to validate the theory.

Keywords: Least-squares method, nonconforming, spectral element method, Linear parabolic interface
problems, Sobolev spaces of different orders in space and time

1. Introduction
In this paper, we consider a linear parabolic interface problem of the form
Lu=u —V-(AVu) = Fin (O UQ) x I, (1.1)
u= fonQx {0} (initial condition)
u=gonTl x I, (exterior boundary condition)
which satisfies the interface conditions
[ul =qo and [n-AVu]=q onTy x I,
where n = (n1,n2)T is a unit outward normal vector to the interface I'y and I = (0,7). Here Q and
Q1 (21 C Q) are open bounded domains in R? with C? boundaries 9Q = I' and 9§2; = Ty, respectively (see

Fig. 1). Further, Qs = Q\ ;. The symbol [v] denotes the jump of a quantity v across the interface Ty,
e, [v](z,t) = vi(z,t) — va(z,t), (x,t) € Ty x I. Let

A:

1 .
{.A inQy x I, (12)

.A2 in QQ x I.
Then the jump term n - AVu is defined as follows:

[n- AVu] =n- (A'Vu; — A*Vuy) on Ty x I,
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where each 2 x 2 matrix A* (k = 1,2) is symmetric and positive definite, uniformly on Q; x I. The
components af,j (z,t) of AF are smooth for each k. Here n - A*Vuy, denotes the conormal derivative on Iy,
ie.

2
ou
n- A"V, = Z af’ja—;nj, k=1,2.
i,j=1 v

In engineering and science, many problems can be formulated in terms of parabolic partial differential

r

Figure 1: Domain 2 with boundary I'" and its subdomains Q1, Qo with interface I'g

equations with discontinuous coefficients. Heat diffusion, electrostatics, multiphase and porous media
flow problems are some examples from physics. A special case of parabolic equations with discontinuous
coefficients consists of interface problems (1.1) which arise, for example, in heat conduction.

Several methods have been proposed and analyzed both theoretically and computationally for interface
problems in [24, 25, 26, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40] (and references cited therein) and have been
shown to be very effective.

If the given data, the boundary T and the interface T'g of parabolic interface problem (1.1) are smooth
then the solution of the problem is also very smooth in the individual regions, while the global regularity
of solution becomes low because of non-homogeneous jump terms (see [16, 32, 31]). Many standard finite
difference methods are not applicable to interface problems because of lack of this global regularity. The
use of an immersed-interface method in the framework of finite difference methods has some disadvantages,
which are discussed in [25]. Immersed-interface finite element methods for elliptic interface problems have
been presented in [24, 25]. In an immersed-interface method, the jump conditions are enforced through
the construction of special finite element basis functions which satisfy homogeneous interface conditions.
Immersed-interface finite element methods can achieve optimal convergent rates with linear finite elements.
Recently, Albright et al. [29] proposed a high-order accurate difference potential method for parabolic
problems. In that paper, they presented two approaches which are second order and fourth order accurate.

Conforming finite element methods are the most used methods to solve interface problems. This requires
the triangulation of different subregions to be geometrically conforming at the interface. Conforming
methods, however impose serious restrictions on the computational domain when the physical solutions of
the interface problems are of different scales in different subregions. Methods that allow relaxation of such
conditions are the nonconforming methods like mortar finite element methods and discontinuous Galerkin
finite element methods. Schotzau et al. [21] presented time discretization of parabolic problems by the
hp-version of the discontinuous Galerkin finite element method. Dutt et al. [8] proposed h — version and
p — version least-squares spectral element methods for parabolic partial differential equations (PDE) with
smooth coefficients on bounded domains. Recently, we proposed the least-squares spectral element method
for parabolic initial value problems with non-smooth data in [11, 12]. The method proposed in this paper
is a nonconforming least-squares spectral element method (see [8, 11, 12, 13, 14, 15]). Sobolev spaces of
different orders in space and time to formulate the results are given in [17].

Bochev and Gunzburger [2] have summarized the least-squares finite element method (LSFEM) for
parabolic problems. The obvious advantage of this class of methods is that the discrete problems are
positive definite and symmetric. Least-square spectral element methods (LSSEM) have been presented by
Proot et al. [20] for the Stokes problem, and Pontaza et al. [19] for the Navier-Stokes equations, combining
the least-square formulation with spectral element approximation. Maerschalck et al. [30] presented the

use of Chebyshev polynomials in a space-time least-squares spectral element method. The advantage of
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Over the past three decades, spectral methods have been extensively used for solving partial differential
equations because of high order of accuracy (see [3, 4, 5, 6, 7, 10] and the references therein). Kumar et al.
[26] proposed a least-square spectral element method for two-dimensional elliptic interface problem with a
smooth interface, following the approach proposed in [27]. Recently, we proposed a least-squares spectral
element method for three-dimensional elliptic interface problem with a smooth interface in [15]. In this
method, the domain is divided into a finite number of subdomains such that the sub-divisions match along
the interface. The interface is resolved exactly using blending elements [28].

In this paper, an h/p least-squares spectral element method is presented to solve the two dimensional
parabolic interface problem with smooth interface. One dimensional parabolic interface problem is partic-
ular case of the proposed theory. In numerical section, we present the results based on one dimensional and
two dimensional parabolic interface problem. Our method is based on minimizing the sum of the squares
of a weighted squared norm of the residuals in the partial differential equation and the sum of the residuals
in the boundary conditions in fractional Sobolev norms and the sum of the jumps in the value and its
derivatives across the interface in appropriate fractional Sobolev norms. Our method is nonconforming
because the discrete space is not subset of continuous space H 2’1(91 UQs x I) (see more details in section 2
and section 3). Thus, the continuity along the inter-element boundary is enforced by adding a term, which
measures the sum of the squares of the jump in the function and its derivatives in fractional Sobolev norms.

The content of the paper is organized as follows: Section 2 is devoted to defining the parabolic interface
problem and to proving regularity results. In Section 3, the discretization of the domain and stability
result are presented. In Section 4, error estimates are given for A and p versions of the proposed method.
Numerical techineque and computational results are given in Section 5.

2. Preliminaries
Let r and s be two non-negative real numbers. As in [17], define
H™*(Qx 1) =H°(I;H"(Q) N H*(I; H°(Q)), (2.1)
which is a Hilbert space with norm
T 1/2
2 2
1O eyt + 101 oy |
0
where H"(Q) denotes the standard Sobolev space of order r. Here H°(Q2) = L?(2) and H*9(Q x I) =
L2(Q x I).
Let u; = u|g, xr and ug = u|q,x7. Next, we define following spaces

H"™(QUQ) = {u e L*(Q)|ulq, € H"(S) for i = 1,2},
HT’S(Ql U Qg X I) = {u S LZ(Q X I) |U|Qi><] S HT’S<Q,L‘ X I) fori = 1,2}

Let
HUH%,Qlqu = |\U1||?p(szl) + ||U2||ip~(92)’ (2.2)
||U\|%r,s),szlusz2x1 = H“ﬂﬁ{w(szlx]) + ||u2‘|iﬂ‘~3(92xl)' (2.3)
We also use the following notations in throughout paper:
HO)le =12 and  [[()llexs = [[()ll2@x1)-
We now define some Gevrey Spaces [18] which are needed for our error analysis.

2:(Q) = {® € C*(Q)|FA1, By >0 :sup| Dy®(z)| < A1(B1)"4!, |a| =i,i=0,1,---} .
zeQ

D1 (Qx I) = {w € 0@ x I)|34,,B, >0 :

Sup. _| Dngw(.’E,tﬂ < Al(Bl)H_j Z'(]')Q ) |Oé‘ :Z7VZ7.7 20717} °



2.1. Regularity estimate

In general, the solution of problem (1.1) does not belong to H*(£2 x I) due to the presence of a
discontinuity /reduced regularity in .A. Moreover, the solution does not belong to H°(2 x I) unless the
jump term at the interface [u] is equal to zero. We can get better local regularity using local smoothness
of the coefficients. An a-priori result for the problem (1.1) is given in Theorem 2.1 with appropriate
assumptions on F,g,qo,q1 and f. First, we prove the following Lemma 2.1 which we use to obtain our
main regularity result.

Lemma 2.1. Consider the problem

Lv=v,—V-(AV0)=F in Q UQ, x I, (2.4)
v=wg on Q1 UQs x{0} (initial condition)

v=0 on I xI, (exterior boundary condition)
along with the interface conditions
[v] =0 and [n-AVv]=0 on TgxI. (2.5)

Let F e H®(Q,UQy x I) and vg € H(Q UQy x {0}). If the interface Ty and the boundary T' are C? and
the given data satisfy required compatibility condition (see [17]), then the solution v € H*1 (2 U Qg x I)
and

1011721y, 00000 x 1 SC(HFH%O,O),Qluﬂgxl + [[vol inuﬂgx{O})' (2.6)

Here C is a generic constant.

Proof. Our proof is a generalization of the approach of [32, 33]. For a.e. t € I, v = v(z,t) solves

~V-(AVo) =F —v; in QUQ x I, (2.7)

v=0 on I xI, (exterior boundary condition)
along with the interface conditions
[v]=0 and [n-AVw] =0 on IgxI. (2.8)
Applying the regularity result for the elliptic interface problems of [31], it follows:

1]13.0,00, < CIIF = vell§.0,u0,- (2.9)

Multiplying v; both side in equation (2.4) and integrating w. r. to = over €1 U Qs, we obtain

|[ve] .2, b2 —/ V- (AVv)vdx = / Fu,dz. (2.10)
' QU0 QU0

Here v € HYO(( UQg) x I) and [v] = 0 on Ty, it follows
[ty =0 onTy. (2.11)
Using integration by parts and the equation (2.11), we obtain

2
/ V- (AVv)udx = Z (i,jVe; ), Ved
Q1UQ

QU0 i,j=1
2

=[S (@ (w0
Q1UQs i,j=1

2 2
1 1
= _fat/ g (@i,jVg; ) Ve, dx + 7/ g (@i,5)tVg; Vg, de. (2.12)
2 Q1UQs .4 2 Q1UQs i.j=1



Inserting the equation (2.12) into the equation (2.10), implies

2

1
oo, + 500 [ (angva oo = |

2
~ 1
Fudx + 5/ Z (@i,5)tVe; Uz dx. (2.13)
Q,UQ5 i,j=1 QU0 Q

A

Integrating the equation (2.13) w. r. to ¢ over I, it follows:
1 2

J 1l st + 5 (010, e,

/(QIUQQ)X{T} =1
2

~ 1
:/ Fodxdt + = / Z (@i,5) Vs Ve, dxdt
(U)X T 2 (UR)xT 57

2

..
+ = (@4,jVz,; ) Vg, da. (2.14)
2 (QIUQQ) Z ’

x{0} Q=1

Using Cauchy-Schwarz inequality and applying a standard kickback argument, it holds:
ooy aumapes + IR oy C( [ 1Py, + 101 o, eior)

e / 19112 (0, 0 (2.15)

Applying an application of Gronwall’s lemma, implies the desired result. O

We are now in a position to state the main regularity result.

Theorem 2.1. Let F € H*O(Q, UQy x I),g € H23(U'x I),qo € H2%(Ty x I), ¢y € H25(Tg x I) and
f € HY Q1 UQq x {0}). If the interface Ty and the boundary T are C? and the given data satisfy required
compatibility condition (see [17, 35]), then the solution v € H*1(Q; UQy x I) and

[l 1y 0001 <C (1F W 0pc0mr + 1915 5y pocr + 10125 ) s

24
HlaulZs, 3y ror + 171 0y000x10y) - (2.16)
Here C is a generic constant.
Proof. First, we define iy € H?1 (2 x I), which satisfies
Gy =gonl'xI, and n-A?Viy =1y =0o0onTy x I. (2.17)

If ge H%3(I'x 1) and Gy(x,0) € H (2 x {0}), and satisfy the compatibility condition, then from Theorem
2.1 of [17], the following estimates hold:

gllez, 2y, 051 < Clltzll(2,1),0. %15

|[@2]l1,0,x {0} < CllU2][(2,1),0,x1- (2.18)
Further, using Theorem 2.4 of [35], the following estimate holds:

|W2||%2,1),92x1 SCHQH?g,g),pX[- (2.19)
Similarly, we define 4; € H?'(Q x I), which satisfies
W =qonlyxI, and n-A'Va, =¢ onTy x I. (2.20)

If g € H2'3(Dg x I),q1 € H23([y x I) and @y (x,0) € HY(Q; x {0}), and satisfy the compatibility
condition, then from Theorem 2.3 of [17], the following estimate holds:

laollez,2),roxs < Cllurll2,1),0.x1,

llarllcz,1y.roxr < Clluallz,1),00x1, (2.21)

Haills o orov < Clliaallio 1y o or.



Similarly, using Theorem 2.4 of [35], the following estimate holds:

laalo,p s SC (la1ll?s 1) rr + 1900123 5, p0 1) - (222)

Now we define @ as in ((£2; U 2) x I) which satisfies the following conditions

1. ﬂ|Ql = 1 and ’L_L|92 = U
2. u=¢g on I xI.
3. At interface, u is defined as

[) =4y — Uy =qo and [n-AVa] =n-(A'Vi; — A*Viy) = ¢ onTg x 1.
Using the definition of the norm (2.3), we obtain

1@l1%0,1) (uue0yxr = N81l1T21y.00xr + 182l 12,1y 00 x1- (2.23)

From equations (2.19) and (2.22), we establish the following estimate

181121y (@uommrcr SC(l9113 5 s + 10l 3) s + 18115 1) s )- (2.24)

2’4 2’4

Finally, we define v = u — u, where u solve the problem (1.1). Then v satisfies the following interface
problem

Ly=F—Lu in QUQe xI, (2.25)
v=wo(z,0) on Q3 UQy x {0} (initial condition)
v=0 on I'xI, (exterior boundary condition)

along with the interface conditions
[)] =0 and [n-AVu]=0 on TyxI. (2.26)

From Lemma 2.1, v € H*1((Q U2) x I) and satisfies the following estimate:

2 2 2
[0l(2,1),00000 x1 §C(HF = La[{o,0),0,u0.x1 T ||UH1,§21UQQ><{O})' (2.27)
Moreover, we get
2 2 2
ul[C2,1), 00000y <1 S —Ull(21),0,00.x1 + 8l(2,1),0,00,x1- (2.28)

From equation (2.27), it follows:

HUH(zl (00 x1 <C (HF £U|| 0,0) uaaxr T I0IE Qluﬂzx{o}) + |Jal[? (2,1),2,UQ2 X1
< (HFH OO) 91U92X1+ ||u||(2 1) Q1UQQXI+||U||1 QlLJQgX{O}> (2'29)
Combining equations (2.24) and (2.29), the final result follows. O

Theorem 2.2. Let F € H?>""(Q, UQy x I)),g € H2t2"347(D x I),qo € H2t21i47(Dg x I),q1 €
Hz 1203470 x I) and f € H2 27 4H1(Q, UQy x {0}). If the interface Ty and boundary T is C2"+2 and the
given data satisfy the required compatibility condition (see [17]), then the solution u € H* 27 +1(QUQy x I)
and

2 2 2
Hu||(2r+l,r+l),ﬂluQQ><I S CT(HFH(QT,T),QlUQQXI + ||gH(%+2r,%+r),F><I

2 2 2
+ ||q0|‘(%+2r7%+r),ro><] + ||Q1||(%+2r7%+7~),1‘0><1 + Hf||2r+1,Qluﬂg><{0}>'

Proof. The idea of proof is the same as in Theorem 2.1. O
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Figure 2: (a) Discretization, (b) Mesh imposing on Q;,7 =1, 2..

3. Discretization and Stability Estimate

First, the domains ; and )y are partitioned into quadrilaterals Q},Q%,--- Q' and Q1,Q3, -, Q52
such that the subdomain divisions match on the interface. We define a smooth function M} = (X{yi, Xéz)
that maps the unit square S to 2,7 = 1,2 as in [1, 22] and is given by

ol =X{,(nm.n2) and b, = X5, (n1,m2). (3.1)
We now divide S into a mesh of squares of side h. Consequently, the image Q!, which is divided into
a quasi-uniform mesh of curvilinear rectangles of side proportional to h, is the grid of squares S under
the mapping M} as shown in Fig 2(b). Moreover, the domains ; and €, are divided into curvilinear
rectangles Q7 5, Q3 ., -+, Q7 and Q5 ,, Q3 .- -+, Q3?, of width proportional to h such that the subdomain
divisions match on the interface as shown in Fig 2(a). Thus, Qé,h is the image of ((j1 — )h < m <
j1h) x ((j2 — 1)h < m1 < joh) under the mapping M!. We choose the time step k proportional to h2.
We introduce new coordinates s = t/k, y; = x;/h and define u(y1,y2,s) = u(hyi, hys, ks). In this new
coordinate system the differential equation becomes

ZLu=kF, (3.2a)
where
2
L=~ Y (0ij(y, s)iy, )y, - (3.2b)
i,j=1

Clearly the coefficients satisfy the following condition:
|DEDYay ;| = O(hIHEY). (3.3)

Let €; and ﬁi ,, be the images of §2; and Qi,h in the y-coordinates. Further, let 7, be the image of the size
Ym common to O i and Ql . Now we define a map N} where N} : S — ﬁih for every [ in ¢ = 1,2. The
form of N} is as follows:

1
N (€1, 62) = 3 M (b = Dh + by, (Is = Db + ha).
Let J! be the Jacobian of the map N!. Then there exist two uniform constants V; and Vs, which depend
on the decomposition of Q; (i = 1,2) into Qﬁ n, and satisfy the following

Vi < |JH&L &) < Va. (3.4)

foralll=1,2,---,0;y withi=1andl=1,2,---,00 with i = 2.
Furthermore, the step nk <t < (n+ 1)k is mapped to n < s < (n + 1) by the transformation s = t/k.

3.1. Stability Estimate

Define the spectral element functions ', (&1, s, ), k& = 1,2., which are polynomials of degree p in each
of the space variables & and & and of degree ¢ in the time variable s, i.e.

P P q
L as) =) > aime, g (s — )™



for (€1,&) € S and n < s < n+ 1. Here 6°™". denote the coefficients. Then

i1,12,13

Wy (Y1, Y2, 8) = W (VL) " (Y1, ), ).
Choosing n = Kh? and 9. = @l e, where K is a positive constant, then (£ )e™" = (£ +n)v'. Using
the chain rule, we can write

ow! 0w
0 = (@) (€0 + (el and 0% = (i), €0l + () (€0

Define € = (&1,&2). Assume that (gl)y1 (&), (é)yl (€), (fAl)y2 (&) and (Zg)y2 (€) are the orthogonal projections
of (&1)y,(£), (€2)y, (£), (&1)y, (&) and (€2)y,(€), respectively, into the space of polynomials of degree p with
respect to the inner product in H2(S). Let

At \“ ~ ~ At \“ ~ ~
(ay) = ()es @) + ()es(&)yr and (@) = () () + (e (@)

Let 4,, be a side common to th and QK ,, which is the image of £&; = 1 under the map N;* and the image
of ¢, = 0 under the map N.. Now, we define the jump term at the inter element boundary 7,,:

H[@]H%r,s),:meI HU (1 627 ) ,Dlli(07g27S)H%’I",S),(O,l)XITL (35)

and the derivative of the jump term at the inter element boundary 7,

G ) 0= (5) 000)

for j = 1,2, where I,, = (n,n + 1). We then define

2

(r,s),(0,1)x I,

[ \zitPdndpds = [ 120 Pdesdeads = || 200k B, (3.6)
QL}L X1, SxI,

where £} = Z\/_#} and £ is the differential operator £ in &;, & and s coordinates. Here #! denotes the
Jacobian of the map N! from S to QL ,. Define a new differential operator (£})?, so that its coefficients
are polynomials of degree p in each of the space variables &; and & and of degree ¢ in the time variable s
defined as the orthogonal projections of the coefficients of the corresponding differential operator -Z! into
the space of polynomials with respect to the usual inner product in H*1(S x I,,). Moreover

/~ Lo Pdyydysds = / (L)t Pdedesds = ||(L0)00 2y (3.7)
thxln Sx1I,

up to a negligible error term [8, 23].
Let ]-'15?7)@2 be the spectral element representation of the function v i.e.

N M-
U(h)vz = {8} (&1, &, 8) <i<or, {05(61, &, $)i<i<on fo_g ,Whefe Mk =T.

By SI(,T;) (Fé?}vz), we denote the space of spectral element functions.

Define F'(¢,5) = (/é)%ﬁ'é (NL(&1,€2)h, sk) and assume F (£, s) to be the orthogonal projection of FL (€, s)
into the space of polynomials of degree 2p in each of the space variables £; and &; and of degree 2¢ in the time
variable s with respect to the usual inner product in L?(S x I,,). Similarly, we define f.(¢) = fL(NL(&1,&2)h)
and let fé({) be the orthogonal projection of f!(£) into the space of polynomials of degree p in &; and &
with respect to the usual inner product in H'(S). For the boundary and interface terms, let 7,, belong
to either T' or Iy and assume that 7,, is the image of & = 1 under the mapping N! : S — Qéh
Define gl(£27 5) = g(erq(L 52)}7’, Sk)a q(l)(g% 5) = Qé)(N/li(la f?)hv Sk) and qll (523 5) = q1 (Nli(17 52)}7/, Sk) Let
§'(&2,8),dh(&2,8) and G (&2, 5) denote the orthogonal projection of g'(&2,s), gb (€2, s) and ¢} (&2, 5) into the
space of polynomials of degree p in & and ¢ in s.

To initialize the scheme, we define

(e s=0")= fl(g).



To obtain the solution for 0 < s < n, where n is an integer, we define our approximate solution for
n < s<n+1 to be the unique ]-'1(0?)@2 which minimizes the functional

FONFG,) =Rrnitia (FSosr )+ 35 (Fp e (Fis F) + By (FELL,)

+ %Boundary (‘/’.'1(}17)1]2 ) g) + %Interface (-/.'.1(;?7)1;23 Q)) (38)
over all S,(,z) (]:1(,:"7)@2), where
2 ok ~
B =323 ([ pok — e )P e
k=11=1 J5x{n*}
2 A
Y / (8L — WL (€ n7))e, ()i (8L, — DL (6, ) dE),
i,j:l Sx{nt}
02
ZpPDE 715?)1,27 ZH L0 — Fll%xr, +Z||(gzl)a@l2_le||?9x1’
1=1
R yump(F, v1 v2 Z Z ( )1(0,3/4) 0 x I, +Z|| y; ) ]||(1/2,1/4),:me1”),
#=1 5 COx =1

%Boundary(]:;gﬁ)yyg) = Z (H,D - §m||(0,3/4),’~ym><1n + ||(T))g - (gm)ﬂ|(1/271/4)7:ym><1n)7

;)'/’nl QF

o0
%lnterface(fq(;?,)vz’q) = Z <|[ ] _q0‘|(2,4) Fm X In + H [(az)a:| ~

m Clo

(%,i)ﬂmxl)

Here, (0), and % denote the tangential and normal derivatives on 7,, same as defined in [8, 11, 12]. As

defined in (3.8), we choose our approximate solution to be the unique ]-'1(,)?)711,2 which minimizes the functional
%(”)(}],1 1,2) over all S,S’i} (.7-',,171}2) Now, we define the functional

W(n)( w1 w2) :%lnitial (]:T(lﬁ),wz’o) + 13 (‘%PDE( 751?)1027 ) + <%Jump( 'LSZ)wQ)
+ '%Boundary (‘/—:1517:),11)2 ) O) + glnterface(ffb(u?wz s O)) . (39)

From equations (3.8) and (3.9), it is clear that %/ (") (fv(?)vz) is the functional %™ (]-'1(,?)1,2) with zero data.
We are now in a position to state the main stability theorem.

Theorem 3.1 (Stability theorem). The estimate

2 Ok
91> (D (RN s, + 100L Br, + Y NPk, + 10kl -

k=1 [=1 1<|a|<2
2
Y [ el dade) < (et p O FE,,)
ij=1 Sx(n+1)~

holds for large enough + and p with Inp = o(1/h). Here g4 and c1 are constants.

3.2. Proof of the stability theorem
To calculate the estimate of higher order derivatives of ¢ as in [23], we decompose the problem, which
is as follows:
2

L5 =1, — &V, where E5= Y (a;;ly,)y,- (3.10)
ij=1
Assume v = (v, v2) to be the outward normal to the curve 4,, at the point £. Now, we define (%)a &) =

Zf =1 Viltij (%) (&) which denotes the conormal derivative at a point on 4,,. Furthermore, let du be an

Tan et L it VTieon ot T e =~



Lemma 3.1. The estimate

3 -
- +b12|\ Dl o+ SERIEIE )

(I3 113

31} . av
% /mXI e }duds— Z / o, v }duds
L.

o 2 o0k
i In,%<az>adudss@;(umm T )

2
k=1 1=1
2
k=13

m CT

holds for large enough K, where n = Kh®*. Here m~ and m™ denote respectively limsty, t and limg,, t.
by > 0 is a constant.

Proof. From the equation (3.10), we have

/ L ((0L)s — &L + il )dyds—/ o (L 4 n)ol)dyds. (3.11)
Qb xIn QL xIy

K,h

Using integration by parts, it follows:

2 [ akeh)dds = [ iy - [ oL Py, (3.12)
Q;7hxln Qlﬁ;,hx{("+1)7} fll’hx{rﬁ}
- / U (87, )dyds = / Z i i (L), dyds
QL xIy L xIn i 2y
~1
—/ @;(a“~) dpds. (3.13)
Bﬁf,hhxln o /o

Inserting the equations (3.12)- (3.13) into (3.11), we obtain

2
1 i i
5 [ Py + [ (Y @hai(eh), +ulok)dyds
Qfﬂyhx(nJrl)— QL xI, i=1
! d
—/ ug(&) d,uds:/ ﬁg(($+n)@f{)dyds+/ 5L 2<Y
o0, x1, OV« QL I, QL x{nt) 2

Summing over [ for each Qi@,h’ k=12, gives

~12dy / - =
e ;O + dyd
Uy e G [, (2 @, i )

won Xdn g =1

XS [ G Jawas - S [ (30 Jawas

k=1 :ymgﬁﬁ Am Clo
d
- o(20) duds = >y ( / L+ m)itdyds + oS-
Fm CD ¥ Ym X In Ov k=1 =1 w.n X n QL x{nt}
From (3.3) and choosing K large enough, where n = Kh?, the result holds. O

In the following Lemma 3.2, we obtain estimates for higher order derivatives of @',.

Lemma 3.2. The estimate

01 02
61 Z / Z |D;‘17l1 2dyals + / . Z |Dav 2dyds)> <EL
QX = Q5

In | q1=2 7 |al=2



holds, where

= z: (;/ﬁxl ECARTEES Y (/ [(I)(f))]duds+/ [H(ﬂ)]ds]a%>

A CO T 2 T X n In
+ f1h? / D2# [2dyd h / D2 2d d)
2@ S gPads e S [ S g
=1 *In jo|=1 Fm CTUTUQ,, ~ T 7 Jal=1
+ Z/ O)dpds + Y / H(®)ds|,, ,
m X I" 'Wn Cl—‘O

2
and D, E and F are defined as:

H(?) = 49, (—2D%, — Eb,) and ®(7) = dla i (E‘% + G%). Here dy, e1 and f1 are positive constants

[D E]i[n TgHau a12H7'1 TQ}_l
E Fl |lv n Qo1 Q22 v g

1T T2

and the matrix [ y } is orthogonal matriz and o,;; = aj; for each Q. k =1,2.
1 V2

Proof. To prove the above lemma, we use the result of equation (3.25) from [8], which is as follows:

c 1 -
if, Xwpas [ wdparon| [ 05l

rh o] =2 r,h Q»-c,h |a]=1
h . l2 . ~1 d ~1 ~1 d
wony [ S 0p P Y [ e g (B + G
=173 jaj=1 =177
1
+ 37 S -2D)- — B (3.19)
j= 07;

Jj=1

by choosing a small enough ¢ > 0. Here G = F' + D, and (' is a generic constant.
Integrating the equation (3.14) w.r. to s over I,, and summing over [ for QLh, k = 1,2, the desired result
follows. 0

Next, we prove the following Lemma 3.3, which we directly use to obtain the main stability result.
Lemma 3.3. The estimate holds

2 o
ZZ((Kh2|vn||gzl x1I,, +62(Havn|‘gl ><1n+ Z || nHthX]n))

k=1 1=1 1<|a|<2

T (AT — Z J,

)ylam( )y dy)) <&+ &3

., h><(n+1)*
for small enough h. Where
2 Ok
&= (3 (108, e+ AR
k=1 =1 3,7=1 X(n)+

1
h2(1+2h22||$+77)l|| )



and

&= I G w2i(gy) Janas+ [ o] )

[J(ﬁ)—#%(gz)a}duds—k/[ [H(ﬁ)]ds‘a%))

) . (3.15)
O9m

Here J(3) = 20, (22)  +d, (v A (Eb, + le,)> — 25, (), +®(9) and H(0) = L6, (—2Di, — E,).

Ym X In

+
N —~

J(@)+26<%) duds+/ H(5)ds
@ I,

Y CT Fm X In

Proof. Firstly, we calculate

[ |.>2”17,l,€|2dyds2/~
Qf{’hxln QL xI,

w,h X0

:/ (L) — 2(5L) &5 + | €5 2)dyds. (3.16)
QL xI,

K,h

(0L)s — &3] dyds,

Using integration by parts, we rewrite the following term

—2/ () o(E0L)dyds = 2/ Z )y (D yjdyds
Qlﬁyhxln Ql wxI

n g, =1

S /XI (l%f)aduds. (3.17)

Am SO,

Again using integration by parts the first term of R.H.S. in (3.17) w. . to s, gives:

/QL x 1,

kB Mg = 1

2

5L )yeatsj (5L, dyds = / S (@ )y, i5 (L), dy
Q. X{(”+1)7}ij—1

2

_[ Z( )y i (D yjdy / )yz(au) (v fq)yjdyd& (3.18)
L, x{nt} 52 o

fen X In i,j= 1
Inserting the equation (3.18) into (3.17), it follows

2

2 / (5L)e (£ )dyds = / S @)y i (3L)y, dy
Qf%h,xln Ql»:,hx{(n+1)_}i7j:1
2
- (5L, 15 (L), dy — 2 [ b ( )MS

3 COOL
- / S (@), (i) (7)y, duds. (3.19)
QthI

From equation (3.3), we have

/Ql <1

), (i) (BL),, dyds < CH? / S D2 [Pdyds.. (3.20)

nog, = 1 w,h X dn |a]=1



Substituting the result of the equation (3.20) into (3.19), the estimate is as follows:

2
2 [ @ dyds > [ S (L), ais (L), dy
QL x1In oL, x{(n+1)-} ;52
2
- PICAMBICANEL DS / i) () dpds
Q px{nt} 5y T CORL xIp ov o
— Ch? / | DYoL dyds.
LoaxIy ‘04 1

Inserting the equation (3.21) in (3.16), the estimate holds:

/~ |$62|2dyd52[
lehxln QL xI

K,k

(1(@%)s[* + |65, dyds

2 2

+ CARSCANE CANERICAN
QL x{(n+1)73 i;l QL x{nt} i,jzzl

iy, an
—2 Z / (V) duds—(]h2/~l > Dy Pdyds.
X Iy o th

mCOQL *Injaj=1

After rearranging the equation (3.22), we obtain
2

2

[ UGP +sakPdys + [ > (s (7L)y,
S e hydy+ [ 120 Pdds
Qo xI,

QL xI, flf{yhx{(n+1)*}i’j=1
S /
Q px{nt} 52 n

Uy o
+2 Z / , <V>ad,uds—|—0h2ﬁ Z |Dyvf€\2dyds.

l
mCORL eI jaj=1

Combining the equation (3.14) and (3.23), implies

2

o [ | S IDgak I | duds + [ 3 (8 ()
N,th

la|=2 Q< {n+1)7} 55

2

<[NP [ S @),
Qfe,h,XI" Qlf-ﬂ,hx{n+}ij 1

Lo / S D23 [Pdyds + gk / S |Dadt Pdyds
Qb T,

" a|=1 I 1<|e| <2

+ Z (/%XIWJ(@)duder/LLH(ﬁ)dsa%).

FmCONL
/ ) > |DgoL [Pdpds ggl[l S Dy Pdyds,
’77l><

" Jal=1 QX In 1 <ja)<2

with the following estimate

Am COOL

where ¢ is a uniform constant and c¢; is a positive constant.
From equation (3.10), we obtain:

/ Lo Pdyds = / (L + )it — il Pdyds
QL xI, QL xI,

<9 / (2 + )t [2dyds
Ol x7I.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



with the following estimate

/Ql Inol [Pdyds < /Q (& +n)oL |2 dyds. (3.26)
L xIn, s

Inserting equation (3.25) in (3.24) and summing over [ on Qf{yh, k = 1,2, the estimate is as follows:

2

33 / S al(D5aL P+ Pdyds + [ PORCARTHCANT
QL x{(n+1)"} ;521

k=1 =1 wXIn | g)=2

SHACH

L
k=11=1 Qo xdn

2

(2 + )il [Pdyds + / S @)y, 15 (5L)y, dy
Ql

RS LA |

+Ch / > Dyl Pdyds + Ch* /
QL xI Q!

n1<|al<2 QX 1In

6’7m>

\@;\Qdyds) + .7 (v)

[J(5)]dpds + / [H (3)]ds

Am X In, I,
+ [J(0)]duds + / [H(D)]ds )
Fm CTo Fm X In I, Fm

EQI ( /7 o J(0)dpds + InH(f;)ds mm). (3.27)

Combining Lemma 3.1 with (3.27), the desired result follows. O

Now, we estimate the bound for &, which is defined in equation (3.15).

Lemma 3.4. The estimate
£ <&+ (3.28)

holds for a constant K, such that, % and p large enough and Inp = 0(%). Where

2 o
7 Ox
£0= 3" (520 (KRG, o, + e (1081, + D2 ID5LIR o))
k=1 = I=1 1<a<2 o
and
1
85 = ﬁ («@Jump(‘/—';gﬁ)vz) + %Boundary (];5?,)”2,0) + %Interface (]:qg?,)w,o))

Proof. Using the equaion (3.32) from [8], we conclude

3 / &)]duds + / [H(3)]ds ) (3.29)
A C CQ X1 In Om
2
€ o “\a
%Z ST IDp R, L+ Cmp)? 3 (SN a0 5,1, )
=1 1<]a1|<2 FmCQ,. =1
for each kK = 1,2, and
02
. . e o~
Z ([ @(v)duds—F/ H(v)ds > SEZ Z HDleQHSQ“)lMxI
FmCD Y ¥mXIn In O 1=11<]ay |<2
2
+C(1np)2( D @20 50 x1, + Z (1/2.0), vmxln) (3.30)

~ CTI"



From equations (3.29) and (3.30), the following estimate holds for interface (I'¢)
e 2 0p
< Z > > IDPEllE L, (3.31)

1i=11<|a;|<2
@ a
o),

2
Using the equation (3.33) of [8] it follows that

o 0)|duds + /In [H(D)]ds

CFO Om

—_

+Y > i@y It

k=1 :Ymg@ﬁ =1

+C(Inp)? ( Z

Fm QFO

(1)2.0)x1 (1/2,0),3m X I, )
10),Am X I,

17
Z / X I al/ ] d,UdS

1 . .
<S> (KRIE o +er Do IDPEIE, L)
=1 ’ 1<]a1|<2
1 2
N (ﬁzm(b);] (21/2,0)m7m><1n +C||[’D]H%O,O),:/m><]n> (3.32)
Fm S i=1

for each kK = 1,2. Moreover

Z / n X 1p 81/ ad'uds

Fm CT

02
€1 ar ~ 3
SZ;( Z HDyl%Héé,hxln) +C Z 1811%0.0, 500 x .- (3.33)
=1

1<]os | <2 FmCT
Similarly, the following estimate holds for the interface (T'g)

Z / . 21} ay }duds

Ym Clo

IN

2 o0g
;zz(wn e Y IDpR )

k=1 1=1 1<]a1|<2
2
+ < ] + Cl03o.0) 50 x 1, > (3.34)
mClo (1/2,0),4m X In,
Using equations (3.36) and (3. 38) from [8], we obtain
Z / 27}3 ) ]dﬂds
~ CQ m,XIn
1
S 952 Z <|[ )11%0.5/4) 5 x 1. +Z|| D010 5% 1. )
Fm CQp j=1
€1 = - ay ~
Las (HWz ot X, ) 5:3)
=1 1<|an <2

for each k = 1,2. Moreover

e 12
Z /ﬁmxln 29, (81/) duds < W Z 11011(0,3/4) 50 x 1,0

Am T Fm T2

02
€1 ~ Qg ~
+3 <|asv2|';llg‘hm+ > |Dy1v2||?~l,,2‘hxln>. (3.36)

1=1 1<l <9



In same way, it follows that

[mxln [265 (%) J duds

:YmgFO
1 oo\ “1|?
<55 O (IHII ()] )
2 (0,3/4) Am X In
2h FmElo aV @ (0’1/4)»’3’m x I
2 og
el ~ o~
+SZZ<||85UK||%L}L><I”+ Z ||Dylv"f||?~22hxln>‘ (337)
n=ti=l ’ 1<]ar|<2 ’
Combining the equations (3.29) — (3.37), imply the desired result. ]

Combining the results of Lemma 3.3 and 3.4, implies that

0SS (I, o+ 100+ Y IDSAIE, o+ Iy

k=11=1 1<|a]|<2
2

£y s @) SWOED)  639)
X (n+1)—

l
ij=1"9

holds for large enough % and p with Inp = o(1/h). Here g4 is a constant independent of h, p and ¢, and

2 0px
D) =35 (I e+ 2 [ sl

ij=1 ><{(n+1

1
+ﬁ1+2h2 (Z”f*””l' X,+Z|I$+n)v2\lgz )

=1 =1

1 n n
h2 (%Jump(]:qgl,)yz) + <%Boundary(]:qgl )an ) + %Intefface(f’gh)vza 0)) .

Let /,ﬁ be the Jacobian of the map N! from S to Qfﬁh in each €,,x = 1,2, then there exist matrices
{(}); ;} such that

2 2

3 [ Emensndy= 3 [ e g derdes

i,j=179 i.j=1

Now we define /H and (});. ; which are orthogonal projection of _#! and (&7!);; into the space of
polynomial as before. Recall that n = Kh? and @', = #’e"*. Using these arguments in equation (3.38), we
obtain the final result.

4. Error estimate

In this section, we prove a priori error estimate for parabolic interface problems. Let ul(¢,s) =
u(NL(&1,62),5), where [ = 1,2,--- 0y for k = 1 and | = 1,2,--- ,09 for K = 2. Now we prove the
following approximation result.

Lemma 4.1. For each k = 1,2, let u, be a smooth function which is defined on Q. x [0,T]. Then
there exist functions V. (&,s) defined on S x [0, M| (where Mk = T). Moreover, . (£,s) is continuous
function of s and is a polynomial in & and & of degree p separately and in s of degree q for s € I, with
n=0,1,--- , M — 1. Then the following error estimate

1
2 0ok — 2
(ZZ Z ||U 7/’/{;||?2,1),5x1n> < th2q||u||(2q+6,q+3),91u92x(0,T) (4.1)

k=11=1 n=0



holds, provided p =2q + 1 and k 1is proportional to h? as h — 0.
If ug € D21(Q x [0,T)) for each k = 1,2, then

(zzzm ¢;|%2,1),M) < Koo w2)

k=11=1 n=0

N|=

provided q is proportional to p?, as p tends to infinity and Inp = o(1/h). Where K,p; and ps are positive
constants.

Proof. Let m{’{v(§,s) = m¢miv(§, s) be an operator from
H?3+659%3(8 % Io) — (PP x PP x P9)(S x Iy)

defined as [8, 22]. Now, we define 9. (¢, +n) = ﬂgﬂ'guﬁ(ﬁ, s) for 0 < s < 1. Thus . (¢, s) is a continuous

function of s for 0 < s < M and separately for k = 1, 2.
Using the approximation results from equations (5.6) and (5.7) in [8], we obtain

l 12 20( —o)! 9oty ax  (p—)!
e — Villfo,1), 510 SC27 (G5 0) 107+l |[T0,0y, 551, + €27 Bt
2
(Z(Ha?flaézuﬂ|(20,1),5x10 + 1104, 08 ul |12, 3x10)) (4.3)
7=0

and
a —2v (p — V)' v j
||D§1(u£@ _7/’;2)”%0,0),5“0 < C<2 ? 7(1)_'_1/ ) (Z(Ha jlaéuf{”?o,o),swo

272 (q—p)!
q(g+1) (g + p)

1104, 04 bl 0y, 5x10) ) + i (e 1DE RO B 0 1, ) (4.4)
for 0 < || < 2 and separately for k = 1, 2.

For proving the first estimate, where u, is smooth in Q, x (0,T) and h tends to zero (p and ¢ are fixed),
we choose p=2¢+1, A=2¢+ 1,0 =q,v=2¢+ 1 and p = ¢ in equations (4.3)-(4.4) as in [22]. Adding
equations (4.3)-(4.4) and summing over [ for Q, x = 1,2, the desired result holds.

For proving the second estimate, where u,, € % 1(Q, x [0,7]) and the map M!. are analytic, we obtain

sup  [DEDMMug (€ 5)| < Az(Bo) (B )R,
(€:5)€Sx(0,M)
for |a| = j. Here Ay and Bs are constants.

Now, we choose ¢ o< p?, A = dip, 0 = dap, v = d3p and p = dyp in equations (4.3)-(4.4) as in [22], where
0<d, <1fore=1,---,4. Adding equations (4.3)-(4.4) and summing over [ for Q' x = 1,2, the desired
result holds. O

Finally, we prove our main result of this section.

Theorem 4.1. Let J":u,hw2 c Spq minimize the functional 2™ (F. 75?,)1,2) over all ]'—v?)vz S S(n) If u, is

smooth in Q, x [0,T] for each k = 1,2, then there exist a constant C, such that the estimate

1

2 0g —
z _
(ZZ Z ||u HH(2 1,0, xI, ) < thQq 1||u‘|(2q+6,q+3),91u92><(07T) (4.5)

holds, provided p =2q + 1 and k 1is proportional to h? as h — 0.
If up € P21 (Q X [O T)) for each k = 1,2, then

Ok
(Z Z Z ||ul wf”%&]%ﬂﬁﬁx[ﬂ) < Ke™ P1Pppsp (4.6)

k=11=1 n=0

[N

provided q is proportional to p*, as p tends to infinity and Inp = o(1/h). Where K, p1 and p3 are positive
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Proof. First, we divide the error into the following terms:
l l l l l 1
||ul<, - w/{H?thx[n < C(Hun - wnH?zL,th" + WJ/{ - w'{H?zL,hXI")’

for some positive constant C'. Here the first term of R.H.S. is already estimated from the previous Lemma

4.1. Now, we estimate the second term of R.H.S. Let .Egjol)ﬂm minimizes %) ( 5??1,2). Then we have

0) ( (0) _ (0 0 0) ( (0)
%( )('FT/}1,LU2) - ‘%( )(‘FTSH)’H&) + W( )(]:1111 w1 ,YP2 — w2) (4'7)
Therefore, we conclude that

7/(0) (F(O)

Y1 —w1,P2—ws2

) < ZOFD ). (4.8)

Replacing the approximate solution 3, . by exact solution FJ . in the equation (4.7) then we obtain

0) ( (0) 0)( (0)
2 (‘F¢1 wz) s (‘7:1!11 —u1,P2— uz) (4.9)
using 2 (}ZS?)MZ) ~ 0.
Define
2 on
o= 3 (Pl = 6hldr, + 10500, = 6 s, + > 11DE Wk — 0w, )
k=1 I=1 1<]al<2
and
2 ok R
=35 (lwk = v + Z / Uk (D)1 (i — k), d6rdEs ).
k=1 1=1 ij=175xn"
Using Theorem 3.1, the following estimate holds:
0a(To+ 1) < MW OFED, 4, ) < FOFD,) (4.10)
for choosing A such that 14 ch? = e**. Now we define
AN FG,,) = B (F,) = Tns
where
2 0p
SN (S / ()15 (5L ) 162 ).
k=1 [l=1 i,j=1 X{n*}
From equation (4.8), it follows:
1)
7/(1)(]-'15)1 wi,h2— w2) < %(1)(]_—7!’ )11’2) (4'11)
Again using Theorem 3.1, the following estimate holds as in (4.10):
1 1 — 1
gu(Ti+ o) <My W(FD )< WFED ) <M (%0)(5;1{%) +Il>. (4.12)

Here 9! (&, 5) is continuous in s. Multiplying by e** in equation (4.10) and adding equations (4.10) & (4.12),
imply:

94(MTs + Ti + T2) < R (Fy, ) + B (Fy, ). (4.13)

Continuing this process upto M — 1 times, the final result is as follows:

M-1 M-1
94 Z Tn < e (%O(‘leﬂl’z) + Z %(n)(]:whwz))' (4.14)

N 1



Combining the equations (4.9) and (4.14), we obtain the following result

M-1 M-1
94 Z T < e)\T Z Wn(fwl—ulﬂﬁz—uz)' (415)
n=0 n=0

Using trace theorem from [17], the following result holds

W(n( UIL,'UQ = h2 ZZHUKH(Q 1),SxI, > (416)

k=1 1=1

where K is a constant. Inserting the equation (4.16) in (4.15), implies

o z o< 3 (> 3t — VI 1) 51, ) (4.17)

k=1 [=1 n=0

Applying Lemma 4.1 in equation (4.17), implies the estimates (4.5) and (4.6). O

5. Numerical techineque and Computational results

5.1. Symmetric formulation

The approach which is used to solve the problem, is based on least squares. The solution to the
least-squares problem can be found using the PCGM for the normal equations. Let the normal equation
be

AT AU = AT @, (5.1)
Let

UZMLH

(p+1)2k5+(p+1)i+j = uf(fip&?ﬁ sg) fOr 0 S Z)j S pvo S k S Q; K= 1) 2

Similarly, we define

2p,2q, 2 - _
U(Ifjﬂq)fkﬂp“)iﬂ up (&5 z,52]75151) for 0<4,7<2p,0<k<2q k=1,2.

Integrals which occur in the minimization formulation, are computed by the Guass-Lobatto-Legendre (GLL)

quadrature formula. Then the minimization formulation for each element is as follows:

(‘/2p,2q)T02p72q7

where 0?24 is a (2p + 1)%(2¢ + 1) vector which can be easily calculated. Now there exists a matrix GP+4
such that V?2P:2¢ = GP-4VP4, Then it follows:

(V2p,2q)T02p,2q _ (Vp,Q)T((Gp,q)TO%,?q)_

It can be shown, as in [23], and references therein that there is no need to evaluate any mass and stiffness
matrices and the residuals in the normal equation can be computed inexpensively and efficiently. Next, we
discuss the steps used in computing the discrete Legendre transform. Let 7 and ~} be the normalizing

factors
, H%, if i<p
Vi =94 2 ° =
2. ifi=p

and

. @, if k<gq
T 27 k=g

Ea

2p,2
OP»q

T(opt1)2 4§ (2p+1)+i° Next we perform the following

Let {0k }o<ij<2po<k<zq be denoted as O jp =

R .



—_

2p 2p 2
. Define O, j 1. = O jx/w; wiPw, .
. Compute {Ai,j,k}ogi,j§2p,0§k§2q the Legendre tranforms of {Oi,j,k}ogi,j§2p,0§k§2q- Then

[\

2p, 2p,.2p
i <75 Ve Nijike-

3. Compute p; j 1 Nijr/viVjvE, 0<14,j<2p,0<k<2q.
. Compute W, the inverse Legendre transform of . Then

=~

Ui 0 wPwPwp W e, 0<4,5<2p,0<k<2q.

5. Define a vector J of dimension (p + 1)?(¢ + 1) as
Jer12 i+ = Yige for 0<4,7<p,0<k<gq.

Hence J = (G"W)TO?W which gives us AT(G — AU). Thus we see that we can compute AT (G — AU) in
twice the time it takes to compute (G — AU). Furthermore storing AT (G — AU) takes less time memory
that it takes to store (G — AU). We can also conclude that the proposed method can be used to cheaply
and efficiently compute the residual for the hp-version of FEM. Clearly, we need O(p%q) operations to
compute the residual vector on a parallel computer. Each element is mapped to a single processor for ease
of parallelism. During the PCGM process, communication between neighbouring processors is confined
to the interchange of information consisting of the value of function and its derivatives at inter-element
boundaries. In addition we need to compute two global scalars to update the approximate solution and
the search direction. Hence inter-processor communication is quite small.

5.2. Computational results
Let %gpprox be the spectral element solution obtained from the minimization problem and u be the exact
solution. Error in norm is denoted as follows:

llw = wappros |l

llellz = s lelloo = [l = tappros|| Lo and e]1 00 = 4 = Uapproz|w1.o-

||ueavact||H2
The numerical results presented in this section have been obtained with a FORTRAN90 code. All our
computations are carried out on a 372-node HPC cluster which is based on an Intel Xeon Quadcore
processors with a total of 2944 cores and high- speed Infiniband network and it has a peak performance of
34.5 TF. To show the exponential rate of convergence the error is plotted on a log —scale. In computational
results, we use the notation P(—Q) = P x 10~? for real numbers P, Q. O deontes the order of the h-version
methods.
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Figure 3: Space domain for (a) Example 5.1 and 5.4, (b) Example 5.2, (c) Example 5.3.

Remark 5.1. In general singularities arise at the corners for 2D square domain. However, we choose our
data selectively so that the solution is not singular at the corners.

Example 5.1 (1-D parabolic interface problem). Consider the following interface problem
u— (Bug)y =F inQx(0,1),u=f onQx{0}, u=g onT x(0,1),
and the following interface conditions:

ou

[u] =0 and [5—-‘20 onTy x (0,1), where =

{1 in Q,
EaY. N
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The domain of the problem is Q@ = (0,1) with the interface as a plane x = 0.5 as shown in Figure 3(a). In
this case, we choose the exact solution with homogeneous interface condition. The exact solution u of the
parabolic interface problem is as follows:

et @+ (W —1)z) inQy,
v et (z? + (%52)) in Q.
W =2
g=1 q= q= q=4
h [lel]2 o llell2 o llell2 o [lel]2 o
1/2 | 1.76(—02) | - | 4.14(—04) | - |841(—06) | - | 1.40(—07) | -
1/4 | 4.44(—03) | 1.99 | 4.00(—05) | 3.37 | 2.57(—07) | 5.02 | 1.04(—09) | 7.06
1/8 | 1.66(—03) | 1.41 | 4.15(—06) | 3.26 | 5.67(—09) | 5.50 | 8.12(—12) | 7.01
1/16 | 6.55(—04) | 1.34 | 3.98(—07) | 3.38 | 1.58(—10) | 5.15 | 6.13(—14) | 7.04
Table 1: Performance of the h-version method for Example 5.1
W =10
g=1 q=2 q=3 qg=4
Rl lele [ O Tele [ O Tells [ O] Tells [ ©
1/2 [ 1.83(=02) | - | 5.77(—=04) | - | L.06(—05) | - | 1.43(=07) | -
1/4 | 5.58(—03) | 171 | 3.90(—05) | 3.88 | 1.65(—07) | 6.01 | 1.05(—09) | 7.09
1/8 | 1.49(—03) | 1.89 | 2.89(—06) | 3.75 | 4.84(—09) | 5.08 | 8.27(—12) | 6.98
1/16 | 6.50(—04) | 1.20 | 3.42(—07) | 3.07 | 1.35(—10) | 5.16 | 6.27(—14) | 7.04
Table 2: Performance of the h-version method for Example 5.1
W =100
g=1 q= q= q=4
h llell2 % llell2 % llell2 o llellz %
1/2 | 1.64(—02) | - | 5.78(=04) | - | 1.15(—05) | - | L.73(—07) | -
1/4 | 5.04(—03) | 1.70 | 4.09(—05) | 3.82 | 1.97(—07) | 5.87 | 1.30(—09) | 7.05
1/8 [ 1.91(—03) | 1.39 | 3.97(—06) | 3.36 | 5.29(—09) | 5.21 | 9.44(—12) | 7.11
1/16 8.72(—04) 1.13 4.30(—07) 3.20 1.44(—10) 5.19 6.72(—14) 7.13

Table 3: Performance of the h-version method for Example 5.1

W =2 W =10 W =100
P [lell [lell2 llell2
2 | 2.98058(—05) | 3.34184(—05) | 3.68437(—03)
3 | 6.54282(—08) | 7.43653(—08) | 9.53064(—08)
4 [ 6.72184(—11) | 7.35442(—11) | 8.90168(—11)
5 [ 1.20951(—13) | 3.24169(—13) | 9.18346(—13)
6 | 1.22336(—14) | 2.74610(—14) | 8.50310(—14)

Table 4: Performance of the p-version method for Example 5.1

Discretization of domain is done as in Figure 3(a). Thus the discretization matches along the interface.
In Tables 1, 2 and 3, the computed results are shown in the relative error in H?!'-norm against q. From
Tables 1, 2 and 3, decay in the error is of the order O(h2?~1) for different polynomial order ¢ and different
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Figure 4: ||e||2 vs. p for p-version method.

Computational results are presented for p-version method in Table 4 and Figure 4. The error is plotted
against polynomial order p on a log —scale. The curve is almost a straight line and it confirms the theoretical
estimates obtained. Hence the error decays exponentially for different polynomial order p and different
values of W.

Example 5.2 (2-D parabolic interface problem). Consider the following interface problem
uy—V-(fVu)=F inQx(0,1), u=f on Q2 x {0}, u=g onT x (0,1),
and the following interface conditions:

1 il’lQl,
w ian.

ou

[u] = g0 and [Bé)n} =¢q onTyx (0,1), where § = {

The space domain of the problem is Q = (0,1)? with the interface as a line y = 0.5 as shown in Figure 3(b).
In this case, we choose the exact solution with non-homogeneous interface condition. The exact solution u
of the interface problem is as follows:
e (y2 +2(W — 1)y +0.5) inQy,
u =
ey +y+ (W —1)) in Q.

The domain is divided as shown in Figure 3(b). The approximate solution is computed for different
values of W. In Tables 5, 6 and 7, the computed results are shown in the relative error in H? -norm against
q. From Tables 5, 6 and 7, the order of error decays O(h?¢~1) for all values of q. Hence the proposed
h-version method validates the error estimate (4.5).

In Table 8 and Figure 5, computational results are provided for p-version method . In Figure 5, the

curve is almost a straight line and it confirms the theoretical estimates obtained. Hence the error decays
exponentially for all values of p and all different values of W.

W =2
qg=1 q=72 q=3 qg=4
h [lell2 o llell2 Y% [lell2 Y% [lell2 Y%
1/2 | 2.15(—02) - 6.62(—04) - 1.32(-05) - 1.94(-07) -
1/4 | 5.70(—03) | 1.92 | 4.38(—05) | 3.91 | 2.18(—07) | 5.91 | 1.22(—09) | 7.30
1/8 | 2.32(—03) | 1.29 | 4.57(—06) | 3.26 | 5.74(—09) | 5.24 | 9.11(—12) | 7.07
1/16 | 9.86(—04) | 1.23 | 5.03(—07) | 3.18 | 1.56(—10) | 5.19 | 6.47(—14) | 7.13

Table 5: Performance of the h-version method for Example 5.2

Example 5.3 (2-D parabolic interface problem with lipschitz interface). Consider the same PDE as in
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W =10
g=1 q=2 q=3 g=4
h [lell2 o llell2 o [lell2 o [lell2 o
1/2 | 1.52(—02) | - | 4.88(=04) | - | 1.04(—05) | - | 1.62(—07) | -
1/4 | 4.52(—03) | 1.74 | 3.59(—05) | 3.76 | 1.00(—07) | 5.78 | 7.28(—10) | 7.80
1/8 | 1.87(—03) | 1.27 | 4.14(—06) | 3.11 | 5.38(—09) | 5.14 | 4.81(—12) | 7.23
1/16 | 8.46(—04) | 1.14 | 5.06(—07) | 3.03 | 1.55(—10) | 5.11 | 3.13(—14) | 7.26
Table 6: Performance of the h-version method for Example 5.2
W =100
g=1 q=2 q=3 q=
h [lel]2 o llell2 o [lel[2 o [lell2 o
1/2 1.96(—02) - 4.82(—04) - 1.02(— ) - 1 59(—07) -
1/ | 5.56(—03) | 1.82 | 3.52(—05) | 3.77 | 1.84(—07) | 5.79 | 9.00(—10) | 7.46
1/8 2.21(—03) 1.32 4.10(—06) 3.09 4.96(—09) 5.21 6.98(—12) 7.01
1/16 | 9.84(—04) | 1.17 | 5.01(—07) | 3.03 | 1.40(—10) | 5.13 | 5.44(—14) | 7.00

Table 7: Performance of the h-version method for Example 5.2

W=2 W =10 W = 100
P [lell2 [lell2 [lell

2 [ 2.70796(—02) | 7.98550(—02) | 1.07851(—01)
3 [ 1.34210(—03) | 4.69518(—03) | 1.04582(—02)
4 [ 7.92309(—05) | 2.61409(—04) | 2.05084(—03)
5 | 3.16206(—06) | 7.04598(—06) | 6.68395(—05)
6 | 9.24865(—08) | 1.76085(—07) | 1.73570(—06)
7 | 2.18785(—09) | 3.48131(—09) | 2.72895(—08)
8 [ 4.20310(—11) | 6.11652(—11) | 4.72828(—10)

4
Polynomial order (p)

Figure 5: ||e||2 vs. p for p-version method.

3(c). Here Q1 = (0.5,1)% and Q2 = Q\ Q1. The ezact solution u of the interface problem is as follows:

etTsiny  inQy,
U= i
ettey in Qs.
Computational results for h-version are provided in Tables 9, 10 and 11, where the relative error in H?
-norm against ¢ is given. It is immediate that the relative error decays O(h2¢~1!) for different values of ¢
and W .
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error profile in Figure 6 is nearly a straight line for p = 2,3, --- ,8. This shows exponential convergence.

W =2
g=1 q=2 q=3 q=4
h [lel]2 O llell2 o llell2 o [lel]2 o
1/2 [ 3.01(—02) | - | 7.42(-04) | - | 1.31(=05) | - | 1.15(—07) | -
1/4 | 8.12(—03) | 1.89 | 5.10(—05) | 3.86 | 2.28(—07) | 5.84 | 5.05(—10) | 7.83
1/8 | 3.29(—03) | 1.30 | 4.90(—06) | 3.38 | 6.18(—09) | 5.20 | 3.58(—12) | 7.14
1/16 | 1.43(—03) | 1.20 | 5.31(—07) | 3.20 | 1.75(—10) | 5.13 | 2.65(—14) | 7.07
Table 9: Performance of the h-version method for Example 5.3
W =10
q= q= q=3 q=4
h llell2 % llell2 % [lell2 % llell2 <%
1/2 | 3.08(—02) - 8.12(—04) - 1.44(-05) - 2.05(—07) -
1/4 | 8.33(—03) | 1.88 | 6.20(—05) | 3.71 | 2.44(—07) | 5.88 | 8.90(—10) | 7.84
1/8 | 3.31(—04) | 1.33 | 7.19(—06) | 3.10 | 6.28(—09) | 5.28 | 6.21(—12) | 7.16
1/16 1.42(—04) 1.21 8.26(—07) 3.12 1.91(—10) 5.03 4.52(—14) 7.10
Table 10: Performance of the h-version method for Example 5.3
W =100
q=1 q=72 q=3 qg=4
W Iele_ [ O | Tells [ O Tells [ O] Tells [ ©
1/2 | 3.85(—02) | - | 2.42(—03) | - | 485(-05) | - | 1.19(—06) | -
1/4 | 6.22(—03) | 1.82 | 9.95(—05) | 3.77 | 5.01(—07) | 5.79 | 3.08(—09) | 7.46
1/8 | 8.62(—04) | 1.32 | 3.44(—06) | 3.09 | 4.40(—09) | 5.21 | 2.04(—12) | 7.01
1/16 | 1.12(—04) | 1.17 | 1.10(—07) | 3.03 | 4.30(—10) | 5.13 | 1.89(—14) | 7.00

Table 11: Performance of the h-version method for Example 5.3

W=2 W =10 W = 100
P llell2 llell2 llell2

2 [ 2.00663(—02) | 6.57936(—02) | 6.05050(—01)
3 [ 1.61447(—03) | 4.82205(—03) | 4.65751(—02)
4 [ 1.38776(—04) | 7.54586(—04) | 1.32663(—03)
5 | 7.24588(—06) | 3.77340(—05) | 6.17291(—05)
6 | 1.86029(—07) | 8.97469(—07) | 1.53728(—06)
7 | 2.46535(—09) | 3.57993(—09) | 4.80914(—09)
8 [ 6.56092(—11) | 7.73195(—11) | 1.90471(—10)

Table 12: Performance of the p-version method for Example 5.3

Example 5.4 (1-D parabolic interface problem with variable coefficients). Consider the following interface

problem

up — (K(@)ug)y = F in Q2 x(0,1), u=f on Q2 x {0}, u=g onT x(0,1).

The exact solution u and K(x) of the parabolic interface problem are as follows:
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Figure 6: ||e||2 vs. p for p-version method.

Case 1:
Ul(%t):ﬁﬁ in€y, K@) 1+ a2 in €y,
= y xTr) = .
up(x,t) = ﬁﬁ in Q. 14+ (z—1)* in®.
and the following interface conditions:
2u1(0.5,t) = u2(0.5,t) and 2(u1)5(0.5,t) = (u2),(0.5,1).
Case 2: L . e ot
~Jui(z,t) = e "sin(57x) in Q, K(x) = 3e~10(z=05)%2"  in O
CNui(z,t) =e 2@z —0.5)7+1) inQy.’ 13 in Q.

and the following interface conditions:

u1(0.5,t) = u2(0.5,t) and (u1).(0.5,t) = (u2),(0.5,¢).

The domain of the problem is Q = (0,1) with the interface as a line x = 0.5 as shown in Figure 3(a).

Case 1
q=1 q=72 q=3 =4
h [lell2 o llell2 o [lell2 o [lel2 o
1/2 | 1.82(—01) - 5.16(—02) - 6.24(—03) - ) -
1/4 | 6.43(—02) | 1.50 | 6.55(—03) | 2.97 | 1.52(—04) | 5.35 | 2.47(—06) | 7.64
1/8 | 2.68(—02) | 1.25 | 7.37(—04) | 3.15 | 4.15(—06) | 5.19 | 1.74(—08) | 7.15
1/16 | 1.18(—02) | 1.18 | 8.18(—05) | 3.17 | 1.20(—07) | 5.10 | 1.31(—10) | 7.04

Table 13: Performance of the h-version method for Example 5.4.

This example is addressed in [29]. In Tables 13 and 15, computed results are shown in the relative
error in H? -norm with the number of iterations against ¢. In [29], they proposed second and fourth order
methods. In from Tables 13 and 15, the order of error is O(h??~!) for polynomial order ¢ and all different
values of W. Hence the proposed h-version method validates the error estimate (4.5) of Theorem 4.1.

Computational results are provided for p-version method in Tables 14 and 16. From Figures 7(a) and
7(b), error profiles are nearly a straight line for polynomial order p. This shows exponential convergence.

6. Conclusion

In this paper, we presented a least-square spectral element method for parabolic interface problem.
A regularity result for non-homogeneous interface is given. Stability estimates and error estimates are
discussed rigorously. In examples 5.1 5.2 and 5.3, the proposed h-version method, where p is propositional
to 2¢ + 1, demonstrates the efficiency to achieve the O(h??~1) accuracy with all different possibilities of W.
The p-version method, where ¢ is propositional to p?, also shows exponential accuracy with all different
possibilities of W in examples 5.1 5.2 and 5.3. The proposed methods also show the efficiency to achieve

the O(h?9~1) accuracy in heterogeneous media for h-version method and exponential accuracy for p-version
BRI P |



Case 1

p |lel2 el lef1,00

2 | 1.77623(—01) | 8.85098(—02) | 3.11828(—01)
3 | 3.44708(—02) | 2.93338(—03) | 2.93401(—02)
4 | 4.48005(—03) | 1.41836(—04) | 2.63731(—03)
5 | 2.32242(—04) | 1.47777(—05) | 8.22163(—05)
6 | 1.75278(—05) | 9.25665(—07) | 8.78009(—06)
7 | 6.58670(—06) | 1.47145(—07) | 1.45143(—06)
8 | 7.53524(—07) | 1.12611(—08) | 3.33826(—07)
9 | 3.53628(—08) | 1.60152(—09) | 2.35901(—08)
10 | 2.50891(—09) | 1.07116(—10) | 1.20554(—09)

Table 14: Performance of the p-version method for Example 5.4.

Case 2
qg=1 q=72 q=3 qg=4
h llell2 % llell2 % [lell % llellz o
1/2 | 6.90(—01) - 2.94(—01) - 6.90(—02) - 6.04(—03) -
1/4 | 2.01(-01) | 1.77 | 2.17(=02) | 3.75 | 1.57(—=04) | 5.45 | 3.71(—05) | 7.34
1/8 | 8.27(—02) | 1.28 | 2.24(—03) | 3.27 | 4.16(—05) | 5.24 | 2.60(—07) | 7.15
1/16 | 3.65(—02) | 1.17 | 2.53(—04) | 3.14 | 1.16(—06) | 5.15 | 1.96(—09) | 7.05
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