
© 2013 Paul and Maji, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

International Journal of Nanomedicine 2013:8 (Suppl 1) 63–74

International Journal of Nanomedicine

Rough sets for in silico identification  
of differentially expressed miRNAs

Sushmita Paul

Pradipta Maji

Machine Intelligence Unit, Indian 
Statistical Institute, Kolkata, India

Correspondence: Pradipta Maji 
Machine Intelligence Unit, Indian 
Statistical Institute, 203, B T Road, 
Kolkata, 700108, India 
Email {sushmita_t,pmaji}@isical.ac.in

Abstract: The microRNAs, also known as miRNAs, are the class of small noncoding RNAs. 

They repress the expression of a gene posttranscriptionally. In effect, they regulate expression 

of a gene or protein. It has been observed that they play an important role in various cellular 

processes and thus help in carrying out normal functioning of a cell. However, dysregulation 

of miRNAs is found to be a major cause of a disease. Various studies have also shown the role 

of miRNAs in cancer and the utility of miRNAs for the diagnosis of cancer and other diseases. 

Unlike with mRNAs, a modest number of miRNAs might be sufficient to classify human cancers. 

However, the absence of a robust method to identify differentially expressed miRNAs makes 

this an open problem. In this regard, this paper presents a novel approach for in silico identifi-

cation of differentially expressed miRNAs from microarray expression data sets. It integrates 

judiciously the theory of rough sets and merit of the so-called B.632+ bootstrap error estimate. 

While rough sets select relevant and significant miRNAs from expression data, the B.632+ error 

rate minimizes the variability and bias of the derived results. The effectiveness of the proposed 

approach, along with a comparison with other related approaches, is demonstrated on several 

miRNA microarray expression data sets, using the support vector machine.
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Introduction
The microRNAs or miRNAs, a class of short, approximately 22-nucleotide, noncod-

ing RNAs found in many plants and animals, often act posttranscriptionally to inhibit 

mRNA expression. Hence, the miRNAs are related to diverse cellular processes and 

are regarded as important components of the gene regulatory network. Multiple reports 

have noted the utility of miRNAs for the diagnosis of cancer and other diseases. Unlike 

with mRNAs, a modest number of miRNAs, 200 in total, might be sufficient to classify 

human cancers.1,2 Moreover, the bead-based miRNA detection method has the attrac-

tive property of being not only accurate and specific, but also easy to implement in a 

routine clinical setting. In addition, unlike mRNAs, miRNAs remain largely intact in 

routinely collected, formalin-fixed, and paraffin-embedded specimens.2 Recent stud-

ies have also shown that miRNAs can be detected in serum.2 These studies offer the 

promise of utilizing miRNA screening via less invasive blood-based mechanisms. In 

addition, mature miRNAs are relatively stable. These phenomena make miRNAs supe-

rior molecular markers and targets for interrogation and as such, miRNA expression 

profiling can be utilized as a tool for cancer diagnosis and other diseases.

The functions of miRNAs have regulatory effects in various cellular functions. Just 

as miRNA is involved in the normal functioning of eukaryotic cells, so has  dysregulation 
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of miRNA been associated with disease.3 This indicates that 

these miRNAs can prove to be potential biomarkers for 

developing a diagnostic tool. Hence, in silico identification of 

differentially expressed miRNAs that target genes involved in 

diseases is necessary. These differentially expressed  miRNAs 

can be further used in developing effective diagnostic tools. 

Recently, a few studies were carried out to identify differ-

entially expressed miRNAs.4–8 However, the absence of a 

robust method of identification makes this an open problem. 

Hence, data sets are needed to be explored for understanding 

the complex biological activities of miRNAs.

A miRNA expression data set can be represented by an 

expression table or matrix, where each row corresponds to 

one particular miRNA, each column to a sample or time 

point, and each entry of the matrix is the measured expres-

sion level of a particular miRNA in a sample or time point, 

respectively. However, for microarray data, the number of 

training samples is typically very small, while the number 

of miRNAs is in the thousands. In general, it is not possible 

to use all available miRNAs to form the prediction rule of 

any classifier. Further, use of all the miRNAs might allow 

the noise associated with miRNAs of little or no discrimi-

natory power. In effect, this would also inhibit and degrade 

the performance of the prediction rule in its application to 

unclassified or test samples. In other words, although the 

apparent error rate, which is the proportion of the training 

samples misclassified by the prediction rule, will decrease 

as it is formed from more and more miRNAs, its error rate 

in classifying samples outside of the training set eventually 

will increase. That is, the generalization error of the predic-

tion rule will be increased if it is formed from a sufficiently 

large number of miRNAs. Hence, in practice, consideration 

has to be given to implement some procedure of feature 

selection for reducing the number of miRNAs to be used in 

constructing the prediction rule.9

The method called significance analysis of microarrays is 

used in several works10–15 to identify differentially expressed 

miRNAs. Different statistical tests are also employed to 

identify differentially expressed miRNAs.1,4–8,16–19 Xu et al20 

used the particle swarm optimization technique for selecting 

important miRNAs that contribute to the discrimination of 

different cancer types. However, the mutual information21 

or f-information22-based minimum redundancy-maximum 

relevance framework can also be used to select a set of nonre-

dundant and relevant miRNAs for sample classification.

One of the main problems in miRNA expression data 

analysis is uncertainty. Some of the sources of this uncertainty 

include imprecision in computations and vagueness in class 

definition. In this context, the rough set theory has gained 

popularity in modeling and propagating uncertainty. It deals 

with vagueness and incompleteness and is proposed for indis-

cernibility in classification, according to some  similarity.23 It 

has been applied successfully to feature selection of discrete 

valued data.24 Given a data set with discretized attribute val-

ues, it is possible to find a subset of the original attributes, 

using rough set theory, that are the most informative; all other 

attributes can be removed from the data set with minimal 

information loss. From the dimensionality reduction per-

spective, informative features are those that are most useful 

in determining classifications from their values.23,24 Rough 

set theory has been successfully applied to microarray data 

analysis.25–34

In general, the performance of the prediction rule gen-

erated by a classifier for a subset of selected miRNAs is 

evaluated by leave-one-out cross-validation (LOOCV) error. 

Given that the entire set of available samples is relatively 

small, in practice, one would like to make full use of all 

available samples in the miRNA selection and training of 

the prediction rule. But, if the LOOCV is calculated within 

the miRNA selection process, it has a selection bias when it 

is used as an estimate of the prediction error. The LOOCV 

error of the prediction rule obtained during the selection of 

the miRNAs provides a too optimistic estimate of the predic-

tion error rate. Hence, an external cross-validation should be 

undertaken subsequent to the miRNA selection process to 

correct for this selection bias. Alternatively, the bootstrap 

procedure can be used.35,36

Although, the LOOCV error with external cross valida-

tion is nearly unbiased, it can be highly variable in the sense 

that there is no guarantee that the same subset of miRNAs 

will be obtained as during the original training of the rule, 

on all the training samples. Indeed, with the huge number 

of miRNAs available, it generally will yield a subset of 

miRNAs that has at most, only a few miRNAs in common 

with the subset selected during the original training of the 

rule. Suitably defined bootstrap procedures can reduce the 

variability of the LOOCV error in addition to providing a 

direct assessment of variability for the estimated parameters 

in the prediction rule. However, the bootstrap approach 

overestimates the error. To reduce the weakness of both 

these approaches, Efron and Tibshirani introduced the 

concept of B.632+ error for correcting the upward bias in 

bootstrap error with the downwardly biased apparent error,35 

which is very much applicable for the data sets with small 

number of training samples and large number of features 

or miRNAs.
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In this regard, this paper presents a novel approach for 

in silico identification of differentially expressed miRNAs 

from expression data sets. It integrates the merit of the rough 

set–based feature-selection algorithm using a maximum rel-

evance maximum significance criterion (RSMRMS)29 and the 

concept of the so-called B.632+ error rate.35 The RSMRMS 

algorithm selects a subset of miRNAs from a data set by 

maximizing both relevance and significance of the selected 

miRNAs. It employs rough set theory to compute both the 

relevance and significance of the miRNAs. Hence, the only 

information required in the feature selection method is in the 

form of equivalence partitions for each miRNA, which can 

be automatically derived from the given microarray data set. 

This avoids the need for domain experts to provide informa-

tion on the data involved and ties in with the advantage of 

rough sets in that it requires no information other than the data 

set itself. On the other hand, the B.632+ error rate minimizes 

the variability and bias of the derived results. The support 

vector machine is used to compute the B.632+ error rate as 

well as several other types of error rates, as it maximizes the 

margin between data samples in different classes. The effec-

tiveness of the proposed approach, along with a comparison 

with other related approaches, is demonstrated on a set of 

miRNA expression data sets.

The paper is organized as follows: The next section 

reports a brief description of several miRNA data sets used 

in the current study, along with the proposed methodol-

ogy, which covers an overview of the rough sets, the rough 

set–based miRNA selection algorithm, fuzzy discretization 

method, the concept of the B.632+ error rate, and the support 

vector machine. Implementation details, experimental results, 

discussion, and a comparison among different algorithms 

are presented in the following section. Finally, concluding 

remarks are given.

Material and method
Data sets used
In the current research work, three publicly available miRNA 

expression data sets are used to establish the effectiveness 

of the proposed approach. Three miRNA expression data 

sets with accession numbers GSE17681, GSE17846, and 

GSE29352 were downloaded from Gene Expression Omni-

bus (http://www.ncbi.nlm.nih.gov/geo/). The first data set was 

generated to detect specific patterns of miRNAs in peripheral 

blood samples of lung cancer patients. As controls, blood of 

donors without known affection were tested. The number of 

miRNAs, samples, and classes in this data set are 866, 36, and 

two, respectively. The second data set represents the analysis 

of miRNA profiling in the peripheral blood samples of mul-

tiple sclerosis and in the blood of normal donors. It contains 

864 miRNAs, 41 samples, and two classes. In the third data 

set, miRNA expression profiles in pancreatic cystic tumors 

with low malignant potential (serous  microcystic adenomas) 

and high malignant potential (mucinous cystadenoma and 

intraductal papillary mucinous neoplasm [IPMN]) have been 

generated. These expression profiles are further compared in 

pancreatic ductal adenocarcinoma and carcinoma-ex-IPMN. 

The data set contains 43 samples, 885 miRNAs, and three 

classes.

Proposed method
The rough set–based proposed in silico approach is illustrated 

in Figure 1. It mainly consists of a rough set–based feature 

selection method (ie, RSMRMS), a support vector machine 

(SVM), and several types of error analysis parts, namely, 

apparent error (AE), bootstrap error (B1), no-information error 

(γ ), and B.632+ error. This section presents each of these top-

ics in detail, along with the basic notions of rough sets.

Rough sets

The theory of rough sets begins with the notion of an 

approximation space, which is a pair ,, ., where 

 = {x
1
, …, x

i
, …, x

n
} is a nonempty set, the universe of 

discourse, and  is a family of attributes, also called knowl-

edge in the universe. V is the value domain of A and f is an 

information function f:  ×  → V. An approximation space 

is also called an information system.23 Any subset  of knowl-

edge  defines an equivalence, also called indiscernibility, 

relation IND() on 

 IND() = {(x
i
,x

j
) ∈  × |∀

a
 ∈ ,f (x

i,
a) = f (x

j
,a)}.

If (x
i
, x

j
) ∈ IND(), then x

i
 and x

j
 are indiscernible by 

attributes from . The partition of  generated by IND() 

is denoted as

 U IND x x Ui i/ ( ) {[ ] : } = ∈ , (1)

where [x
i
] is the equivalence class containing x

i
. The ele-

ments in [x
i
] are indiscernible or equivalent with respect to 

knowledge . Equivalence classes, also termed as informa-

tion granules, are used to characterize arbitrary subsets of . 

The equivalence classes of IND() and the empty set φ are 

the elementary sets in the approximation space ,, ..

Given an arbitrary set X ⊆ , in general, it may not 

be possible to describe X precisely in ,, .. One may 
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characterize X by a pair of lower and upper approximations, 

defined as follows:23

 



( ) {[ ] | [ ] }

( ) [ ] | [ ] .

X x x X

X x x X

i i

i i

= ⊆

= ≠{ }
∪

∪

 

   

and

∩ φ  (2)

Hence, the lower approximation ( )X  is the union of all 

the elementary sets which are subsets of X, and the upper 

( )X  approximation is the union of all the elementary 

sets which have a nonempty intersection with X. The tuple 

< > ( ), ( )X X  is the representation of an ordinary set X 

in the approximation space ,, . or simply called the 

rough set of X. The lower (respectively, upper) approximation 

( )X  (respectively, ( )X ) is interpreted as the collection of 

those elements of  that definitely (respectively, possibly) 

belong to X. The lower approximation is also called a positive 

region sometimes, denoted as POS (X). A set X is said to be 

definable or exact in ,, . if  ( ) ( )X X= . Otherwise 

X is indefinable and termed as a rough set.

Definition 1: An information system ,, . is called a 

decision table if the attribute set  = ℂ ∪ , where ℂ is the 

condition attribute set and  is the decision attribute set. The 

dependency between ℂ and  can be defined as23

 γ ℂ
ℂ 

( )
| ( ) |

| |
,=

POS
 (3)

where POS X Xi iℂ  ℂ( ) ,= ∪  is the ith equivalence class 

induced by  and | ⋅ | denotes the cardinality of a set.

Definition 2: Given ℂ,  and an attribute  ∈ ℂ, the 

significance of the attribute  is defined as23

 σ γ γC ( , ) ( ) ( ).{ }  ℂ ℂ = − −  (4)

The change in dependency that arises when an attribute 

is removed from the set of condition attributes is a measure 

of the significance of the attribute. The higher the change in 

dependency, the more significant the attribute is. If the sig-

nificance is 0, then the attribute is dispensable.

RSMRMS algorithm

In real data analysis such as microarray data, the data set 

may contain a number of insignificant features. The pres-

ence of such irrelevant and insignificant features may lead 

to a reduction in the useful information. Ideally, the selected 

features should have high relevance to the classes and high 

significance in the feature set. The features with high rel-

evance are expected to be able to predict the classes of the 

samples. However, if insignificant features are present in the 

subset, they may reduce the prediction capability and may 

contain similar biological information. A feature set with 

high relevance and high significance enhances the predic-

tive capability. Accordingly, a measure is required that can 

enhance the effectiveness of the feature set. In this work, the 

rough set theory is used to select the relevant and significant 

miRNAs from high-dimensional microarray data sets.

Let ℂ = {
1
, …, 

i
, …, 

j
, …, 

m
} be the set of m miR-

NAs of a given microarray data set and  is the set of selected 

Bootstrap sample Bootstrap sample

miRNA

expression data

Training set

Test set

RSMRMS

RSMRMS

SVM

SVM

AE Prediction

rule

Training set

Test set

Bootstrap sample

Training set

Test set

RSMRMS

SVM

RSMRMS

SVM

Prediction

rule
Prediction

rule

RSMRMS

Randomly

changed

class labels

SVM

Prediction

rule

γ  error

Bootstrap error (B1)

B.632+ error

Prediction

rule

Figure 1 Schematic flow diagram of the proposed in silico approach for identification of differentially expressed miRNAs.
Abbreviations: miRNA, microRNA; RSMRMS, rough set–based maximum relevance maximum significance criterion; SVM, support vector machine; AE, apparent error;  

γ  error, no-information error.
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miRNAs. Define γi
() as the relevance of the miRNA 

i
 

with respect to the class labels , while σ
{i, j}

(, 
j
) is the 

significance of the miRNA 
j
 with respect to the set {

i
, 

j
}. 

The total relevance of all selected miRNAs is as follows:

  relev ii

=
∈∑ γ 

( ),
 (5)

while the total significance among the selected miRNAs is

  signf ji ii j

=
≠ ∈∑ σ { , }( , )  

 , (6)

Therefore, the problem of selecting a set  of relevant 

and significant miRNAs from the whole set ℂ of m miRNAs 

is equivalent to maximize both 
relev

 and 
signf

, that is, to 

maximize the objective function , where

   = +relev signfβ ,  (7)

ie A jii i ji j

, ( ) ( , ),{ , } = +
∈ ≠ ∈∑ ∑γ β σ     

  
(8)

where β is a weight parameter. To solve the above problem, 

a greedy algorithm is used.29 The relevance and significance 

of individual miRNA are calculated based on the theory 

of rough sets, using Equations 3 and 4, respectively. The 

weight parameter β in the RSMRMS algorithm regulates 

the relative importance of the significance of the candidate 

miRNA with respect to the already-selected miRNAs and 

the relevance with the output class. If β is zero, only the rel-

evance with the output class is considered for each miRNA 

selection. If β increases, this measure is incremented by a 

quantity proportional to the total significance, with respect 

to the already-selected miRNAs. The presence of a β value 

larger than zero is crucial in order to obtain good results. 

If the significance between miRNAs is not taken into 

account, selecting the miRNAs with the highest relevance 

with respect to the output class may tend to produce a set 

of redundant miRNAs that may leave out useful comple-

mentary information.

Fuzzy discretization

In miRNA expression data, the class labels of samples 

are represented by discrete symbols, while the expression 

values of miRNAs are continuous. Hence, to measure both 

relevance and significance of miRNAs using rough set 

theory, the continuous expression values of a miRNA have 

to be divided into several discrete partitions to generate 

equivalence classes.

In this regard, a fuzzy set–based discretization method is 

used to generate the equivalence classes required to compute 

both the relevance and significance of the miRNAs. The 

family of normal fuzzy sets produced by a fuzzy partition-

ing of the universe of discourse can play the role of fuzzy 

equivalence classes. Given a finite set , ℂ is a fuzzy condi-

tion attribute set in , which generates a fuzzy equivalence 

partition on . If c denotes the number of fuzzy equivalence 

classes generated by the fuzzy equivalence relation and n is 

the number of objects in , then c-partitions of  are sets of 

(cn) values { }µij

ℂ  that can be conveniently arrayed as a (c × n) 

matrix Mℂ
ℂ=  µij , which is denoted by

 Mℂ

ℂ ℂ

ℂ ℂ

=
















µ µ

µ µ

11 1

1


  



n

c cn

, (9)

where µij

ℂ ∈ [0, 1] represents the membership of object x
j
 in 

the ith fuzzy equivalence partition or class F
i
.27,37

Each row of the matrix Mℂ is a fuzzy equivalence 

partition or class. In the rough set–based feature selection 

method, the π function in one dimensional form is used to 

assign membership values to different fuzzy equivalence 

classes for the input miRNAs. A fuzzy set with member-

ship function π σ( ; , )x c  represents a set of points clustered 

around c, where

 π σ
σ

σ σ

σ

( ; , )

|| ||
|| ||

|| ||
x c

x c
x c

x c
=

−
−





≤ − ≤

−
−





2 1
2

1 2

2

for

 ≤ − ≤














2

0

0
2

for 

otherwise

|| ||

,

x c
σ

 (10)

where σ . 0 is the radius of the π function with c as the central 

point and || ⋅ || denotes the Euclidean norm. When the pattern 

x lies at the central point c of a class, then ||x − c|| = 0 and its 

membership value is maximum, that is, π σ( ; , )c c = 1. The 

membership value of a point decreases as its distance from the 

central point c (ie, ||x −c||) increases. When ||x −c|| = (σ/2), 

the membership value of x is 0.5, and this is called a cross-

over point.38 The (c × n) matrix Mi
, corresponding to the ith 

miRNA 
i
, can be calculated from the c-fuzzy equivalence 

classes of the objects x = {x
1
, …, x

j
, …, x

n
}, where

 µ
π σ

π σ
k

j k k

j l ll

cj

i

x c

x c

 =
( )

( )=∑
; ,

; ,
.

1

 (11)
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In effect, each position µk j

i  of the matrix Mi
 must satisfy 

the following conditions:

µ µk kk

c

jj

i

j

i ∈ = ∀
=∑[ , ]; ,0 1 1

1
 and for any value of k, if

 
s j k j k l lsj

i

j

i i= { } { } = { } >arg max , max max .µ µ µ  
then 0

After the generation of the matrix Mi
 corresponding 

to the miRNA 
i
, the object x

j
 is assigned to one of the c 

equivalence classes, based on the maximum value of mem-

berships of the object in different equivalence classes that 

follows next:

 
x Fj

k
k j

i∈ = { }℘ ℘; arg max .where µ

Each input real valued miRNA in quantitative form can 

be assigned to different fuzzy equivalence classes in terms 

of membership values, using the π fuzzy set with appropriate 

c  and σ. The centers and radii of the π functions along each 

miRNA axis are determined automatically from the distri-

bution of the training patterns. In the proposed RSMRMS 

algorithm, three fuzzy equivalence classes (c = 3), namely, 

low, medium, and high are considered. These three equiva-

lence classes correspond to underexpression, baseline, and 

overexpression of continuous valued miRNAs, respectively. 

Corresponding to the three fuzzy sets, low, medium, and high, 

the following relations hold:

 c c c c c clow i medium i high i1 2 3= = =( ); ( ); ( );  

 σ σ σ σ σ σ1 2 3= = =low i medium i high i( ); ( ); ( ).  

The parameters c  and σ of each π fuzzy set are computed 

according to the following procedure.39 Let mi be the mean 

of the objects x = {x
1
, …, x

j
, …, x

n
} along the ith miRNA 

i
. 

Then mil
 and mik

 are defined as the mean along the ith miRNA 

of the objects having coordinate values in the range [(
imin

, 

m
i
) and (m

i
, 

imax
)], respectively, where 

imax
 and 

imin
 denote 

the upper and lower bounds of the dynamic range of miRNA 


i
 for the training set. For the three fuzzy sets, low, medium, 

and high, the centers and corresponding radii are computed 

as follows:

 c m c m c mlow i i medium i i high i il k
( ) ; ( ) ; ( )  = = =

 

σ
σ

low i medium i low i

high i high i me

c c

c c

( ) ( ( ) ( ));

( ) ( ( )

  
 

= −
= −

2

2 ddium i

medium i

A

B

( ));

( ) ,



σ η= ×

where A A A c A

A c A A

low i i medium i

high i medium i

= −( ){
+ −

σ

σ

( ) ( )

( ) ( )

max

ii i iB A A
min max min

;( )} = −{ },

where η is a multiplicative parameter controlling the extent 

of the overlapping. The distribution of the patterns or objects 

along each miRNA axis is taken into account while comput-

ing the corresponding centers and radii of the fuzzy sets. 

Also, the amount of overlap between the three fuzzy sets 

can be different along the different axes, depending on the 

distribution of the objects or patterns.

B.632+ error rate

In order to minimize the variability and bias of derived result, 

the so-called B.632+ bootstrap approach35 is used, which is 

defined as follows:

 B. ( ) ,632 1 1+ = − +ω ωAE B  (12)

where AE denotes the proportion of the original training 

samples misclassified, termed as apparent error rate, and B1 

is the bootstrap error, defined as follows:

 B
n

I Q

I

k

M

jk jk

k

M

jk
j

n
1

1 1

1
1

=










=

=
=∑

Σ
Σ

 (13)

where n is the number of original samples and M is the num-

ber of bootstrap samples. If the sample x
j
 is not contained in 

the kth bootstrap sample, then I
jk
 = 1, otherwise 0.  Similarly, if 

x
j
 is misclassified, Q

jk
 = 1, otherwise 0. The weight parameter 

ω is given by

 ω =
−
0 632

1 0 368

.

.
;

r
 (14)

 where r
B AE

AE
=

−
−

1

γ
;  (15)

 
and γ = −

=∑ p qi ii

k
( );1

1

 (16)

where K is the number of classes, p
i
 is the proportion of the sam-

ples from the ith class, and q
i
 is the proportion of them assigned 

to the ith class. Also, γ  is termed as the no-information error 

rate that would apply if the distribution of the class-membership 

label of the sample x
j
 did not depend on its feature vector.

SVM
In the current study, the SVM40 is used to compute the 

B.632+ error rate. The SVM is a margin classifier that 
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draws an optimal hyperplane in the feature vector space; 

this defines a boundary that maximizes the margin between 

data samples in different classes, therefore leading to good 

generalization properties. A key factor in the SVM is to 

use kernels to construct a nonlinear decision boundary. In 

the present work, linear kernels are used. The source code 

of the SVM is downloaded from http://www.csie.ntu.edu.

tw/~cjlin/libsvm/.

Experimental results and discussions
In this section, the performance of the RSMRMS algorithm 

is compared with that of the mutual information based mini-

mum redundancy-maximum relevance (mRMR) algorithm,21 

on three miRNA microarray data sets. The fuzzy set–based 

discretization method is also compared with several other 

discretization methods.22,24 The margin classifier SVM40 is 

used to evaluate the performance of different algorithms. To 

compute the different types of error rates obtained using the 

SVM, the bootstrap approach is performed on each miRNA 

expression data set. For each training set, a set of differential 

miRNAs is first generated, and then the SVM is trained with 

the selected miRNAs. After the training, the information of 

miRNAs, those selected for the training set, is used to gen-

erate a test set, and then the class label of the test sample is 

predicted using the SVM. For each data set, the 50 (d = 50) 

top-ranked miRNAs are selected for the analysis.

Optimum values of parameters
The rough set–based miRNA selection algorithm uses the 

weight parameter β to control the relative importance of 

significance of a miRNA with respect to its relevance. On 

the other hand, the multiplicative parameter η controls the 

degree of overlapping between the three fuzzy sets that are 

used to generate fuzzy equivalence classes. Hence, the per-

formance of the proposed approach very much depends on 

both the parameters β and η.

The value of β is varied from 0.0 to 1.0, while the 

parameter η varies from 0.5 to 2.0. Extensive experimental 

results were obtained for all values of β and η on the three 

miRNA expression data sets. Figure 2 presents the variation 

of the B.632+ error rate obtained using the RSMRMS algo-

rithm for different values of β and η on the three miRNA 

data sets. From the results reported in Figure 2, it is seen 

that as the value of β increases, the B.632+ error of the SVM 

decreases. On the other hand, the error rate increases for very 

high or very low values of η. Table 1 presents the optimum 

values of β and η for which the minimal B.632+ error rate 

of the SVM is achieved. From the results reported in Table 1, 

it is seen that the proposed algorithm with β ≠ 0.0 provides 

a better result than that of β = 0.0, in all three cases, which 

justifies the importance of both the relevance and signifi-

cance criteria. The corresponding values of η indicate that 

very large or very small amounts of overlapping among the 

three equivalence classes of input miRNAs are found to be 

undesirable for β . 0.0.

Importance of B.632+ error rate
This section establishes the importance of using the B.632+ 

error rate over other types of errors, such as AE, γ , and B1. 

Different types of errors on each miRNA expression data 

set are calculated using the SVM for the proposed method. 

Figure 3 represents the various types of errors obtained by 

the proposed algorithm on the three miRNA expression data 

sets. From Figure 3, it is seen that different types of errors 

decrease as the number of selected miRNAs increases. For all 
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Figure 2 Variation of B.632+ error rate of the SVM with respect to multiplicative parameter η and weight parameter β.

Abbreviation: SVM, support vector machine.

Table 1 Optimum values of two parameters for three miRNA 

data

Parameter/data set GSE17681 GSE17846 GSE29352

Weight parameter β 1.0 0.5 1.0

Multiplicative parameter η 1.7 1.0 1.7

Abbreviation: miRNA, microRNA.
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Figure 3 Error rate of the SVM obtained using the RSMRMS algorithm averaged over 50 random splits.
Abbreviations: SVM, support vector machine; RSMRMS, rough set–based maximum relevance maximum significance; miRNA, microRNA; AE, apparent error; B1, bootstrap 

error; γ , no-information error; B.632+, B.632+ error.

Table 2 Comparative analysis of different errors

Error/no of  

miRNA

Microarray data sets

GSE17681 GSE17846 GSE29352

AE  

miRNA

0.000 0.000 0.000

8 2 17

B1 error  

miRNA

0.142 0.093 0.429

24 39 20

γ  error  

miRNA

0.423 0.441 0.455

4 1 23

B.632+ error  

miRNA

0.103 0.064 0.413

24 39 20

Abbreviations: AE error, apparent error; B1 error, bootstrap error; γ  error, no-

information error; B.632+, B.632+ error.

three data sets, the AE consistently attains the lowest value, 

while γ  has highest value. On the other hand, the B1 has a 

smaller error rate than γ  but is higher than the AE. Moreover, 

the B.632+ estimate has smaller error rate than the B1 but 

higher than the AE.

Table 2 reports the minimum values of different errors 

along with the number of required miRNAs to attain these 

values. From all the results reported in this table, it can be 

seen that the B.632+ estimator corrects the upward bias of B1 

and downward bias of AE. Also, it puts more weight on B1 in 

the situation where the amount of overfitting, as measured 

by (B1 − AE), is relatively large. It thus is applicable in the 

present context where the prediction rule generated by the 

SVM is overfitted.

Role of fuzzy discretization method
In the current study, the fuzzy set–based discretization 

method was used to generate equivalence classes or 

information granules, for computing the relevance and 

significance of miRNAs using the theory of rough sets. 

To establish the effectiveness of the fuzzy set–based 

discretization method over other discretization methods, 

extensive experimentation was done on three miRNA data 

sets. The methods compared were the mean and standard 

deviation–based method,22 the supervised discretization 

method,24 and the unsupervised discretization method.24 

Figure 4 reports the variation of several errors with respect 

to number of selected miRNAs, while Table 3 presents 

the minimum error values obtained using the different 

discretization methods. From all the results reported in 

Figure 4 and Table 3, it can be seen that the fuzzy set–

based discretion method performed better than the other 

discretization methods, irrespective of the types of errors 

and miRNA data sets used.

Comparative performance analysis
This section compares the performance of the mRMR and 

RSMRMS algorithms with respect to the various types of 

errors. Figure 5 presents the different error rates obtained by 

the mRMR and RSMRMS algorithms on the three miRNA 

expression data sets. From the figure, it is seen that in most 

cases, the different types of error rates were consistently 

lower for the RSMRMS algorithm compared with the mRMR 

method.

Finally, Table 4 compares the performance of the rough 

set–based proposed method with the best performance of 

the mRMR method. The results are presented based on the 

error rate of the SVM classifier obtained on the three miRNA 

microarray data sets. From the results reported in Table 4, it 

is seen that although the best AE for each miRNA data set 

was same for both algorithms, the RSMRMS achieved this 

value with a lower number of selected miRNAs than that 

obtained by the mRMR method. Also, the RSMRMS attained 
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Figure 4 Error rates of the SVM obtained using different discretization methods averaged over 50 random splits.
Abbreviations: SVM, support vector machine; miRNA, microRNA; AE, apparent error; B1, bootstrap error; γ , no-information error; B.632+, B.632+ error.

Table 3 Comparative performance analysis of different discretization methods

Microarray  

data sets

Discretization  

methods

AE B1 γ B.632+

Error miRNAs Error miRNAs Error miRNAs Error miRNAs

gSE17681 Mean-stddev 0.000 9 0.153 21 0.424 11 0.110 21

Supervised 0.139 20 0.351 17 0.423 3 0.319 17

Unsupervised 0.000 26 0.190 40 0.420 8 0.143 40

Fuzzy set based 0.000 8 0.142 24 0.423 4 0.103 24

gSE17846 Mean-stddev 0.000 2 0.098 41 0.462 17 0.067 41

Supervised 0.338 1 0.394 1 0.445 1 0.429 1

Unsupervised 0.000 15 0.129 43 0.450 4 0.091 43

Fuzzy set based 0.000 2 0.093 39 0.441 1 0.064 39

gSE29352 Mean-stddev 0.023 25 0.454 25 0.455 25 0.454 25

Supervised 0.000 23 0.454 22 0.454 22 0.454 22

Unsupervised 0.000 19 0.450 27 0.450 27 0.450 27

Fuzzy set based 0.000 17 0.429 20 0.455 23 0.413 20

Abbreviations: AE error, apparent error; B1 error, bootstrap error; γ  error, no-information error; B.632+, B.632+ error; miRNA, microRNA.
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Figure 5 Error rates of the SVM obtained using the mRMR and RSMRMS algorithms averaged over 50 random splits.
Abbreviations: SVM, support vector machine; mRMR, mutual information–based minimum redundancy-maximum relevance; RSMRMS, rough set–based maximum relevance 
maximum significance; miRNA, microRNA; AE, apparent error; B1, bootstrap error; γ , no-information error; B.632+, B.632+ error.

Table 4 Comparative performance analysis of mRMR and RSMRMS algorithms

Microarray  

data sets

Methods/ 

algorithms

AE B1 γ B.632+

Error miRNAs Error miRNAs Error miRNAs Error miRNAs

gSE17681 mRMR 0.000 10 0.175 28 0.414 13 0.130 28

RSMRMS 0.000 8 0.142 24 0.423 4 0.103 24

gSE17846 mRMR 0.000 3 0.101 48 0.441 1 0.069 49

RSMRMS 0.000 2 0.093 39 0.458 5 0.064 39

gSE29352 mRMR 0.000 21 0.430 43 0.447 32 0.420 43

RSMRMS 0.000 17 0.429 20 0.455 23 0.413 20

Abbreviations: mRMR, mutual information–based minimum redundancy-maximum relevance; RSMRMS, rough set–based maximum relevance maximum significance;  
AE, apparent error, B1, bootstrap error; γ , no-information error; B.632+, B.632+ error; miRNA, microRNA.

the lowest B.632+ bootstrap error rate, as well as B1 error 

rate, of the SVM classifier for all three miRNA data sets, 

with a lesser number of selected miRNAs.

The better performance of the RSMRMS algorithm was 

achieved due to the fact that it uses rough sets for computing 

both miRNA-class relevance and miRNA-miRNA signifi-

cance to select differentially expressed miRNAs. The lower 

and upper approximations of rough sets can effectively 

deal with incompleteness, vagueness, and uncertainty of 

the data set.
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Conclusion
This paper presents a novel approach for in silico identifica-

tion of differentially expressed miRNAs. It integrates judi-

ciously the merits of rough sets, SVM, and the B.632+ error 

rate for selecting relevant and significant miRNAs, which 

can classify samples into different classes with minimum 

error rate. The results obtained on three miRNA data sets 

demonstrate that the proposed method can bring a remarkable 

improvement to the miRNA selection problem, and therefore, 

can be a promising alternative to existing models for the 

prediction of class labels of samples. All the results reported 

in this paper demonstrate the feasibility and effectiveness of 

the proposed method. The new method is capable of identify-

ing effective miRNAs that may contribute to revealing the 

underlying etiology of a disease, providing a useful tool for 

exploratory analysis of miRNA data.
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