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Abstract 

Mixing in numerous medical and chemical applications, involving overly long 

microchannels, can be enhanced by inducing flow instabilities. The channel length, is thus 

shortened in the inertial microfluidics regime due to the enhanced mixing, thereby rendering 

the device compact and portable.  Motivated by the emerging applications of lab-on-a-CD 

based compact microfluidic devices, we analyze the linear stability of rotationally actuated 

microchannel flows commonly deployed for biochemical and biomedical applications. The 

solution of the coupled system of Orr-Sommerfeld (OS) and Squire (SQ) equations yields 

the growth rate and the neutral curve of the two types of instabilities: (i) the Tollmien-

Schlichting (TS) wave and (ii) the Coriolis force-driven instability. We report the existence 

of four distinct unstable modes (Modes I IV ) at low Reynolds numbers   Re ~100O of 

which only the existence of Mode I  is previously known for the present flow 

configuration. Furthermore, Modes I  and II  exhibit competing characteristics, signifying 

that Mode II  can also play an important role in the transition to turbulence. Modes III  and 

IV have relatively lower growth rates, but the associated normal velocity has an oscillatory 

nature near center of the channel. Thus, we infer that Modes III  and IV  might cause 

strong mixing locally by virtue of strong velocity perturbation in proximity to the interface; 

a scenario plausible if the channel is too short to allow for the amplification of Modes I  

and II . We quantify the potential of all the modes to induce such localized mixing near the 

interface using the notion of penetration depth. We also present an instability regime map 

obtained from the parametric study over a range of Reynolds numbers, Rotation numbers, 
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streamwise and spanwise wave numbers, to assist the design of efficient microchannels. 

Further insight into the mechanism of energy transfer, drawn from the evaluation of kinetic-

energy budget, reveals that the Reynolds stress first transfers energy from the mean flow to 

the streamwise velocity fluctuations. The Coriolis force, thereafter, redistributes the axial 

momentum into spanwise and wall-normal directions, generating the frequently observed 

roll-cell structures. A qualitative comparison of our predictions with reported experiments 

on roll-cells indicates co-existence of Modes I  and II . 

 

1. Introduction 

Mixing processes at the microscale play a key role in the progress of several chemical and 

biological reactions such as DNA hybridization (Wei et al. 2005), bioreactors ( Li 2008) and 

immuno-assays (Hatch et al. 2001). Such systems are typically characterized by low 

Reynolds numbers   1Re ~ O 1 ,Re : U
m h

D  , where the mean axial velocity is U
m , the 

hydraulic diameter of the microchannel is 
h

D and   is the viscosity of the fluid. Mixing is 

typically diffusion dominated (i.e.Peclet number,  ~ O 100Pe ) in a microchannel, and 

therefore a slow process. The mixing length varies linearly with the Peclet number 

( )Pe (Stroock 2002), and therefore the resulting design for micro channels is often beyond 

practically acceptable requirements (Liu et al. 2000)
,
(Steigert et al. 2005). The hastening of 

the mixing process is thus important for further development of microchannel devices. 

Enhanced mixing at such small scales is achieved by a plethora of techniques 

(Erdogan & Chatwin 1967; Berger et al. 1983; Jiang et al. 2004; Sudarsan & Ugaz 2006), 

mostly based on introducing a secondary flow caused by inertial forces. Rotationally actuated 

micro-fluidic devices, like Lab-on-a-CD platform (see figure 1), are inherently adept at 

generating secondary flows by virtue of the Coriolis force. The advantages are many (Burger 

et al. 2012), for instance: (i) versatility with specimen irrespective of the fluid properties like 

viscosity, conductivity, (ii) uncomplicated geometry unlike Dean force-based devices which 

require specialized micro-fabrication (Bertsch et al. 2001; Kim et al. 2004), (iii) simple rotor 

actuation mechanism, thus making the device ideal for low cost environs. Configurations, 

where the Coriolis force overwhelms the centrifugal force, are used in practice to enhance 

micro-mixing by triggering instabilities (Madou et al. 2006; Madou et al. 2001; Ducrée et al. 

2007; Chakraborty & Chakraborty 2010). Hence, a clearer understanding of the destabilizing 

effect of the Coriolis force in a CD-based platform can lead to more precise and effective 
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designs. In this context, our study lies at the intersection of inertial microfluidics and linear 

stability theory. 

Figure 1 illustrates a rotating microchannel flow where the incepted instability leads to 

intense mixing. Experiments and subsequent theoretical calculations (Chakraborty et al. 

2011) reveal that the ratio of Coriolis force to the centrifugal force    governs the extent of 

mixing achieved in such flows. The authors report that molecular diffusion dominates at low 

rotational speed because Coriolis force is lower than the centrifugal force. Mixing due to a 

streaky instability gets prominence when the rotational speed is such that   exceeds 1.35 , 

and the transverse Coriolis force is large enough to setup a secondary flow. Numerical 

simulations of Roy et al. (2013) indicate that increasing the channel aspect ratio leads to a 

non-monotonic behavior in the critical rotational Reynolds number 
,cr

Re  at which the 

secondary flow sets in, with the lowest corresponding to a square channel. These 

observations raise question as to how the Coriolis force destabilizes the flow. 

             In order to understand and answer the question better, we briefly review the linear 

stability of rotating microchannel flows. Plane Poiseuille flow, known to be stable until 

Reynolds number 3848.15 (Orszag 1971), when subjected to even a minor spanwise 

perturbation, becomes unstable at very low Reynolds number ( Re 88.53
cr
 (Lezius & 

Johnston 1976) and 100 (Alfredsson & Persson 1989)) in the presence of spanwise rotation. 

The transitional and turbulent rotating channel flows are marked by the appearance of streaky 

or streamwise oriented roll-cell structures (Chakraborty et al. 2011; Lezius & Johnston 1976; 

Matsson & Alfredsson 1990; Grundestam et al. 2008; Kristoffersen & Andersson 1993)  

which have been attributed to the Coriolis force. Indeed, the wavelength of the steady roll-

cell instability can be predicted using linear stability theory (Matsson & Alfredsson 1990). 

Intriguingly, the roll-cell structures are gradually eliminated with an increase in the rotational 

speed (Alfredsson & Persson 1989; Wall & Nagata 2006).  
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Figure 1. Schematic of the Lab-on-CD device showing transition to turbulence due to roll-

cells. 

Despite the experimental and theoretical investigations by researchers, a complete 

understanding of the Coriolis force induced roll cell instability (i.e. Coriolis instability) has 

failed to emerge and there are questions yet to be answered. For instance, how does a 

variation in the rotation rate affect the growth of roll-cells, or how does fluid viscosity 

influence the neutral curve for the Coriolis instability, can there be multiple unstable modes 

and can they co-exist? Is there a competition between the multiple unstable modes emerging 

from the Coriolis instability? Furthermore, the precise energy transfer mechanism, which 

excites the roll-cells, is also unclear.  The development of design guidelines, hitherto lacking, 

for microchannels using Lab-on-CD technique, rests on our understanding of such 

instabilities. In order to answer these fundamental queries and develop a theoretical 

understanding of the effect of Coriolis force, we conduct a linear stability analysis of a 

rotationally actuated flow. 

Our analysis reveals the existence of four unstable modes  Type I IV , triggered by 

the Coriolis force, at various Reynolds and Rotational numbers. The Type I  and II   modes 

are regularly spaced roll-cells exhibiting mode competition. Type III  and IV  modes have 

a twisted roll-cell like structure and have lower growth rates although they are more 

effectively participating in micromixing process. Examination of the kinetic energy 

distribution provides insight into the physical mechanism by which the roll-cells extract 

energy from the mean flow. We make a qualitative comparison with the experimental results 

of Alfredsson & Persson (1989), with the predictions of the theoretical model. The 

comparison reveals that roll-cell like structures can be predicted by the model, but more 

importantly indicates that there may be multiple unstable modes co-existing in the flow. The 
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presence of multiple modes can alter the transition path and thereby have significant impact 

on the mixing process. A regime diagram delineates about the modes induced by the Coriolis 

force at small rotation number to guide the development of precisely designed microchannels.  

The article is organized as follows: In section 2, we present the mathematical 

formulation of the problem and the linearized Navier-Stokes equations are discussed. In 

section 3 we present the stability results. Then, in section 4, we present the energy budget 

calculation and energy transfer mechanism for the system under consideration. In section 5, 

we compare our numerical results with experimental results of Alfredsson & Persson (1989). 

We also provide design guidelines for microchannels in section 6. We finally summarize our 

calculations in section 7.         

 

2. Mathematical Formulation  

2.1 Base flow 

The linear stability of a Newtonian, incompressible, pressure-driven laminar channel flow 

with a spanwise system of rotation (Alfredsson & Persson 1989; Lezius & Johnston 1976; 

Wallin et al. 2013)  is considered. The fluid has density   and kinematic viscosity /   . 

A schematic diagram of the flow in a Cartesian coordinates is illustrated in figure 1. The co-

ordinate axes x and y are placed along the streamwise and cross-streamwise flow directions, 

respectively, and the entire system is rotating about the z axis. The dimensional form of the 

governing equations is: 

 . 0u    (1) 

    21 2
.

m

u
u u p u u

t


 


        


  (2)  

where u , p ,  22 2 ( )m mp p p x y     ,  and  are the velocity vector, static pressure 

modified pressure, density, kinematic viscosity of the flow system and angular speed of the 

rotating channel, respectively. The last term in the momentum equation signifies the effect of 

the Coriolis force. We use the width of the channel ( )hD as the length scale, the average 

velocity as the velocity scale. 
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The problem admits a steady, parallel, fully developed base-flow described bythe non-

dimensional expression 2
( ) 3 2(1 )U y y  . A further discussion on the modified pressure 

distribution in such systems is provided by Liu et al. (2008). 

2.2 The linear stability equations 

Following the modal linear stability approach, we perturb the base state velocity ( ( ),0,0)U y  

and modified base pressure 
m

p  with an infinitesimal three-dimensional disturbance 

( , , , )u v w p , and linearize the governing equations with reference to the disturbance. The 

resulting perturbed flow is governed by the following set of linearized mass and momentum 

balance equations in the reference frame of the microchannel,
 

 0
u v w

x y z

  
  

  
  (3) 

 21
2

u u dU p
U v u v

t x dy x



  

       
  

  (4) 

 21
2

v v p
U v u

t x y



  

      
  

  (5) 

 21w w p
U w

t x z



  

    
  

  (6) 

The no-slip and no-penetration boundary conditions are applied at the walls ( ),hy D 
 

  ( ) ( ) 0h h hu D v D w D        (7)                                    

Further, the equations (3)-(6)are recast into a set of coupled differential equations in terms of 

wall-normal velocity v  and wall-normal vorticity : u z w x      .  In order to analyze the 

linear stability of the system, we invoke the normal-mode assumption, 

  
( , , , ) ( )

exp
( , , , ) ( )

x z

v x y z t v y
i k x k z t

x y z t y


 
   

        
   

  (8)                                    

Where ~ denotes eigen function of wall normal velocity and vorticity and ,x zk k  are the 

streamwise and spanwise wave numbers, and   is the frequency of the disturbances. Finally, 

we have, 
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OS C

C SQ

L Fv v

L Lt  
    

           
  (9) 

Wherein , the operators, 

 
2

;OS x xL ik U ik U
Re

c zF iRok
        (10) 

  ; SQ xC z L ik U
Re

L ik U Ro


       (11) 

      1 1 1 0.v Dv         (12) 

with D d dy ,
2 2 2

x zD k k   , Reynolds number Re
h

UD  and the rotation number 

hRo D U , respectively. The matrix equation (9) solved together with the boundary 

conditions (12) is an fourth order eigen value problem solved using a Chebyshev spectral 

collocation method following the numerical procedure outlined by Trefethen (2000). 

 

3. Results and Discussions 

3.1 Validation of the mathematical model  

We have validated our numerical code against the results of Wallin et al. (2013) and 

(Alfredsson & Persson 1989). Wallin et al. (2013) studied the laminarization of a turbulent 

rotating plane channel flow and reported the stability of crossflow modes at large Reynolds 

numbers. Figure 2(a) shows that our code is able to reproduce the neutral stability curve of 

Wallin et al. (2013) for the crossflow modes in 
z

k Ro  plane. Similarly, the neutral stability 

curve in Re
z

k   plane predicted by Alfredsson & Persson (1989) using spatial stability 

theory for the stationary roll-cells (for zero frequency) is also captured by our code in by 

setting 0
i

   figure 2(b). 
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3.2 Modal instabilities and regime diagram 

In congruence with the earlier results (Lezius & Johnston 1976, Alfredsson & Persson 1989), 

we find the existence of one unstable mode for low Reynolds numbers  (100)O , which we 

refer to as Type I  instability. However as the Reynolds number is increased to reach 

approximately 200 , we find the emergence of another unstable mode that we refer to as 

Type II  instability. The Type II  instability has not yet been reported for this configuration 

at low Reynolds numbers. 

In addition, we have found two more unstable modes, namely Type III  and Type IV , 

which too have no precedents in literature. Figure 3(a) presents the eigenvalue spectrum for 

Reynolds number 1228.0Re   and rotation number 0.15Ro  , wherein all the four modes 

  Type I IV  are unstable and may co-exist in the flow. Type I  mode has the highest 

growth rate ( )
i

  followed byType II , Type III  and Type IV  modes with nearly equal 

phase speeds. In figure 3(b) we show the eigenspectrum for 0.0
x

k  , where 

  Type I IV modes exist but the phase speed is zero, confirming that the roll cells formed 

are essentially standing waves (Alfredsson & Persson 1989). Furthermore, all the four 

unstable modes   Type I IV  are driven by the Coriolis force and are not shear instabilities. 

This conclusion is drawn from figure 3(c) where we observe that the unstable modes cease to 

exist when Coriolis force is removed by setting 0Ro  . 

Figure 2. .Neutral stability curves for rotating channel flow: (a)comparison with 

Wallin et.al. (2013), (b) comparison with Alfredsson & Persson (1989). In figure (a) 

10800, 0.0xRe k  ; symbols are used to show the results of Wallin et al., (2013), 

and in (b) 0.5, 0.0xRo k   with Alfredsson & Persson (1989). 
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The eigenfunction of normal velocity and vorticity associated with  Type I IV  modes is 

shown in figure 3(d).  

We observe that the eigenfunctions  ,v   for the four unstable modes have a very distinct 

character in the wall-normal direction in figure 3(d). The length-scale in the wall-normal 

direction decreases, alternatively the wall-normal wavenumber increases, as we move from 

modes Type I  to Type IV . We expect that the associated viscous dissipation term might 

increase too, which would usually lead a reduction in the growth rate as observed in figure 

3(b).We show that indeed the viscous dissipation is enhanced progressively from Type I  to 

Type IV  modes in table 1 of section 4  where we discuss the magnitude of the various 

terms of the kinetic energy equation. 

Another interesting aspect of these instabilities is the region over which the instability is 

present. We observe that the eigenfunction is largely restricted to the upper half of the  
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Figure 3. (a) Eigenvalue spectrum at 1228Re  , 0.15Ro   and 0.15, 6.5
zx

k k  ,   (In the inset 

four unstable eigenmodes). (b) Eigenfunctions for the unstable eigenmodes  Type I IV , 

corresponds the wall normal velocity ( )v . Solid, dashed and gray lines present real, imaginary  and 

absolute values of eigenfunctions respectively. (c) Eigenvalue spectrum at   1228Re  ,   0.0Ro   

and 0.15
x

k  , 6.5
z

k   (All modes are stable).Eigen functions for above mentioned parameters for 

(d) anticlockwise rotation & (e) clockwise rotation.   
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channel for all the modes while the tendency to penetrate into the lower half increases from 

Type I  to Type IV  with the wall-normal wavenumber. To understand the effect of 

Coriolis force we plotted the eigenfunctions in figure 3(e) for clockwise rotation keeping rest 

of the parameters identical as in figure 3(d). We observe that the eigenfunctions are restricted 

to the lower half of the wall. This confirms that the disturbances largely depend on the 

direction of rotation, i.e. Coriolis force. 

 

3.2.1 Structure of Type I-IV modes 

We now examine the effect of streamwise and spanwise wavenumber variation on the 

perturbation velocity field. Figures 4(a) to (d) show the structure of the perturbation field for 

Type I  to Type IV  modes respectively. We observe that roll-cells corresponding to the 

instabilities are essentially streamwise oriented vortices and exhibit greater number of twists 

in the wall-normal direction as we move from Type I  to Type IV  modes. However, the 

twists vanish when we set  0
x

k  , as can be seen on the right pane of figures 4(a) to 

(d)where the disturbance form a two-dimensional standing wave. The twisting of the roll-

cells is not entirely obvious from the flow visualization images reported by Alfredsson and 

Persson because they have obtained the images in a particular plane. However the three-

dimensional disturbance flow field exhibits clearly the twisting nature of the roll-cells. The 

greater number of twists indicates that Type III  and Type IV  modes might be more 

effective in causing mixing. We also notice that the twisting modes penetrate less into the 

lower half of the channel compared to the two-dimensional modes. Similar observations 

about the presence of two-dimensional roll-cells near the channel centreline can be made in 

the figures of the secondary flow reported by (Speziale & Thangam 1983). 

 

3.3 Reynolds and rotation number dependence 

We analyse the effect of varying Reynolds number on the neutral stability curve for the 

fastest growing instability in the z
k Ro  plane as shown in figure 5(a) for the two-

dimensional disturbances by setting  0
x

k  . The Type I  mode is the dominant instability 

for two-dimensional cases and we observe that there exists an island like unstable region in 

the z
k Ro  plane. The size of this region gradually increases as the Reynolds number 

increases. Furthermore, the inset of figure 5(a) reveals that the critical (0.01))Ro O is very 
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low and progressively reduces as the Reynolds number increases while the critical spanwise 

wavenumber remains almost constant. The observations indicate that the Type I  mode is  

 

 

 

(a) 

(c) 

(b) 

(d) 
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Figure 4. The structure of roll cells formed due to the existence of (a) Type I , (b) ,Type II ,(c) 

Type III  & (d) Type IV  instability. The used parameters are 0.15,
x

k   (left column),  0.0,  

(right column) 7.5, 1228.0,
z

k Re   and 0.15.Ro   

essentially an inviscid instability mechanism, unlike the Tollmien-Schlichting mode. Indeed, 

the gradient Richardson number for rotating flows, * '( ) 0B Ro Ro U    ((Bradshaw 1969), 

(Wallin et al. 2013)) determines the stability for inviscid flows. Our analysis is in agreement 

with prediction of the invscid criterion because a reduction in magnitude of the viscous terms 

yields a neutral curve with the limiting values of the critical Ro  approaching the 0  and '
U . 

We refer to the lower bound as the sub-critical Ro  and the upper bound as the super-

critcal Ro  and for most microfluidics applications the former is of concern. We report the 

variation of sub-critical Ro  with Reynolds number in section 6  dedicated to micro-channel 

design guidelines. 

However, as we increase the streamwise wavenumber from 0
x

k   to 1.2
x

k   ,we observe 

that the neutral stability curve has a develops a discontinuity in the gradient as shown by the 

symbol A  region of figure 5(b). The discontinuity vanishes if we increase the streamwise 

wavenumber such that 1.9
x

k  . Faller (1991)(Faller 1991) also reported similar type of 

discontinuity for the flow over a rotating disk. The discontinuity arises because of mode 

competition between Type I  and Type II  modes. In essence, the growth rate of the 

Type II  mode dominates over the growth rate of Type I  mode for a range of streamwise 

wave numbers. Therefore , a discontinuity in the gradient arises because of the intersection of 

the neutral stability curve of Type I  and Type II . This is a novel finding and could 

potentially be beneficial in triggering early transition in microfluidic channels by introducing 

three-dimensional perturbations. 

 

  

(b) 

A 

Figure 5. (a) Neutral curves for different Reynolds number Re  with 0
x

k  . An island of 

unstable zone has been observed (Onset of the instability is shown by the inset figure). (b) 

Neutral curves as a function of streamwise wave number 0,  1.2,  ( 1.9)
x

k   at  1228Re  . 

(a) 
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3.3.1 Mode competition 

The growth rate of Type I IV  instabilities over a range of spanwise wave number 
z

k   for 

 1228.0Re   and  0.15Ro   for two different values of streamwise wave number 

 0.15, 1.2
x x

k k   is shown in figures 6  (a) and (b) respectively. For three-dimensional 

disturbances, the maximum growth rate of all the four modes, shown by circles, lies in a 

narrow band of  
z

k  7.9242 9.4091
z

k  . The growth rate of Type I  instability dominates 

over all other instabilities for three-dimensional disturbance. The same is observed if we 

change the above said parameters. At higher streamwise wavenumber, the three dimensional 

instabilities are in contrast to lower streamwise disturbances  x
k ; in figure 9(b) we observe 

mode competition between Type I  and Type II  for 1.2
x

k  . Notably, Type II  mode 

dominates over Type I  mode for a set of  
z

k  value, and thereby can potentially contribute to 

the roll-cell instability reported in the experiments previously (Alfredsson & Persson). Figure 

9(b) also confirms the fact that by increasing streamwise wave number we can suppress 

the ,Type III Type IV   instability. A higher streamwise wave number also reduces the 

growth rate of Type I  and Type II  modes, and perhaps could be beneficial in controlling 

the extent of mixing in centrifugal microfluidic devices. 

  

Figure 6. Growth rate curves for x
k  (a) 0.15  and (b) 1.2 . Other parameters are 

Re 1228.0,Ro 0.15   respectively. In figure (a) Type I  solid line represents, dashed line 

Type II , dotted line Type III  and dash dot line Type IV . 

 

(a) (b) 

5.626
z

k  5.626
z

k   
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4. Energy Budget and Instability Mechanism 

In the previous subsection we found the existence of mode competition wherein Type II  

instability can dominate over Type I .  The observation is however counterintuitive because 

the eigenfunction of Type II  instability has a higher wavenumber in the wall-normal 

direction compared to Type I  suggesting that viscous dissipation might be a dominant 

phenomenon for Type II  instability.  Hence in order to understand how does Type II  

instability overwhelm the growth of Type I  instability we examine the kinetic energy 

equation following the procedure described by (Faller 1991). In order to proceed we must 

first identify the mechanism by which the energy of the base flow is passed over to the roll-

cells and the role of Coriolis force in the process of energy transfer. The kinetic energy 

equation can be expressed as in equations (13) and (14), 

 

2 2 2
' ' '

21 1

2 Re

,

I II
III

IV

dU u u u
u dxdydz u v dxdydz dxdydz

t dy x y z

Ro u v dxdydz

                                

 

  


 (13) 

 

 

2 2 2
' ' '

2 2

2 2 2
' ' '

1 1

2 Re
V

VI

IV

v v v

x y z
v w dxdydz dxdydz

t
w w w

x y z

Ro u v dxdydz

                               
                              

 

 

 .

  (14) 

wherein the kinetic energy  . .K E  of the disturbance field is decomposed into(a) kinetic 

energy of the streamwise component  .
u

K E  and (b) kinetic energy of the roll-cells 

 .
vw

K E in order to highlight the role of Coriolis force. In eq. (13), the term I  represents the 

rate of change of . .K E  originating from the x -component of the disturbed flow and the term 

V represents the rate of change of . .K E  induced by overturning cells. Following Faller’s 
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(1991)(Faller 1991) notation, we denote term I  as .
u

K E  and the term V  as .
vw

K E  and 

therefore, the total amount of disturbance kinetic energy inside the flow is 

. .  .  .
u vw

K E K E K E  . In equation (13), term II  represents the transfer of energy from the 

base flow to the perturbed flow, known as the Production/Reynolds stress term. Term IV  

appears in eq. (13) and (14) with a change in sign and illustrates the energy transfer because 

of the Coriolis force from production term to the kinetic energy of the roll-cells. Terms III , 

VI  in equations (13) and (14) denote the viscous dissipation terms which are always negative. 

The flowchart in figure 7  summarizes the flow of energy from base flow to the overturning 

cells for all the four unstable modes. The Production term extracts energy from the mean flow 

and transfers partially to .
u

K E  and the Coriolis term and the rest is lost to viscous dissipation. 

The Coriolis term thereafter transfers, all the energy from production term, to .
vw

K E  and 

viscous dissipation. The role of the Coriolis term is thus clarified by the decomposition of the 

total kinetic energy equation into equations (13) and (14).  

 

Figure 7. Flow chart of energy transfer for the channel flow in a rotating platform. 

In table 1 and fig. 8 (a)-(d) we have shown the terms of the kinetic energy equation and the 

corresponding variation in the wall normal direction for  Types I IV  instabilities. The 

Type I  instability extracts energy from the base flow most efficiently using the production 

term compared to the other modes (see fig. 8(a)-(d)) and thus is able to transfer a significant 

fraction to the Coriolis term which in turn sustains the overturning cells and therefore has the 

highest growth rate. This mechanism of energy transfer is observed in the other instabilities 

too. However, as move from Type II  to Type IV  instability the production term 

diminishes and the dissipation terms 
u

Diss , 
vw

Diss  increase in magnitude due to the higher 

wall-normal wavenumber (see fig. 8(b)-(d)), progressively suppressing the growth rate. It is 
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also interesting to note that the higher modes like Type III  and IV  persist deeper into the 

channel compared to Type I . This behaviour is reminiscent of the notion of penetration 

depth introduced by Jacobs & Durbin (1998) and subsequently explained by ZAKI & SAHA 

(2009).  

Further, it appears that the leading order terms of magnitude, in table. 1 are the production 

and .
u

K E
 
for Type I  instability while u

Diss
 
is a higher order term; however, for Type IV  

instability the production and u
Diss  contribute to the leading order in the energy equation. 

This implies that relative to Type I , the Type IV  instability has a Coriolis force which is 

able to transfer a greater portion of the production term to the overturning cells and the 

kinetic energy in the streamwise velocity reduces (see fig. 8(a)–(d)). Indeed, all the unstable 

modes amplify only because of the Coriolis term. In absence of the Coriolis term no unstable 

mode exists for spanwise perturbations for the given rotation and Reynolds number as 

observed in Fig. 3(c). We thus conclude that all the modes are driven by the Coriolis force.   

Mode Growth 

rate 

 i
  

Producti

on 
.

u
K E  Coriolis .

vw
K E  u

Diss  vw
Diss  

Type I  0.37174559
 

10.750884
 

8.472732
 

1.628246
 

0.690161  1.448784
 

0.1391412
 

Type II
 

0.22380689
 

7.479152
 

4.798398
 

1.385525
 

0.5056563
 

1.965839
 

0.2092014
 

Type III
 

0.11093088
 

6.328904
 

2.636803
 

1.289553
 

0.3260593
 

3.022627
 

0.3435847
 

Type IV
 

0.01100349
 

5.006776
 

0.4153594
 

1.057479
 

0.05830904
 

4.040684
 

0.4924215
 

Table 1. Components of the kinetic energy equation for  Types I IV  instabilities for 

1228,  0.15Re Ro   and 7.9, 0.15
z x

k k  . 
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Figure 8. Energy budget for four different mode (a) Type I , (b) Type II , (c) 

Type III and (d) Type IV . Black lines represents production term, blue solid and dashed 

lines represents .
u

K E  and .
vw

K E  respectively, red lines Coriolis terms and gray lines are for 

dissipation terms. 

4.1 Kinetic energy budget for mode competition 

We now examine the energy transfer mechanism for competing modes in Tables 2(a), 4(b) 

and 2(c) corresponding to dominance of Type I   over Type II , nearly equal growth rate of 

Type I  over Type II , and dominance of Type II   over Type I  respectively. In table 

(a),we note that the ratio of .
vw

K E  to Coriolis term is higher for Type I  compared to 

Type II . In table (b),where mode crossing appears, the ratio of .
vw

K E  to Coriolis term is 

almost equal for both the modes  &Type I II , even though the amount of energy 

transferred by the production term to the Coriolis term and consequently to .
vw

K E  may differ 

in magnitude. In table (c),where Type II  dominates, we observe the production of Type I  

is lower compared to Type II  but the Coriolis term is larger in Type I  than Type II . 

Consequently the .
vw

K E  is also smaller for Type II  compared to Type I  in absolute terms 

and yet Type II  instability dominates over Type I . However, the Coriolis term 

contributes relatively more to .
vw

K E  of Type II  as compared to Type I  and is therefore a 

better measure for predicting the growth rate. It is also worth noting that the Type II  

instability is distinct from that of the Type II  mode reported by Faller (1991)(Faller 1991) 

because the direction of energy transfer of the Coriolis terms is reversed.   

 

(a) (b) (c) (d) 
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Growth 

rate 

 i
  

Production .
u

K E  Coriolis .
vw

K E  u
Diss  vw

Diss  

0.013778  42.8054  3.07160  13.0694  1.10248  28.8522  9.7663  

0.00264  35.6142  0.433512  4.6510  0.0785807  29.4965  5.60573  

0.024360  39.130  4.59742  12.2093  1.57402  24.9431  8.01568  

0.024356  32.6816  3.32818  4.24807  0.54239  24.5482  4.25972  

0.034775  26.2807  3.7627  8.5555  1.1525  16.612  4.7536  

0.076878  28.4572  7.24541  3.6430  0.91001  17.831 2.4707  

Table 2 Energy integrands: Production term, viscous dissipation and energy transfer due to 

Coriolis force are shown for 1.2
x

k   and 5.626
z

k   instabilities when  1228Re   and 

0.15Ro  . 

 

5. Assessment with experiments 

We examine the experimental results of Alfredsson & Persson (1989) to trace signatures of 

the Coriolis force driven instabilities found in our analysis. We find some signs of the 

presence of Type I  and Type II  instabilities from the flow visualization images reported 

by Alfredsson & Persson (1989) by comparing them to the predictions of linear stability 

theory. For instance, we observe that both Type I  and Type II  modes are unstable (see 

fig. 9 and 10(a)) at   590,    0.015Re Ro  . Moreover, the most amplified spanwise 

wavenumber is  4.6
z

k   for the Type I  (see fig. 10(b)) instability while that observed in 

the flow visualization image yields 3.9
z

k   which are reasonably close. If we set the 

spanwise and streamwise wavenumber equal to that observed in the flow visualization image 

(indicated by the cross in fig. 9.), we find that the associated mode shapes resemble the flow 

visualization image of Alfredsson & Persson (1989) in figure 11 (a)-(c). However, it is not 

possible to decipher from the flow visualization image as to which mode has a greater 

contribution to the instability observed in the experiment because the x z  plane views at the 

mid plane of the instabilities look identical. Alternatively, it is possible that both instabilities 

co-exist and lead to “large-scale wavy fluctuations and twisting” of the roll-cells, observed in 

the experiments, at a downstream location due to non-linear effects. In order to distinguish, 

the dominant contribution from which mode, one must examine the roll-cells in the x y  

(a) 

(b) 

(c) 
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plane as shown in fig. 12 (a)-(b).The inclination to the horizontal of both, Type I  and 

Type II  modes is indicated which reveals that the latter has a stronger streamwise 

component. The precise contribution will however be determined by the make-up of the 

upstream disturbances. Video recordings of Alfredsson & Persson (1989) suggested the 

presence of waviness in the flow-field which propagates downstream at nearly half the 

undisturbed centreline velocity. The r
  for Type I  instability is 0.15134808  and for 

Type II  instability is 0.16579894  and has a stronger streamwise velocity at the mid-plane 

compared to Type I  instability. Indeed, the phase speed of Type I  and Type II  

instabilities seem to match this description; an observation which might have escaped the 

Alfredsson & Persson (1989) because they considered only steady disturbances. We are 

therefore prompted to believe that Type I  and Type II  instabilities might both have co-

existed in the experiments of Alfredsson & Persson (1989)(Alfredsson & Persson 1989). 

 

Figure 9. Comparison with experiment for 590.0Re   and 0.015Ro  . Most unstable wave 

number of the disturbance: from experiment 3.9
z

k   and from linear stability theory 

 4.6
z

k  . 
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(b) (a) 

Figure 10. (a) The plot of eigen value spectrum with parameters for 590Re   and 

0.015Ro   and  0.15,    3.9.
x z

k k   The r
  for Type I  instability 0.15134808  is   and 

for Type II  instability is 0.16579894 . (b) a plot of growth rate  i z
k   for the above 

parameters  Re 590.0,Ro 0.015,k 0.15
x

   . 

Figure 11. (a) Flow field in axial direction by Alfredsson & Persson (1989); (b) Flow field 

forType I  instability, and (c) Flow field for Type II  instability. Reynolds number and 

rotation number for the flow is 590.0Re   and 0.015Ro  . 

(a) 

(b) 

(c) 

(a) (b) 

Figure 12. Structure of the roll cell formed due to (a) Type I  instability & (b) Type II  instability. 
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6. Microchannel design guideline 

The regime diagram furnished below can help in designing a centrifugal microfluidic device, 

which need a strong instability to enhance the mixing process. The occurrence of four 

different types of instabilities mechanism in Ro Re  plane is investigated for a wide range of 

spanwise and streamwise wavenumber.  Figure 13(a) is drawn in Ro Re  plane in order to 

assess clearly the influence of Reynolds and rotation number on the unstable modes. 

Type I  instability (which is well known in the literature) exists in very low Reynolds 

number, as low as ~100Re , which is confirmed with our regime diagram. However, 

Type II  instability comes into existence at Reynolds number approximately 200 . 

Type III  and Type IV  instability, however, comes into existence at much higher 

Reynolds number. From the figure, we observe that four types of instability mechanism can 

coexist at higher Reynolds number and very low rotation number (as low as ~ 0.05Ro ). We 

computed the penetration depth    for different modes of instability in figure 13(b). The 

penetration depth for four different modes of the instability is defined as 
1

2
p

h

vdy
D




  , 

where p  is the location of the interface. This effectively calculates the modes responsible for 

efficient mixing in microscale for the centrifugal microfluidic device for the Reynolds 

number and rotation number considered. The typical time scale for mixing microchannel is 

several minutes and hence by exploiting the four modes of instability the efficient mixing 

time can be reduced considerably (Kuo & Jiang 2014). From the figure 13(b), we can see the 

penetration depth for normal velocity is highest for Type IV  instability and lowest for 

Type I  instability for four different penetration depth 0.0,0.5,0.75,1.0p  . Thus, for 

typical microchannel flow, even if the growth rate of Type I  instability is higher, in the 

short time scale, Type IV  instability can be effective for micromixing process. 

It is essential to mention that the slow-moving modes ( ,Type III IV ) of instability 

may play an important part in keeping the faster modes ( ,Type I II ) of instability at higher 

excited state and so, more unstable at higher spanwise wave number. The role played by 

Type III and Type IV  instability for the considered flow may be to is to destabilize the 

flow configuration for much higher and wider range of 
z

k . First two modes are achieving 

stronger growth ( )
i

  due to the co-existence of unstable ,Type III IV  modes (see figure 
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14), which will effectively enhance the mixing effect at much smaller time scale. However, 

the phase speed and growth rate cannot be increased indefinitely. The most excited mode 

attains an optimal growth depending on 
z

k  and other parameters, when all four unstable 

modes are present. 

 

Figure 13. (a) Regime diagram, showing the presence of different modal instabilities in the 

Re Ro  plane, and (b) penetration depth    for different modes of instability. 

 Type I IV   instability is represented by solid, dashed, dotted and dash dotted line 

respectively. 

 

Figure 14. Occurrence of unstable modes for 
z

k = 0.50 ,1.5 , 4.5 , 6.5 ,15.0  and 20.0 (figure (a) 

to (f)). Other parameters are 0.15,Re 1228.0,Ro 0.15
x

k     respectively. 

(a) 

(b) 

(a) (b) (c) 

(e) (d) (f) 
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7. Summary and conclusions 

We have considered the steady fully developed plane Poiseuille flow through a 

channel subjected to system rotation about the spanwise direction. A temporal stability 

analysis has been performed using Chebyshev spectral collocation method to investigate the 

effect of spanwise disturbance on the flow thorough microfluidic channel. In particular, the 

influence of Coriolis force on the linear stability of the rotating microchannel flow 

susceptible to spanwise disturbances and the effect on micro mixing has been studied. The 

important observations from the present study are: 

1.   The results related to temporal stability analysis reveal the existence of four 

different types of instable modes, namelyType I IV , at low streamwise wavenumber, 

originating from an energy transfer mechanism that hinges upon the Coriolis force. The 

regime diagram in Ro Re  plane (figure 13(a)) supports the view that the four instabilities 

can coexist at high Reynolds numbers and small rotation numbers. Among the said modes, 

the two fastest growing modes, namely Type I  and Type II  mode, show prominent mode 

competition for certain range of parameters (figures 6(b)).To understand the effect of Coriolis 

force in the formation of roll-cells and the mode competition, a kinetic energy budget 

analysis was carried out. Results suggest that the rate of change in kinetic energy, that itself 

depends primarily on the relative contribution of the Coriolis force term to the kinetic energy 

of the roll-cells, is responsible for the observed competition of modes. 

2.  Investigation related to the structure of roll-cells that forms due to four different unstable 

eigenmodes (see figure 4) disclose that the  Type I  instability shows regularly spaced roll cell 

structure. The structure of  Type II  instability has a higher wavenumber is the wall normal 

direction and further flow-visualization studies might help identify the presence of this mode. 

However, the structures of Type III  and Type IV  instabilities are very resembling. Their 

structure displays twisted and wavy pattern in the mean flow direction of the roll cells. 

3.   We have compared our linear stability results with the experiment of Alfredsson & 

Persson (1989). Our results show very good agreement for most unstable spanwise wave 

number with the experimental results. A qualitative assessment of flow field in the axial 

direction has been performed. The considered flow simulated using eigen functions of  

Type I  and Type II  instabilities, shows identical character with that of the flow field 

observed in the experiment conducted by Alfredsson & Persson (1989). The results related to 
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the marginal stability curve in laminar Plane Poiseuille flow with a spanwise system of 

rotation suggest a superposition of two different unstable eigenmodes. 

Inferences drawn from the above observations would be far reaching. For instance, if 

an experiment is conducted in the above said system with a specified value of streamwise and 

spanwise disturbance, we can trigger Type II  instability instead of Type I instability for 

which micro mixing may take place better. We also throw light on more realistic estimates of 

the Type III  and Type IV instability and their contribution towards overall instability and 

mixing behaviour, an effect of which was not considered in the earlier investigations.  
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