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Smallest artificial molecular neural-net for collective and emergent

information processing
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While exploring the random diffusion of 2 bit molecular switches (we define as molecular neuron)
on an atomic flat Au (111) substrate, we have found that at least four molecules are required to
construct a functional neural net. Surface electron density wave enables communication of one to
many molecules at a time—a prerequisite for the parallel processing. Here we have shown that in
a neural net of several molecules, some of them could dynamically store information as memory and
consistently replicate the fundamental relationship that is found only in a collective and emergent
computing system like our brain. © 2009 American Institute of Physics. [doi:10.1063/1.3227887]

The ever-growing complexity of information processing
requires a unique paradigm shift from the existing electron-
ics and computation, where the solution is predeﬁned.l Fol-
lowing strict instructions, a computer sends current through
its well-defined circuits and solves a problem. However, ran-
domly connected systems might generate an emergent logic
in a dynamic network as explicitly observed in our central
nervous system, cellular regulatory machinery, ecosystems,
etc.? Intelligent and massively parallel computations would
be possible if such unique processors are built artificially.
Using quantum dots or molecules,” several processors have
been designed to realize unconventional computing.4 The
critical condition for such hardware is that all components
should communicate with each other and influence their de-
cision making, which is not possible without a wireless con-
nection. Surface electron density wave has been proposed to
serve the role of the wire for communication.” However, no
such practical devices have been developed to this date,
though literatures are rich in conceptual realization of the
neural circuit.® Here, the fundamentals of a wireless dynamic
molecular neural network (MNN) have been experimentally
realized using molecular switches.

Using the MNN, two major problems are addressed. The
statistical methods can be used for solving dynamic prob-
lems in an infinite size network. However, they are not ap-
plicable to the realistic central nervous system like networks
where constituent subnetworks regulate the operation using
periodic and chaotic dynamics. Recently, Zhigulin7 has pro-
posed a parametric relation to explain this dynamics. The
MNN built here follows this relation; thus one fundamental
aspect of brain function is replicated. Following White et
al..® we have also experimentally shown’ how a network’s
storage capacity for temporal memory varies with the system
size. Therefore, we have mapped processing capability of
MNN as number of participants (molecules) increase in an
assembly of diffusive molecules.

A submonolayer of 2,3,5,6-tetramethyl-1,4-
benzoquinone [Duroquinone or DRQ, Fig. 1(a)] molecule is
grown on a Au(l11) substrate. DRQ reversibly switches
among its four conformers (denoted as 0, 1, 2, and 3) during
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RAM and ROM operations,9 and exchange states when they
come in contact so DRQ is considered as a molecular neu-
ron. DRQs movement is attributed to the rotation of alkyl
groups by £60° and they do not assemble into an integrated
architecture if scanned by scanning tunneling microscope
(STM) at less than 0.6 V (V) tip bias.'""'! V, is always kept
at less than 0.6 V.

Input signals are given vertically by using STM tip. To
read the state, typical conductance of the conformer is
matched with its reported value.” The STM image of the
conformer computed using Green’s formalism is found con-
sistent with the experimental one [Fig. l(c)].12 Thus, we have
detected ~100 consecutive events; however, within ~15
scans (~10 min) the rules of logic-state change become evi-
dent. Information processing is defined as change in the
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FIG. 1. (Color online) (a) Schematic presentation of the four molecular
states (top). Two frames of walking of the molecule are shown by red and
black arrow. (b) Schematic of Amemiya model is at the top, and the other
three models are developed from the present work, here the red and black
balls represent one and zero, respectively. (c) It shows random logical inter-
change between four DRQ molecules. (d) All 48 molecules inside mono-
layer is converted to 00, 01, 10, and 11 states. The scale bar is 1.2 nm.

®© 2009 American Institute of Physics



113702-2 Bandyopadhyay, Sahu, and Fujita
number assigned to each molecule between two STM scans
and this data is used to calculate information entropy.

Instead of calculating entropy of the symmetry of atomic
structure,'’ the information entropy or Shannon’s entropy
(SE) associated with the multilevel states'® of molecular
switches is calculated, which is the entropy of distributed
numbers or multivalued logic states.'*

The generalized SE formulation for a dynamic molecular
system developed here is also applicable to any neural sys-
tem consisting of multilevel switches."” At any given time,
say N DRQ molecules, occupying states 0, 1, 2, or 3 are
randomly distributed (separated by ~9 nm) on the Au (111)
surface [Fig. 1(b)]. Then, as the molecular diversity or num-
ber of conformer M is 4, the maximum information regis-
tered from Shannon expression is SE=In,(M") ~5.52 nats
for N=4 molecules.'>'® If the surface is scanned by STM at
threshold tip biases for conductance switching, all scanned
molecules acquire the corresponding logic state i.e., all
DRQs switch to the state 0, 1, 2, or 3. Then the information
for one molecule represents the other N—1 molecules. Thus,
the system can have only four distinct information [Fig.
1(d)]. Using expression for SE we get entropy 1.39 nats.

While implementing the SE formulation above, three
conceptual changes are adopted in the classical quantum
Boltzman machine (QBM) model. Instead of lateral, output
is taken vertically via STM tip. The system processes four
instead of two decisions (0 and 1) and a dynamic local
symmetry17 is generated here which turns the system signifi-
cantly advanced than the fixed-site random distribution of
QBM [Fig. 1(b)].

When DRQs move and exchange logic state on
Au (111) substrate, by assigning four numbers, a matrix
could be created for each STM scan. Information in this
matrix/string is calculated using Shannon entropy equation
H(V)=-2'p; log, p; and an average minimum number of
bits required to encode a string or matrix (H), which is de-
termined by the frequency of their occurrence (p;). Here, p;
[P;=Prnpr(V) Pneu(V)] is the frequency of a particular logic
state. Pypr 1S the probability of a state generated by NDR
with a Gaussian peak at the threshold bias V;, and is given
by Prpr=(2m0%) 2~ Va=V277" here o is (271)712. Py is
the probability of logic state caused by wireless interaction
of molecules, considering sigmoid Boltzman neuron, and is
represented by Pye,=(1+¢%€)~!, where S is weighted sum of
input signals, Szﬁfi]]xiwﬁwo, x; is distance between inter-
acting molecules, w; is energy difference between them, w,
(wo=x;msV) is energy induced by external bias V. The con-
stant C depends on the substrate and it’s a function of tem-
perature, sets limiting value of S as S,;,, at less than S,
logic states change [S~ 60, Figs. 2(a)-2(c)].

In the Fig. 2(a), change in H with scan bias V, for two
molecules participating in the random information exchange
process is shown. During continuous scan at <0.4 V, the
initial logic state distribution repeats several times as total
number of electron 7 (state 1 has one and state 2 has two
extra electrons) remains constant [Fig. 2(e)]. At higher bi-
ases, 7 changes randomly and a variable logic state distribu-
tion is observed. The H-V variation remained constant at H
=2 with the change in scan bias. Value of H depicts a 2 bit
parallel processing. The higher bias induces faster informa-
tion exchange increasing the rate of DRQ diffusion (R) and
thus number of collisions. Statistically, sms distance R trav-
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FIG. 2. (Color online) (a) Two isolated DRQ molecules at ~5 nm apart
(top at state 2 and the bottom at state 3), surrounded by electron density
barriers. [(b) and (c)] consecutive STM images taken ~10 s apart, arrow
indicates sudden change in molecular positions. (d) Four DRQ molecules
forming a group. Arrow points toward inner and outer walls of the molecular
groups. (e) Eight 3D STM images taken ~10 s apart.

eled by each molecule between two STM scans at two dif-
ferent biases did not change significantly. The same conclu-
sions are validated for three and four molecules.

The fact that, nearly constant R is independent of initial
arrangement and number of interacting molecules, demand
the existence of a wireless communication, possibly through
the surface-propagating electron density wave. An apparent
electron density wave boundary surrounds the molecules and
prohibits surface electron density wave to interfere inside.
Thus molecular network remains thermodynamically isolated
(at constant T~ 100 K) which ensures collective informa-
tion exchange among them. Inside, ripple period L around
DRQ is changed particularly with its logic state. However,
area within the boundary remained constant at ~50 nm?
with the scan-bias variation [Fig. 2(d)]. This is an additional
evidence for the wireless communication rather than physical
collision induced diffusion.

Randomly connected wireless DRQ network exhibits a
periodic and chaotic dynamics7 at different local parts of the
distribution, i.e., confined within a few participants. In Fig.
3(a), fraction of a network (F) is plotted with either mixed
(periodic or chaotic) or purely chaotic dynamics with node-
to-node connection probability (p) for 2, 3, and 4 molecules.
Onset of F=1, beyond four molecular neurons support the
fact that local clustering of DRQ neurons plays an important
role in defining dynamical properties of a wireless network.’
Thus, one-to-many weak and strong wireless connections
among DRQ clusters enable mimicking the continuous firing
of a real neural net and thus MNN satisfies Zhingulin’s
medel consistently.
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FIG. 3. (a) Using cANN networks, we have plotted fraction of networks (F)
with periodic (red) or chaotic dynamic for three neurons and only chaotic
dynamics with node to node connection probability (p) for the four mol-
ecules. (b) Shows the memory function m(k) with the fraction of the input
signals survived (k/N) within the symmetric region.

Temporary memory storage capacity of a DRQ neural
network is determined during continuous logic state ex-
change process of participants inside an electron density
wave boundary. Matrices produced without switching any
DRQ molecule externally are recorded, and then the same
procedure is repeated by forcefully changing one DRQ’s
state. Finally, the memory function m(k) [m(k)=a*/a*
+e'(1-a®")] (Ref. 8) is plotted with the fraction of the in-
put signals survived k/N, (k=0,1,2...N, here N=4) within
the symmetric region in Fig. 3(b), where a varies from 0 to
1, € is the variance constant and e'=g/(1—a) (Ref. 8).
Therefore, to test collective memory, formulation used by
White ez al.® is directly implemented.

In Fig. 4(a), change in connectivity of the neural net is
plotted with time which shows that even if DRQs acquire
states randomly, their motion is always confined within a
sphere of diameter (number of molecule X dimension of mol-
ecule). For N=2, 3, and 4 molecules and for a given input
logic set, N input —N output neural net is realized. To develop
a general operational model, it is considered that a DRQ
neuron should produce a particular output with the fourth
power of the sigmoid probability function.

As classical QBMs have N input—one output configura-
tion, to model an N input—N output processing device, we
have parallely coupled N number of independent QBM nets.
Considering homogeneous coupling, the results of one QBM
is extrapolated to form a N input-N output neural net, this
approach leads to a generalized parallel processor. In Fig.
4(b), the probability of particular distribution [Fig. 2(c)] is
plotted with the ratio of input energy and exchange interac-
tion coefficient for four DRQ neurons. These parameters
are calculated as an output of QBM, where all molecules
interact following a Hubbard model (spin is replaced by an
imaginary electronic charge for the states 00=+2, 01=-1,
10=+1, and 11=-2), with the same interaction
coefficients.*” The sigmoid nature leads to a collective logi-
cal output of the N, N processing surface, which is an essen-
tial requirement to practically realize the peculiar brain func-
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FIG. 4. (Color online) (a) Change in logic states for four molecules in eight
events with 30% transparency for 2, 3, and 4 DRQ molecule. The radius of
these molecules is 4, 7, and 10 A, respectively. The scale bar is of 3.5 A.
White dots depict central position of DRQ molecules. (b) It shows the prob-
ability of particular state with the ratio of input energy (U) and exchange
interaction coefficient (J) for four DRQ neurons.

tion and the neural network formulation proposed by
Zhingulin7 and White et al.,} respectively.

Here, in a naturally formed thermodynamically quasi-
closed system, we have observed a DRQ based N input and
N output neural network which is essential for an emergent
logical operation. This operation has now been extended for
N=730 molecules, which increases the processing capability
of existing QBMs by several orders in magnitude. Thus, the
journey for molecular bioprocessing begins with the realiza-
tion of the smallest neural net generated by spontaneous in-
teractions of four DRQ molecular neurons.
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