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HIGHLIGHTS

• Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.

• Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.

• The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactiva-

tion are highlighted.

ABSTRACT Room-temperature gas sensors have aroused great 

attention in current gas sensor technology because of deemed 

demand of cheap, low power consumption and portable sensors for 

rapidly growing Internet of things applications. As an important 

approach, light illumination has been exploited for room-temper-

ature operation with improving gas sensor’s attributes including 

sensitivity, speed and selectivity. This review provides an over-

view of the utilization of photoactivated nanomaterials in gas sens-

ing field. First, recent advances in gas sensing of some exciting 

different nanostructures and hybrids of metal oxide semiconduc-

tors under light illumination are highlighted. Later, excellent gas 

sensing performance of emerging two-dimensional materials-

based sensors under light illumination is discussed in details with 

proposed gas sensing mechanism. Originated impressive features 

from the interaction of photons with sensing materials are eluci-

dated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current 

and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
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1 Introduction

Over the past decades, room-temperature (RT) gas sensor 

device has been shown great research interest in the realm 

of advanced electronic devices. Due to detection of toxic 

gases and volatile organic compounds (VOCs), the sensors 

are exploited in many different kind of applications, such 

as air quality and industry processing monitoring, agricul-

ture production, medical diagnosis and space [1, 2]. Vari-

ous types of gas sensors such as electrochemical, optical, 

acoustic and conductometric, etc., have been explored in gas 

sensing field [3–7]. Among these sensors, resistive or field-

effect transistor (FET) sensors are nowadays demanded in 

this nanotechnology era because of its easy fabrication, pos-

sible miniaturization, low cost and simple operation [8–12]. 

Moreover, different materials such as semiconducting metal 

oxides, carbon nanotubes (CNTs) and most emerging two-

dimensional (2D) materials have been employed for devel-

oping resistive gas sensors [13–16].

Metal oxide semiconductors (MOS) have been long inves-

tigated for chemiresistive gas sensors since 1960 s [17]. This 

type of gas sensors usually works at an elevated tempera-

ture in the range of 200–500 °C, which requires a heater 

in the sensor device. Thermal energy is needed to activate 

the adsorption of ionized oxygen species and to overcome 

the barriers of sensing reactions [18–20]. However, the high 

working temperatures can lead to some drawbacks. It may 

deteriorate the working life of a sensor, increase fabrication 

complexity and cause decay of sensor sensitivity due to the 

thermally induced ripening of nanoparticles. Consequently, 

enormous research efforts have been dedicated to the devel-

opment of gas sensors that can work at low temperature, 

or even RT. In this regard, light activation is a promising 

method as an alternative to thermal heating. The illumina-

tion of MOS with a light such as UV can change the sur-

face electronic properties by modulating the concentration 

of photocarriers in MOS, hence promoting the interaction 

between molecules and sensing layers. It has been widely 

studied to improve the sensor sensitivity of various MOS at 

RT. In addition, light activation is also very useful to opti-

mize the sensor selectivity and response–recovery speed. 

This topic has been recently discussed in some reviews and 

book chapters [21–23]. Here, we will summarize the most 

recent advances obtained in light-activated RT MOS sensors 

within the past few years.

On the other hand, emerging 2D materials have garnered 

enormous attention for developing high-performance RT 

chemiresistive gas sensor owing to its high surface-to-volume 

ratio and excellent physical or chemical properties [24–27]. 

First, 2D material-based chemiresistive gas sensor was fab-

ricated using prominent 2D material graphene in [28]. The 

graphene gas sensor exhibited excellent sensitivity to gases 

even to detect single gas molecule at RT. This significant 

research has led exploitation of the increasing number of 2D 

materials in gas sensing field [24, 29–31]. Despite the RT 

operation with high sensitivity, slow response and incom-

plete recovery at RT limit its usage on commercial sensing 

platforms. In this regard, thermal energy was used to achieve 

fast response and complete recovery; however, it deteriorates 

the gas sensitivity of 2D material-based gas sensors [32–35]. 

Moreover, integration of thermal energy source with the sen-

sor also introduces drawbacks as mentioned above for metal 

oxide gas sensor. On the other hand, the light source has also 

been utilized to address slow response/recovery kinetics of 2D 

materials gas sensors. Photoactivation has been improved the 

response/recovery time and also enhanced the gas sensitivity 

of the sensor at RT. Besides, it is also used for optimizing the 

selectivity of the 2D materials sensors. Thus, light activation 

is a very useful tool to optimize the sensor’s figure of merits 

including sensitivity, selectivity, speed and stability.

In this review, we discussed RT gas sensors using photo-

activated materials. This review has been divided into two 

sections related to sensing materials: semiconducting metal 

oxide, and 2D materials including graphene and layered 

materials  (MoS2,  MoTe2,  WS2,  SnS2,  ReS2, MXenes, etc.). 

Firstly, we focus on recent progress in gas sensing of some 

exciting different nanostructures and hybrids of the metal 

oxide semiconductors at RT under light illumination. Sec-

ondly, we discussed the gas sensing performance of emerg-

ing 2D materials under light illumination with proposed gas 

sensing mechanism. Finally, we explained current construc-

tive insights and future perspective in the exploitation of 

photons in gas sensing field.

2  Considerations of Selection of Light Source

Although light activation is an efficient method to improve 

the sensor performances, it is still quite difficult to tell 

which kind of light is most powerful towards detection of a 
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particular molecule. This is reflected by the large amount of 

works reported so far, from which a general consent on the 

correlations between the light activation, sensor structure 

and materials selection is still missing.

Undoubtedly, the sensing properties are a complex interac-

tion between sensor materials, gaseous molecules and light 

illumination. It is widely considered that the light illumination 

can change the surface carrier density of sensing materials by 

exciting electrons from the valence band of semiconductors. 

On the one hand, the bandgap of the semiconductors should 

be a matter of concern when choosing a light source. For 

example,  SnO2 has a wide bandgap of 3.5 eV, implying this 

material can only be activated by light with a higher photon 

energy in the UV region. Probably this is why most reports of 

 SnO2 sensors have been activated under UV light. In princi-

ple,  TiO2 and ZnO materials with a moderate bandgap of ca. 

3.2 eV should be active under the light illumination with a 

wavelength shorter than 388 nm, i.e., UV light. As reported by 

Kim et al. [36], the UV light (λ ≤ 382 nm) was found to result 

in the most significant decrease in the resistance of ZnO films 

due to generation of photoexcited electrons compared to the 

blue (λ ≤ 439 nm) and green (λ ≤ 525 nm) lights. However, 

this does not guarantee the best sensor response to NO, which 

was otherwise obtained under irradiation of blue light. It is 

also noted that the best sensing dynamics have been achieved 

under UV illumination. When PbS with a small bandgap of 

0.41 eV is attached to ZnO, the sensor can be activated by 

near-infrared light illumination (λ = 850 nm) with a minimum 

photon energy or detection of  NO2 [37]. On the other hand, the 

choice of light source is also related to the molecule structure. 

It was reported that the ZnO was not sensitive to benzene and 

toluene under 365 nm UV irradiation, but could be sensitive 

under 254 nm UV irradiation [38]. This is ascribed to the aro-

matic ring structure with a high stability, which needs a high 

photon energy to initiate the sensing reactions. Li et al. [39] 

showed that ZnO under UV light was very selective to formal-

dehyde against other molecules including methanol, acetone, 

toluene, benzene and ethanol. They attributed the sensitivity to 

the larger polarity of formaldehyde. In addition, ketone com-

pounds change its behaviour from a weak reducing to a weak 

oxidizing agent under lower wavelength of 254 nm UV irra-

diation. So, the  MoTe2 sensor showed different negative and 

positive response to ketone compounds under 365 and 254 nm 

light irradiation at RT, respectively [40].

In the following parts, we will present a detailed discussion 

on the sensor performances under photoactivation of gas sen-

sors based on MOS, and 2D materials.

3  Photoactivated Metal Oxide 

Semiconductors

3.1  ZnO

ZnO nanostructures have been reported to have improved 

sensor sensitivity or selectivity to multiple gases under 

photoactivation. For gas sensors, UV illumination was 

initially found to largely improve the conductance of ZnO 

nanowires in the presence of  O2 due to the increased car-

rier density, as a result of the capture of photoexcited holes 

by the oxygen ions  (O2
−, O–−, or  O2−) [41]. Costello and 

co-workers previously demonstrated that the UV illumi-

nation successfully resulted in the RT sensitivity of ZnO 

thick film sensors for detection of VOCs [42]. It is rather 

impressive that the sensor was able to detect acetone and 

acetaldehyde at an extremely low concentration (1 ppb). 

According to this report, a tunable sensitivity of the sen-

sor was obtained on the varied UV light intensity, and it 

is also possible to tune the sensor selectivity by changing 

the light intensity.

In another work, Fan et al. studied the effects of UV 

illumination on the hydrogen sensing performance of ZnO 

thin films at RT [43]. They found that the sensor sensitiv-

ity and the response–recovery speed were improved by 

UV illumination. A mechanism investigation revealed that 

pre-chemisorbed oxygen ions  (O2
−) on ZnO surface are 

thermally stable at RT and these are unreactive in dark 

condition owing to its high adsorption energy. However, 

holes generated by UV light react with intrinsic chem-

isorbed oxygen ions (O2
-) and desorb these from ZnO sur-

face. While photogenerated electrons promote the addi-

tional oxygen adsorption and formation of the new highly 

reactive photoinduced oxygen ions (O2
-), which are respon-

sible for the RT gas sensing through performing redox 

reaction with target analyte at RT. Moreover, some of the 

gas molecules react with photoexcited electrons/holes 

through direct adsorption on the sensing material surface. 

This sensing mechanism has been widely used to explain 

the sensing properties of MOS under photoactivation. 



 Nano-Micro Lett. (2020) 12:164164 Page 4 of 37

https://doi.org/10.1007/s40820-020-00503-4© The authors

However, a consistent general sensing mechanism of MOS 

under light illumination has not been appeared yet . UV 

illumination was also used by Duan et al. to improve the 

 NO2 sensing performances of ZnO porous thin films at 

RT [44]. The thickness-dependent responses were dem-

onstrated under UV irradiation. The ZnO porous thin film 

with a thickness of ca. 1500 nm showed the best response 

compared to other thickness. They claimed the thickness-

dependent responses were due to the gradual decrease of 

photogenerated carrier concentration in the film, which is 

highly related to the penetration depth of the incident UV 

light. This finding is meaningful to the design of sens-

ing layers with appropriate thickness in order to achieve a 

high response. Furthermore, Cui and co-workers studied 

the effect of structural properties of ZnO on gas sensing 

under UV light illumination [45]. They synthesized ZnO 

nanofibers by electrospinning, and nanoplates as well as 

nanoflowers of ZnO were synthesized by hydrothermal 

method, and SEM images are shown in Fig. 1a–c. It was 

observed that ZnO nanofibers exhibited about 6.7 times 

higher sensitivity to formaldehyde compared to ZnO nano-

plates and about 2.5 times higher than that of ZnO nano-

flowers, respectively, under 365 nm UV light (Fig. 1d). 

This enhanced sensitivity of ZnO nanofibers was attributed 

to their more reactive sites on surface and polycrystal-

line structure with large number of grain boundaries and 

sensing mechanism is shown Fig. 1e. In addition, Peng 

et al. demonstrated sensing behaviour of ZnO nanorods to 

formaldehyde under UV illumination at RT [46]. The ZnO 

nanorods showed about 120 times higher sensitivity under 

UV light compared to that without UV light illumination.

A reliable selectivity to formaldehyde with low detection 

limit of 1.8 ppm was because of better photocatalytic oxi-

dation of formaldehyde through absorbed oxygen ions on 

nanorods surface. The photocatalytic reaction is stimulated 

by photogenerated charge carrier efficiency; however, this 

efficiency decreases with decrease in size of sensing material. 

So, optimized size of ZnO nanorods with higher surface-to-

volume ratio as well as maximum photogenerated carrier effi-

ciency showed high sensitivity to formaldehyde at RT under 
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UV light illumination [47]. To further enhance the photogen-

erated charge carrier efficiency by forming heterojunctions 

in sensing material, Li et al. demonstrated sensing charac-

teristics of  SnO2/ZnO nanofibers heterojunctions under UV 

light irradiation at RT [39]. The nanofibers heterojunctions 

increase carrier lifetime of photogenerated electron–hole 

pairs via avoiding recombination, which enhances the redox 

reaction during sensing. As a result, the  SnO2/ZnO sensor 

exhibited higher selective sensitivity to formaldehyde at RT.

Synergic interaction between noble metal catalyst and 

photo-UV illumination has been explored to improve the sen-

sor sensitivity. Kumar and co-workers achieved RT sensor 

performances from Au-modified ZnO networks to hydrogen 

under UV illumination [48]. The sensor exhibited a response 

of ~ 21.5% to 5 ppm hydrogen, while no response was 

recorded without UV illumination. The RT sensor response 

was due to the UV photoactivation enhanced the adsorption 

of ionized oxygen species and the d-band electron transition 

from Au to ZnO. UV light-activated flexible gas sensor based 

on ZnO materials has been reported [49, 50]. For example, 

nanoarrays of Au-modified ZnO nanorods have been shown 

by Joshi et al to have stable and reproducible performances 

for detection of  O3 under UV illumination [50]. The ZnO 

nanorods arrays were hydrothermally grown on a poly (ethyl-

ene terephthalate) substrate to fabricate a flexible sensor. The 

ZnO sensor is not able to recover to its baseline resistance. 

The UV illumination plays a crucial role in promoting the 

sensor recovery. The complete recovery observed under UV 

irradiation is due to the accelerated reaction rate because UV 

light can provide sufficient energy to desorb the chemisorbed 

oxygen species on ZnO surfaces. Due to the formation of a 

nano-Schottky barrier at the Au/ZnO interface and the cata-

lytic spillover effect of Au, the flexible Au/ZnO exhibited a 

high response of 108 to 30 ppb under UV illumination, which 

is much higher than that of ZnO. The depletion layer formed 

on the surface of ZnO increases the electrical resistance of 

the sensor. When the sensor is illuminated by UV light, many 

electron–hole pairs are generated because the photon energy 

is higher than the bandgap of ZnO. The reactions of pho-

togenerated holes with oxygen species  (O2
−) will desorb the 

oxygen species from the ZnO surface, and the surface deple-

tion layer is narrowed. Upon exposure to  O3, the adsorption 

of  O3 molecules on ZnO will consume the photogenerated 

electrons, thus causing the expansion of the surface depletion 

layer and the increase of the sensor resistance (Tables 1, 2, 3).   

In addition to UV, visible lights such as blue, green and 

red, as well as the mixed monochromatic, i.e., white light, 

are also frequently explored to enhance the sensor perfor-

mances. The visible light activation provides higher energy 

efficiency and lager potential for gas sensors because of their 

wide spectrum range in the sunlight [51, 52]. Due to the dif-

ferent photon energy, the influence of different visible lights 

on the electronic properties and the sensor properties can 

be modulated. Kim and co-workers studied the I–V curves 

(Fig. 2a) of ZnO films in dark and various wavelength light 

irradiation and found that higher photon energy generated 

the higher current, which is due to the photoexcitation of 

electron–hole pairs in the film [36]. However, their gas sens-

ing measurements revealed that the blue light irradiation 

exhibited the highest response (Fig. 2b), combined with Au 

catalytic effect greatly enhanced the NO response rate, and 

it is also observed that the response–recovery speed is also 

highly dependent on the wavelength of the lights.

Apart from the catalytic effect of noble metals, the con-

cept of localized surface plasmon resonance (LSPR) was 

also utilized to develop high-performance gas sensors at RT 

[53, 54]. The introduction of LSPR effect into noble metal/

MOS hybrids greatly expands the research in photoactivated 

gas sensors. Xu et al. studied the sensing performance to 

ethanol of Au/ZnO nanowires under white light illumination 

at RT [54]. They found light illumination and Au decoration 

jointly led to the enhanced gas sensing results. However, as 

shown in Fig. 2c, the Au nanoparticles are observed to play 

a dominant role in the enhanced sensing. They attributed the 

promotion effect to the LSPR effect of Au. The LSPR effect 

not only enhanced the light absorption but also suppress 

the recombination of photogenerated electron–hole pairs. 

The hot electrons in Au generated by the LSPR absorption 

can overcome the Schottky barrier at Au/ZnO junctions and 

inject into the conduction band of ZnO (Fig. 2d). As a result, 

more surface-adsorbed oxygen species will be formed on the 

surface of ZnO to trigger more intense sensing reactions.

Tai and co-workers investigated the sensitivities of Ag/

ZnO sensors to  NO2 gas (0.5–5 ppm) under various light 

(365–520 nm) illumination [55]. They also studied the load-

ing level of Ag on the photoactivated sensor performance. 

The best response towards  NO2 detection was obtained on 

the 3 mol% Ag/ZnO sensor under blue-green illumina-

tion with a wavelength of 470 nm (Fig. 2e). It is revealed 

in Fig. 2f that the varied light with different wavelength 
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generally improves the sensor sensitivity, but this improve-

ment is also related to the Ag loadings.

Apart from the noble metals, another photosensitizer such 

as quantum dots such as PdS [37] and CdSe [56] has been 

also functionalized on MOS to achieve better performance 

under photoactivation. The quantum dots are typically nar-

row bandgap semiconductors, e.g., 0.41 eV of PbS. When 

attached to MOS, the quantum dots serve as a photosensi-

tizer to shift the optical adsorption range of MOS to higher 

wavelengths. On photoexcitation, the free electrons in quan-

tum dots can migrate into the conduction band of MOS [57]. 

Xiang et al. studied the  NO2 sensing performances of ZnO/

PbS nanocomposites with different PbS densities near-infra-

red light (NIR) illumination (λ = 850 nm) [37]. As displayed 

in Fig. 3a, the ZnO/PbS-2 with medium PdS loading (∼ 2%) 

possesses the maximum response. The enhanced  NO2 sens-

ing performances of ZnO/PbS under NIR illumination are 

due to the increased carrier concentration in ZnO nanorods. 

The electron transfer from PbS to ZnO has been evidenced 

by the photoluminescence spectra (Fig. 3b) and I–V tests.

Although quantum dots of metal chalcogenides are effec-

tive in promoting the sensor performance, they suffer from 

Table 1  Summary of metal oxide gas sensors to various gases under photoactivation at room temperature

Material Gas Sensitivity or response Light source Response/ recovery time Detection limit References

ZnO nanoparticles Acetone – 400 nm –/– 1 ppb [42]

ZnO nanoline 100 m  H2 1.5% 365 nm > 10 min – [43]

ZnO 50 ppm  NO2 15 365 nm – – [44]

ZnO nanofiber 100 ppm HCHO 12.61 365 nm 32/17 s – [45]

ZnO nanorods 200 ppm Formaldehyde 16.87 370 nm 14/0.5 min 1.8 ppm [46]

SnO2/ZnO nanofibers 50 ppm HCHO 2.3 365 nm – – [39]

ZnO 5 ppm  H2 21.5% 365 nm 4/24 s – [48]

ZnO nanorod 30 ppb Ozone 44% 370 nm –/– 30 ppb [50]

Gold-ZnO 30 ppb Ozone 108% 370 nm 13.2/28.79 s 30 ppb [50]

In2O3-ZnO 100 ppm HCHO 419% 460 nm –/– 5 ppm [51]

ZnO 10 ppm NO 14 439 –/– 1 ppm [36]

ZnO/ Au NP 6 ppm NOx 78% White 110/100 s 550 ppb [53]

Au-ZnO 500 ppm Ethanol 62 White –/– 1 ppm [54]

ZnO-Ag nanoparticles 5 ppm  NO2 1.545 470 nm 150/50 s < 500 ppb [55]

ZnO/PbS 1 ppm  NO2 118–122% 850 nm 3/4 min 26 ppb [37]

CdSe/ZnO 0–0.5 ppm  NO2 0.7–0.8 535 nm –/– – [56]

ZnO/In2O3 0.7 ppm  NO2 117 365 nm 100/31 s – [58]

ZnO/g-C3N4 7 ppm  NO2 44.8 460 nm 142/190 s 38 ppb [59]

SnO2 NO2 300% 365 nm 2/4 min – [63]

Pd/SnO2 NO2 3.4 ×  103 365 nm 2.8/16 min – [65]

Pd/SnO2 5 ppm  NO2 3000 365 nm –/48 s – [66]

SnO2 monolayer array 5 ppm  NO2 5 365 nm 7/25 s 0.1 ppm [67]

ZnO-SnO2 20 ppb Ozone 8 325 nm 13/90 s 20 ppb [68]

SnO2/ZnO 30 ppm Formaldehyde 40 365 nm 36/73 s 1.91 ppb [69]

LaOCl-SnO2 250 ppm  O2 2.25 380 nm 182/1315 s – [71]

TiO2 microsphere 5 ppm Formaldehyde 40 365 nm 40/50 s 124 ppb [75]

TiO2@NGQD 100 ppm NO 31.1% 365 nm 235/285 s – [76]

In2O3 4 ppm  NO2 8 400 nm – – [77]

In2O3 50 ppm NO 40 365 nm 10 s/4 min – [78]

In2O3 nanorod 800 ppb  NO2 14.9 365 nm 14/32 s – [79]

In2O3 50 ppm  NO2 219 365 nm 89/80 s – [80]

WO3 160 ppb  NO2 4 400 nm 20/42.5 min – [52]

WO3 400 ppb  NO2 92 430 nm 51/60 min – [82]

PdO-WO3 40 ppm  H2 8.02 Visible 2.1/5.8 min 5 ppm [83]
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high toxicity of Pd and Cd. Alternatively, the Lu group 

reported the use of ZnO-based composite nanomaterials 

for photoactivated gas sensors [58, 59. For example, they 

proposed the use of graphitic carbon nitride (g-C3N4) with 

a bandgap of 2.7 eV as the photosensitizer to enhance the 

ZnO sensors under the illumination of visible lights. As can 

be seen in Fig. 3c, the ZnO/g-C3N4-10 wt% shows the best 

response to  NO2 and fast response–recovery characteristics 

(Fig. 3d) when activated by 460 nm visible light. It also 

reveals that the response of all ZnO/g-C3N4 composites to 

 NO2 generally improves with the increase in wavelength.

Photoactivation of gas sensors enables the detection of 

gaseous molecules at RT; however, the progress discussed 

above generally used an external light source like Xe-lamps 

or LEDs. The power consumption of such devices can be 

down to sub-milliwatts. To fulfil the future development of 

the Internet of things (IOTs), miniaturized sensors with an 

integrated light source with an ultralow-power consumption 

are highly urgent. Recently, several groups have reported an 

appealing monolithic integration form of photoactive sen-

sors, in which a micro-LED with a power down to micro-

watts is mounted with the sensing films. This kind of sensor 

device has some merits that are not available from the exter-

nal light-activated sensors such as much lower power, more 

uniform irradiation of the sensor materials and higher pho-

ton energy efficiency.

Figure 4a–d exhibits an integrated gas sensor with ZnO 

nanoparticle film deposited on a micro-LED with a distance 

of a few hundred nanometres [60]. The sensor is activated 

with a visible light (emitting at 455 nm) at RT. The sensor 

shows a response of 20% to 25 ppb  NO2 at an ultralow-power 

of 30 μW and can be improved to 94% at 200 μW. A fully 

recoverable detection of  NO2 ranging from 25 ppb to 1 ppm is 

also shown in Fig. 4f. Park and co-workers recently reported a 

monolithic photoactivated gas sensor based on ZnO nanowires 

grown on a micro-LED, as shown in Fig. 4g, h [61]. Under 

the activation of UV light of 390 nm, the sensor resistance is 

observed to increase with the  NO2 concentration in the range 

of 0.25-2 ppm at an operating power of 190 μW. The calibra-

tion of sensor response in Fig. 4j reveals a LOD of 14.9 ppb 

to  NO2. Although these micro-LED integrated gas sensors 

have low power consumption, the sensor response dynamics 

in Fig. 4f, i is very slow and more efforts are need to improve 

the response speed.

Table 2  Summary of graphene-based gas sensors to various gases under photoactivation at room temperature

Material Gas Sensitivity or 

Response

Light source Response/ Recovery Time Detection limit References

Graphene 100 ppm  NO2 26% 265 nm ~ 200/1000 s 42.18 ppb [87]

Graphene 10 ppt NO 1.4% UV –/– 158 ppq [89]

Graphene 40 ppt  NO2 1% UV –/– 2.06 ppt [89]

Graphene 0.1 ppm Acetone 0.4% UV 200/– s – [90]

Graphene 1 ppm  NO2 20% UV 600/900 s – [91]

Ti/graphene 400 ppm  NH3 17.9% Visible 2.5/2.7 min – [92]

Graphene/PS 45 ppb 2% 635 nm 1000/– s 0.5 ppb [93]

Ag-RGO 250 ppb  NH3 5.8 400–520 nm 76/84 s 100 ppt [94]

WO3 nanorods/graphene 1 ppm  NO2 61 Visible –/– – [95]

Carbon nitride/rGO 10%  O2 32 UV 38/39 s 20 ppm [96]

RGO-CeO2 10 ppm  NO2 4.5 365 nm –/258 s – [97]

WO3@GO 0.9 ppm  NO2 63.73% 480 nm 18.6/23.3 min – [98]

MoS2/rGO 10 ppm Formaldehyde 64% > 420 nm 17/98 s 20 ppb [99]

PGO/InGaN 100 ppm CO 32% 365 nm 70 s/10 min – [100]

rGO/ZnO/Pd 100 ppm  CH4 19% 470 nm 74/78 s 5 ppm [101]

Pd-WO3/Gr/Si 4 vol %  H2 20% 980 nm < 13/43 s 0.05 vol% [102]

g-C3N4/rGO 2 ppm  SO2 3% 365 nm 207/212 s 685 ppb [103]

rGO/SnO2 5 ppm  SO2 1.7% 365 nm 4.3/2.5 min – [74]

Graphene flexible 2.5 ppm  NO2 290% 254 nm 281/30 s 300 ppt [104]

Gr/bulk Si/Gr 50 ppm  H2 20% White –/– 1 ppm [105]
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3.2  SnO2

SnO2 is the most widely used materials for MOS gas sensors 

due to its high sensitivity and good stability ever since its 

integration into a real sensor device by Taguchi in the 1960 s 

[17]. Significant efforts have been explored to lower the high 

working temperature by fabricating special nanostructures, 

synthesis of the nanocomposite and surface modification, 

as well as using photoexcitation instead of thermal heating.

Saura initially studied the gas sensing performance of 

 SnO2 films towards acetone under UV irradiation with var-

ying wavelengths at RT [62]. They stated that the sensor 

response originated from the photo-dissociation and des-

orption of the chemisorbed molecules. Later, Comini and 

co-workers investigated the  NO2 sensing performance of 

 SnO2 films [63]. They showed a stable and sensitive sensor 

working at RT with UV excitation (λ = 365 nm). The UV 

irradiation enables the fast and full recovery of the sensor 

by preventing the poisoning of  SnO2 surface from strongly 

adsorbed  NO2. The accelerated desorption of  NO2 from 

 SnO2 sensors by white light illumination was also observed 

by Anothainart et al. [64] They showed that the activated 

desorption was due to the light with a wavelength less than 

λ = 600 nm, and the light intensity also affected the desorp-

tion. By measuring the conductance and the work function 

at both RT and elevated temperature, they deduced the light-

activated desorption was due to the direct photoexcitation of 

the electrons from NO2
- adsorbates into the conduction band 

of  SnO2, rather than the recombination of electron–hole 

pairs. Recently, Hyodo et al. also reported that UV light 

Table 3  Summary of 2D transition metal dichalcogenides and MXene gas sensors to various gases under photoactivation at room temperature

Material Gas Sensitivity or response Light source Response/ 

RECOVERY 

Time

Detection limit References

MoS2 100 ppm  NO2 160% 532 nm –/– – [112]

MoS2 100 ppm  NH3 70% 532 nm –/– – [112]

MoS2 0.2% TEA 5% White light –/– – [113]

MoS2 100 ppm  NO2 35.16% 365 nm 29/350 s – [114]

MoS2 100 ppm NO 70% 254 nm 250/550 s – [117]

MoS2 5 ppm  NO2 9.2% 280 nm –/32.9 s – [118]

3D Cone-Shaped  MoS2 2 ppm NO 470% 365 nm 25 s/– 0.06 ppm [119]

MoS2/graphene NO2 3.3% 660 nm –/– 0.1 ppb [120]

MoS2-Au 2.5 ppm  NO2 30% 365 nm 4/14 min – [123]

MoS2–-ZnO 50 ppb  NO2 20% UV < 1/1 min 50 ppq [124]

Sv-MoS2/ZnO 0.2 ppm  NO2 226% 780 nm 75/111 s 0.1 ppb [125]

MoS2 p–n junction 5 ppm  NO2 8% 395 nm 150/30 s 8 ppb [126]

n-MoS2/p-GaN 50 ppm NO 64.67% 367 nm 235/800 s – [127]

MoS2 flexible 400 ppb  NO2 670% 625 nm 16/65 s 20 ppb [129]

MoTe2 30 ppm  NH3 790% 254 nm –/– 3 ppb [132]

MoTe2 1 ppm  NO2 1300% 254 nm 5 min/120 s 123 ppt [133]

MoTe2 100 ppm Acetone 55% 254 nm 180/180 s 200 ppb [40]

WS2 nanoflakes NH3 – 633 nm 20 ms/– – [135]

WS2 10 ppm  NH3 3.4 365 nm 252/648 s – [136]

Au-WS2 250 ppb  NO2 20% 530 nm –/– 250 ppb [137]

WS2-rGO 1 ppm  NO2 1.27 430 nm 16/18 min 400 ppb [138]

SnS2 8 ppm  NO2 10.8 520–550 nm 164/236 s 38 ppb [143]

SnS2 suspended 5 ppm  NH3 0.34 White 300/– s 20 ppb [145]

SnS2 5 ppm  NO2 0.34 405 nm 300/– s 2.5 ppb [144]

SnS2/rGO 10 ppb  NO2 5.86 650 nm 1.5/0.54 min 0.15 ppb [146]

ReS2 NH3 2860% (EQE) 633 nm 70/70 ms – [148]

Ti3C2Tx (MXene) O2 – 200–300 nm 130/– s – [152]
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irradiation (365 nm) enhanced the  NO2 response of the  SnO2 

sensor at RT [65], and the response can be improved by 

incorporation of Pd or Pt [66].

Liu et al. recently developed an ultrasensitive  NO2 gas 

sensor based on  SnO2 monolayer array films under UV 

illumination [67]. The sensor response is largely affected 

by light intensity, as shown in Fig. 5a. They also fabri-

cated gas sensors with different array layers of  SnO2 

nanospheres and found that the sensor with four lay-

ers exhibited the highest response (Fig. 5b) with excel-

lent selectivity to  NO2 against many other molecules 

(Fig. 5c). Sensing mechanism follows the photoactivated 

desorption of pre-adsorbed oxygen and subsequent adsorp-

tion of  NO2, as depicted in Fig. 5d. On illumination, the 

built-in electric field in  SnO2-induced separation of elec-

tron–hole pairs; then, the photogenerated holes react with 

surface-absorbed oxygen ions to give molecular  O2. The 

depletion layer around the  SnO2 spheres is reduced due 

to the excess of the photogenerated electron, resulting in 

the decreased sensor resistance. When exposed to  NO2, 

the photoelectrons induced the adsorption of  NO2 to give 

 NO2
−, resulting in an increase of electron depletion and 

hence the sensor resistance. Efforts have been explored 

to fabricate heterojunctions from semiconductors such as 

 SnO2/ZnO [68–70]. The formation of heterojunctions has 

been proposed to suppress the recombination of photo-

excited electrons and holes, thus leading to the improved 

performance of the UV-activated  SnO2 gas sensor.
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To further improve the photoactivated sensor performance 

of  SnO2 at RT, other materials such as LaOCl [71], polypyri-

dine Ru(II) complexes [72], perovskite methylammonium tin 

iodide (MASnI3) [65], perylene diimide [73] and reduced 

graphene oxide [74] have been incorporated with  SnO2 to 

serve as a photosensitizer to widen the spectrum into vis-

ible range or as a separator to prevent the combination of 

photoexcited electron–hole pairs. Xue group showed that 

LaOCl-doped  SnO2 hollow spheres exhibited significantly 

improved selective response to  O2 under UV light illumi-

nation at RT, due to improved generation of electron–hole 

pairs and enhanced oxygen adsorption enabled by oxygen 

vacancy defect due to the presence of LaOCl dopant. Xu 

group reported that under UV illumination (λ = 365 nm) the 
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sensor based on Au/MASnI3/SnO2 exhibited high response, 

fast recovery and good selectivity to  NO2 compared to sen-

sors based on  SnO2 or Au/SnO2 [65]. They ascribed the 

enhanced sensing performance to the improved light absorp-

tion due to MASnI3, which allowed more photoelectrons 

transfer from  MASnI3 to  SnO2, as well as the catalysis of 

Au nanoparticles. An organic photosensitizer, i.e., heterocy-

clic Ru(II) complex, has been proposed by Gaskov group to 

shift the photosensitivity range of  SnO2 towards visible light 

wavelengths [72]. The Ru(II) complex enables the sensor 

to have improved response to detecting  NO2 under periodic 

illumination with blue (λ = 470 nm), green (λ = 535 nm) 

and red (λ = 630 nm) light. The sensing mechanism involves 

the photoexcitation of electrons from the HOMO to LUMO 

of Ru(II) complex and then transfer to the conduction bands 

of  SnO2.

Ren group recently realized the selective detection of  NO2 

and  SO2 on a UV-activated gas sensor based on reduced gra-

phene oxide (rGO)/SnO2 nanofiber composites at RT [74]. 

The improved selectivity was attributed to the combination 

of photocatalytic oxidation and photo-chemical desorption 

arising from the nanocomposite. Their results also showed 

that the sensor response to  NO2 (Fig. 6a) and  SO2 (Fig. 6b) 

was highly relevant to the composition ratio of rGO and 

 SnO2, as well as the light intensity. The enhanced sensor 

responses were attributed to the synergistic effect of two 
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materials, including prominent electron transfer, efficient 

material structure and p-n heterojunctions. However, this 

sensor suffers a very sluggish long response and recovery 

speed (Fig. 6c). Figure 6d shows the sensing mechanism. 

Under UV illumination,  SnO2 acts as a light absorber and 

electron–hole pairs are generated on light excitation. The 

photoelectrons move to rGO, which serves as both a pho-

toelectron acceptor and pathway for charge transport. The 

increased photoelectrons in rGO promoted the absorption of 

oxygen species and thus contribute to gas sensing reactions.

3.3  TiO2

TiO2 has drawn paramount attention as a photocatalyst, 

while limited research has been paid to photoactivated gas 

sensors. Li et  al. showed that mesoporous  TiO2 hollow 

spheres exhibited high sensitivity and selectivity to formal-

dehyde at RT with UV illumination [75].

Very recently, Murali and co-workers demonstrated a 

UV-activated high-performance RT NO gas sensor based 

on nitrogen-doped graphene quantum dots (NGQDs) deco-

rated  TiO2 nanoplates with {001} facets exposed [76]. The 

response of the NGQDs/TiO2 hybrids without UV activation 

was improved from 12.0% to 100 ppm NO the decoration of 

NGQDs on  TiO2, which dramatically enhanced the genera-

tion of electron–hole pairs due to good light absorption abil-

ity of NGQDs. The sensing mechanism is shown in Fig. 7. 

The bandgap alignment between NGQDs and  TiO2 generates 

p–n junctions that can efficiently separate the electron–hole 

pairs. These p-n junctions promote the hot generated elec-

tron transfer from NGQDs to  TiO2 and photogenerated holes 

transfer from  TiO2 to NGQDs. In addition, the NGQDs also 

suggested promoting the formation of oxygen vacancies in 

the  TiO2, which enhances the adsorption of oxygen ions and 

further facilitates their reaction with pre-adsorbed  NO−. All 

these factors synergistically led to enhance the conversion 
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efficiency of gas and carriers exchange, and charge separa-

tion, and which eventually improved sensing performance.

3.4  IN2O3

In2O3 has been investigated for photoexcited gas sensors. 

Trocino and co-workers studied the effects of UV illumi-

nation on the recovery process of  In2O3/PVP fibres after 

exposure to  NO2 at RT [77]. They found that UV illumina-

tion could easily desorb the weakly bound adsorbed species, 

resulting in short recovery time. Nguyen et.al have reported 

the RT sensor performance of  In2O3 nanostructure for detec-

tion of NO under UV illumination [78]. The sensor exhibited 

a sensitivity of 41.7 to 50 ppm NO and a response time of 

only 4 s because UV illumination promoted the NO (and 

 O2) adsorption and desorption. Meanwhile, the response 

was observed to be affected by UV light intensity. Recently, 

Shen and co-workers demonstrated that mesoporous  In2O3 

nanorod arrays could detect  NO2 at a ppb-level concentra-

tion at RT without UV illumination, but the sensor showed 

very poor recovery [79]. They showed that the recovery 

could be improved to 32 s by using UV illumination. In 

another work, Ma et al. achieved RT sensor performance 

from walnut-like  In2O3 nanostructures to detect  NO2 under 

UV illumination [80]. The sensor exhibits an ultrahigh sen-

sitivity (219) towards 50 ppm  NO2 with UV illumination. 

The studied showed that the high sensitivity of walnut-like 

 In2O3 was mainly attributed to the effective participation of 

photogenerated electrons.

3.5  WO3

In addition to ZnO and  SnO2,  WO3 has been also fre-

quently studied for photoactivated gas sensors. Accord-

ing to Giberti, the increase in the conductivity  WO3 gas 

sensor in the air was attributed to the photodesorption 

of surface oxygen under UV illumination [81]. RT sens-

ing performance to detect  NO2 enabled light illumina-

tion was by also reported. For example, Zhang et  al. 

presented an RT  NO2 gas sensor based on  WO3 under 

visible light illumination [52]. It was found that the light 

wavelength and light intensity had a great influence on 
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sensing characteristics. Under blue light (480 nm) illumi-

nation, the sensor exhibited a response of 2.9 to 160 ppb 

 NO2 at RT, but the response/recovery time was long, 

i.e., 14.9/18.3 min. The improved sensing property was 

ascribed to the acceleration of the reactions by photo-

energy under illumination.

Cantalini and co-workers studied the  NO2 sensing per-

formances of  WO3 electrospun nanofibers both activated 

by thermal and light activation including red, green and 

blue light [82]. They showed that the baseline resistance 

in dry air was highly dependent on the lights, showing 

a decrease by switching from dark, red, green and blue 

light, respectively. Accordingly, the sensor response to 

400 ppb  NO2 was also improved from 9% (dark) to 38% 

(red), 55% (green) and 92% (blue). An interesting find-

ing is that under thermal activation at 75 °C, the sen-

sor response without light illumination is 18.4, which is 

higher than that (12.4) under blue light illumination, due 

to the light-activated desorption of adsorbed oxygen from 

 WO3 surface.

Apart from  NO2, the photoactivated  WO3 sensors have 

been used to detect  H2. Zhang et al. reported a novel RT 

 H2 sensor based on PdO loaded  WO3 nanohybrids [83]. 

Their UV-Vis spectra revealed that PdO-WO3 sensor has 

a broader visible light absorption range compared with 

 pureWO3. This resulted in the good responses to ppm-level 

 H2 gas under visible light illumination (Fig. 8a), and the 

best performance was achieved with blue light, showing a 

response of 6.15 to 40 ppm  H2 and the response/recovery 

time was 3.2/7.9 min. This performance is comparable to 

the result obtained under thermal activation at between 200 

and 250 °C (Fig. 8b). It also has an excellent selectivity, as 

shown in Fig. 8c. The enhanced properties were attributed 

to the promotion effect of PdO, the heterojunction between 

PdO and  WO3, as well as the photoactivation effect, as 

shown in Fig. 8d.
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4  Photoactivated Two‑dimensional (2D) 

Materials

4.1  Graphene

Since the isolation of graphene in 2004 by Novoselov and 

Geim, graphene has become a promising candidate for 

advanced electronic device applications owing to its excel-

lent electrical, mechanical and chemical properties [84–86]. 

The same group fabricated the first graphene gas sensor in 

2007 and observed that graphene can detect gases at RT 

and has the potential to detect even a single gas molecule 

[28]. Despite the excellent gas adsorption, the fast response 

and complete desorption of the gas molecules from the sur-

face of graphene at RT are main issues which have been 

addressed from light illumination or heating the device 

using micro-heater. Ma and co-workers studied the effects 

of thermal and optical energy on gas sensing characteristics 

of graphene via fabricating graphene sensor array (Fig. 9a) 

[87]. They observed that transferred CVD grown graphene-

based gas sensor exhibited deterioration in sensitivity to 

 NO2 gas with increased temperature (25–100 °C). The high 

temperature increased the desorption rate of  NO2 molecules, 

which results in less adsorption of gas molecules [88]. How-

ever, UV light irradiation enhanced the sensitivity of the 

sensor sevenfold and completed the incomplete recovery 

with decreased recovery time about fivefold compared to 

that of in dark condition at RT (Fig. 9b, c). Moreover, the 

sensor showed reliable selectivity to  NO2 gas against many 

other gases via photoactivation as shown in (Fig. 9d, e). The 

sensitivity was enhanced due to excess photogenerated elec-

trons and availability of a large number of adsorption sites 

for more number of  NO2 molecules thorough cleaning of 

graphene surface from pre-adsorbed ambient oxygen ions 

or water molecules. Moreover, complete recovery at RT was 

achieved by accelerating desorption rate of  NO2 molecules 

via light energy. Likewise, Harutyunyan et al. enhanced the 

sensitivity of the graphene gas sensor via in situ cleaning 

of graphene by UV light [89]. The pristine graphene sensor 

exhibited unprecedented sensitivity with a detection limit of 

158 ppq, 2.06 ppt and 33.2 ppt to NO,  NO2 and  NH3 gases at 

RT. This ultra-sensitivity at RT was attributed to the clean-

ing of graphene via continuous in situ UV light illumination 

under inert atmosphere (under  N2 gas ambient).

Further, Lai et al. enhanced acetone sensing properties of 

graphene sensor via UV light irradiation with optimized spac-

ing between electrodes of resistive sensor device [90]. In this 

work, they fabricated different resistive gas sensor devices hav-

ing electrodes spacing of 50, 100, 200, and 400 µm by using 

transferring CVD grown graphene on a glass substrate. The 

sensor with 400 µm electrodes spacing exhibited two times 

higher sensitivity to acetone in a range of 100 to 1000 ppb 

than that of the 50 µm spacing electrodes sensor device. This 

improved sensitivity by large electrodes spacing was attributed 

to a combination effect of tensile strain on graphene, doping 

effect of glass and increased surface area with many defects 

at grain boundaries. Moreover, the sensitivity was enhanced 

to acetone by seven times under UV illumination at RT with 

response/recovery time of 300 s through desorption of natural 

atmospheric oxygen and water molecules from the surface of 

the graphene. The same group also improved the response/

recovery kinetics of the graphene sensor to  NO2 gas at RT by 

using rapid thermal annealing (RTA) and UV light irradiation 

[91]. The as-fabricated sensor device using transferred CVD 

grown graphene was treated via RTA at 300 °C in  N2 envi-

ronment for providing more adsorption surface area through 

removing the polymer residue of transfer process. This sen-

sor exhibited four times more sensitivity to  NO2 than that of 

pristine graphene sensor without RTA treated. However, the 

sensor’s incomplete recovery at RT was improved to complete 

by UV illumination during recovery time.

To further improve the gas sensing performance of the 

photoactivated graphene sensors, graphene sensing layer 

was decorated with noble metals, metal oxide and polymer 

nanoparticles. Chu et al. fabricated a photoactivated  NH3 

RT gas sensor by depositing different thickness of Ti on 

the graphene surface [92]. The optimized 5 nm thickness 

of Ti on the graphene surface was oxidized in terms of tita-

nium oxide with different Ti valances and lower valances 

helped to reduce optical bandgap. Visible light was suffi-

cient to create electron–hole pairs and these photoexcited 

electron–hole pairs as well as synergistic catalysis effects 

of TiOx/graphene assisted to improve the sensitivity of the 

sensor to  NH3 gas with complete recovery (2.5 min) at RT 

under visible light irradiation. Further, Wu et al. enhanced 

the sensitivity of graphene sensor to  NO2 gas at RT under 

visible light irradiation via decorating polymer (polystyrene 

(PS)) beads on graphene surface [93].
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There was electron transfer from graphene to PS beads at 

the graphene/PS interface and some exciting surface plas-

mon polaritons are also present in graphene through dif-

fraction of light on microbeads (Fig. 10a), which helped to 

enhance the sensitivity of graphene sensor with a detection 

limit of 0.5 ppb  NO2 at RT under laser illumination. Fig-

ure 10b, c clearly illustrates the concave region at PS bead/

graphene interface and upon  NO2 exposure, two static 

forces, one from the bead and another from graphene drag 

more number of gas molecules which results in enhanced gas 
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response in PS decorated graphene than that of the pristine 

graphene sensor. Moreover, under light illumination, photo-

excited electrons transferred from graphene to PS bead and 

thereby, a dipole layer was formed at PS/graphene interface. 

As a result, dipolar interaction was occurred in between the 

dipole layer and polar  NO2 molecules. This dipolar interac-

tion under light illumination was stronger from static inter-

action in dark condition and which was helpful to enhance 

sensitivity and fast adsorption to  NO2 gas at RT. Likewise, 

Banihashemian et al. reported enhanced ammonia detection 

by using Ag particles decorated graphene sensor at RT under 

blue LED (10 mW cm−2) exposure [94]. The enhancement in 

sensitivity was attributed to surface plasmon resonance and 

spillover effects. Besides the decoration of graphene surface 

via nanoparticles, different nanocomposites and hybrids of 

graphene such as  WO3 nanorodes/Graphene [95], carbon 

nitride/rGO [96], RGO-CeO2 [97],  WO3/rGO [98],  MoS2/

rGO [99], p-phenylenediamine-graphene oxide (PGO)/

InGaN [100], Pd-decorated ZnO/rGO [101] and Pd-WO3/

graphene/Si [102] were utilized for improving the gas sens-

ing performance of graphene sensor at RT under light irra-

diation. Zhang et al. designed a gasochromic-Pd-WO3/gra-

phene/Si tandem structure (Fig. 10d) for hydrogen sensing 

at RT under light irradiation [102]. In this structure, Pd-WO3 

and graphene/Si worked as sensing and photodetector layer 

through utilizing their gasochromic and photovoltaic proper-

ties, respectively. Upon hydrogen exposure, Pd dissociated 

the  H2 into H atoms and  WO3 converted to  HxWO3 which 

decreased the transmittance and was synchronously sensed 

by graphene/Si photodetector and that changed its photocur-

rent corresponding to  H2 concentration. Thus, the sensor 

detected even low concentration of 0.05 vol%  H2 with fast 

response time (13 s) and recovery time (43 s) at RT under 

laser (980 nm) illumination as shown in Fig. 10e.
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Besides the high sensitivity and fast response/recovery 

kinetics, selectivity of the sensor is also one of the most 

important aspects for the usage of the sensor on the commer-

cial sensing platform. In this context, Wu et al. reported a 

‘light on and off’ strategy for selective detection of  NO2 and 

 SO2 gas by using the 2D g-C3N4/rGO van der Waals hetero-

structure [103]. In this work, a layer-by-layer self-assembly 

approach was used for fabricating g-C3N4/rGO stacking 

hybrid on a paper substrate (Fig. 11a, b, d, e). The p-type 

semiconducting g-C3N4/rGO sensor under light off condition 

exhibited no response to  SO2 and high sensitivity to  NO2 

gas with detection as low as 100 ppb at RT (Fig. 11c). In 

contrast, under UV light irradiation, the sensor with changed 

n-type semiconducting behaviour showed sensitivity to  SO2 
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with detection as low as 2 ppm, as shown in Fig. 11f. Under 

UV irradiation, photon energy excited the electrons in val-

ance band of g-C3N4, and then, these photoexcited electrons 

transferred into rGO and a negative charge layer formed on 

the surface. Thereby,  SO2 gas molecules extracted electrons 

which results in negative response through decreasing elec-

trons concentration in the g-C3N4/rGO. This approach to 

distinguish the  NO2 and  SO2 gas via light source was attrib-

uted to effective charge transfer between g-C3N4 and rGO. 

Likewise, Ren et al. also reported UV light-activated gas 

sensor for selective detection of  NO2 and  SO2 gas by using 

a nanocomposite of  SnO2 nanofibers and rGO [74]. On the 

other hand, high flexibility and transparency aspects of gra-

phene make it a leading candidate for emerging flexible and 

wearable gas sensing technology.

In this regard, Raghavan et al. [104] demonstrated deep 

UV light-activated flexible graphene sensor for  NO2 detec-

tion at RT. They directly transferred the CVD grown gra-

phene on paper without any intermediate layers and called 

it G-paper (Fig. 11g) which showed a detection limit of 

300 ppt to  NO2 at RT. Under deep UV light irradiation, 

fast response and recovery time were achieved at RT due 

to cleaning of graphene through desorption of atmospheric 

adsorbents (Fig. 11h) and this also was confirmed by Raman 

spectroscopy with indicating reduction of p-type doping in 

G-paper. Besides the high gas sensing performance of the 

sensor, this method is very useful for biodegradable and 

wearable sensor applications due to simplicity, low cost and 

high productivity.

It is noted from all above results that photoactivation 

removes the heating element from the graphene sensors 

to achieve fast response and complete recovery at RT and 

it also improves the sensitivity and selectivity of the gra-

phene sensors. However, chemiresistive sensor required 

external supply voltage or current to electrical readout and 

so, it consumed electrical power for its operation. Nowa-

days, chemical sensors consuming ultralow-power are 

needed for its usage in the Internet of things applications. 

Lee et al. reported a self-powered chemical sensor fabri-

cated by a graphene-based heterojunction device [105]. 

In this work, photovoltaic heterojunctions were fabricated 

via contact of top graphene layer with photoactive materi-

als silicon (Si) or tungsten disulphide  (WS2) as shown in 

Fig. 12a. Upon gas exposure, the electrochemical poten-

tial of graphene was changed owing to the one-atom-thick 

layer, which results in modulation of built-in potential at 

the interface of graphene and Si or  WS2. Thereby, change 

in photocurrent or photovoltage of the device was meas-

ured at RT without applying external bias. As a result, the 

sensor showed good response to  NO2,  NH3 and  H2 gases 

with detection as low as 1 ppm  H2 at RT (Fig. 12b–f).

4.2  MoS2

MoS2 is one of the most famous members of layered tran-

sitional metal dichalcogenides (TMDCs) family for elec-

tronics device applications [106–108] and particularly, gas 

sensor devices owing to its unique electrical and physical 

properties [24, 34, 109–111].  MoS2 sensor has attracted 

immense attention in gas sensing field under light illumi-

nation due to its excellent optoelectronics aspects. Late 

et al. performed a gas sensing experiment on mechani-

cally exfoliated five layers  MoS2 based gas sensor under 

the green light illumination (532 nm) [112]. The SEM 

image of the  MoS2 device and mounted device on a chip 

are shown in Fig. 13a, b. They measured the sensitivity 

to each 100 ppm  NO2 and  NH3 upon exposure to green 

light with different optical powers. The sensitivity of the 

sensor was enhanced up to optimal irradiation power and 

suddenly decreased for high irradiation power, as shown 

in Fig. 13c. This behaviour was similar to photoactivated 

metal oxide-based gas sensor. Likewise, Friedman et al. 

also measured the sensitivity of mechanically exfoliated 

 MoS2 sensor under the illumination of white light at RT 

[113]. They observed that the sensor exhibited about 10 

times higher sensitivity to trimethylamine upon exposure 

to light than that of switched off light condition. However, 

gas sensing mechanism of enhancing the sensitivity of the 

 MoS2 gas sensor under the illumination of the light source 

was not clear. Therefore, many research efforts have been 

attempted to elucidate the improvement in gas sensing 

characteristics of photoactivated  MoS2. Kumar et  al. 

demonstrated gas sensing performance of CVD grown 

multilayer  MoS2 at RT under UV illumination [114]. 

The sensor showed high selectivity towards  NO2 against 

many other gases  (CO2,  NH3,  CH4,  H2 and  H2S) under 

UV illumination. Optical energy assisted to provide more 

numbers of adsorption active sites on the surface of  MoS2 

through desorption of ambient oxygen and contamination 

because photogenerated holes reacted with pre-adsorbed 

oxygen ions and formed  O2 gas as shown in Fig. 13f. On 
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the other hands, thermal energy decreased the sensitivity 

of the sensor to  NO2 gas because thermoactivation accel-

erated the desorption rate than adsorption rate (Fig. 13e) 

[115, 116]. In addition, CVD grown monolayer  MoS2 also 

showed enhanced sensitivity to NO gas at RT under UV 

light (254 nm) [117].

From the above all reports, it is clear that light source was 

switched on during throughout gas sensing experiment and 

this optical energy enhanced the sensitivity of the  MoS2 gas 

sensor to different gases and gas sensing mechanism under 

the light illumination also was proposed. However, com-

plete recovery at RT under light illumination was still vague. 

In this context, Kim et al. proposed a complete recovery 

mechanism for  MoS2 gas sensor via illumination of light 

during recovery process [118]. Under UV illumination, pho-

togenerated hole reacted with adsorbed  NO-, which results in 

 NO2 desorption through changing its chemical state. Simul-

taneously, photogenerated electrons decrease the resistance 

value of the  MoS2 sensor, and thereby, the sensor achieved 

its initial baseline resistance value. Thus, photogenerated 

electron–hole pairs helped to obtain complete recovery at RT 

without raising the temperature of the  MoS2 sensor. Moreo-

ver, this proposed mechanism also verified by Raman and 

PL experiments.

However, gas sensing mechanism of  MoS2 gas sen-

sor under light illumination is needed to further explain 
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quantitatively in the context of a number of adsorption sites 

and adsorption energy values.

In order to improve gas sensing performance of  MoS2 sen-

sor under light illumination, some suitable approaches and 

strategies were adopted by exploiting structure and interface 

engineering. Chueh et al. reported the detection of NO gas at 

ppb level using 3D cone-shaped  MoS2 bilayers under indoor 

light illumination [119]. In this work, 3D cone-shaped  MoS2 

bilayers were fabricated by sulphurizing 2-nm-thick  MoO3 

film on pre-patterned 2” cone patterned sapphire substrate. 

The sensor exhibited sensitivity of ~189.2%/ppm with detec-

tion as low as ~0.06 ppm NO at RT under UV light illumi-

nation. Moreover, this 3D structure of  MoS2 showed about 

twofold higher sensitivity than that of flat  MoS2 sensor. The 
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d Schematic representation of a CVD grown  MoS2 sensor under UV light illumination. e Transient gas response to different concentrations of 

 NO2, and f gas sensing mechanism, of the CVD grown  MoS2 sensor at room temperature, 100 °C and under UV illumination. Reproduced with 

permission [114]. Copyright 2017, American Chemical Society
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enhancement in sensitivity of 3D architecture of  MoS2 under 

light source was attributed to 30% increased surface area as 

well as enhanced light absorption through light scattering 

effects. In addition, electrode’s materials also play a crucial 

role in tuning the sensing performance of chemiresistive/

FET- type gas sensor. From this view, Mulchandani et al. 

reported ultrasensitive optoelectronic  NO2 gas sensor using 

special arrangements in the electrode’s materials of FET-

type  MoS2 sensor (Fig. 14a–c) [120]. The Au electrodes-

based Au/MoS2/Au sensor exhibited excellent sensitivity 

4.9%/ppb (4900%/ppm) at RT under red light illumination. 

In contrast to Au/MoS2/Au sensor, Au coated graphene (Gr) 

electrode-based Au/Gr-MoS2-Gr/Au sensor showed ultra-

sensitivity to  NO2 with detection as low as 0.1 ppb concen-

tration at RT.

Incorporation of another material into  MoS2 in terms of 

nanocomposite or hybrid as a new sensing material also used 

for enhancing the gas sensing performance through chemi-

cal and electronic sensitization effects [14, 121]. Controlled 

Au nanoparticles functionalization changed carrier concen-

tration of  MoS2 through electrons transferring from Au to 

 MoS2 [109]. This controlled n-type doping effect helped to 

discriminate hydrocarbon- and oxygen-functional group 

based VOCs by showing different sensing behaviour. Pris-

tine  MoS2 exhibited increase resistance value upon exposure 

to all VOCs, but Au:MoS2 showed decrease resistance value 

to oxygen-functionalized compounds and the same increase 

resistance value behaviour to hydrocarbon-based VOCs. 

Likewise, Jung et al. demonstrated different sensing behav-

iour to oxygen-functionalized VOCs via functionalization 

of the  MoS2 by a thiolated ligand (mercaptoundecanoic acid 

(MUA)) [122]. The MUA-conjugated  MoS2 showed a nega-

tive response to oxygen-functionalized VOCs but, pristine 

 MoS2 exhibited a positive response to the same VOCs at 

RT. Further, Guo et al. improved the gas sensing charac-

teristics of decorating Au nanoparticles on the surface of 

 MoS2 under UV light illumination [123]. The Au-MoS2 gas 

sensor exhibited about three times higher response to  NO2 
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with complete recovery at RT under UV illumination than 

that of in the dark condition. The enhancement in sensitivity 

was attributed to an increased number of active adsorption 

sites as well as introducing active catalysts via Au nano-

particles. Moreover, Au nanoparticles accelerated trapping 

of more numbers of photons which generated additional 

photoexcited charge carriers for more gas–solid interaction. 

Under UV illumination, effective separation of photoexcited 

charge carriers at  MoS2/Au interface due to different work 

function of  MoS2 and Au was also helpful to contribute for 

obtaining fast full recovery at RT. Guo et al. reported an 

ultrasensitive UV-assisted  NO2 gas sensor based on a nano-

composite sensing layer of  MoS2 and ZnO nanowires [124]. 

The  MoS2/ZnO sensor showed excellent sensitivity of 0.93/

ppb with a detection limit of 50 ppq and complete recovery 

at RT under UV illumination. This improved performance 

of the sensor under optical energy was the results of two 

reasons. On the one hand, under UV illumination, additional 

photogenerated charge carriers react with more number of 

 NO2 molecules. On the other hand, a large number of  MoS2/

ZnO nanoheterojunctions helped for extension of depletion 

region and photoexcited electrons moved into ZnO from the 

conduction band of  MoS2, while excited hole transferred into 

 MoS2 from valance band of ZnO. This effective separation 

of charge carriers improved the sensing characteristics by 

avoiding charge recombination at the interface. To further 

enhance the sensing characteristics, Wang et al. fabricated 

a near-infrared (NIR) optoelectronic  NO2 gas sensor using 

a nanocomposite of ZnO quantum dots decorated sulphur 

vacancy-enrich  MoS2 (Sv-MoS2) [125]. Sulphur vacancy 

introduced new energy levels between conduction and val-

ance band of  MoS2. These localized levels helped to increase 

photoexcited charge carriers and charge transfer by absorb-

ing more light photons under NIR illumination. As a result, 

the Sv-MoS2/ZnO sensor exhibited high sensitivity of 226% 

to 200 ppb  NO2 at RT under NIR illumination. Moreover, 

the sensor also showed fast response and recovery time (75 

and 111 s) at RT.

The optoelectronic gas sensors based on van der Waals 

heterostructures are recently attracting enormous attention 

for developing high-performance gas sensor. Van der Waals 

heterostructures owing to its strong light matter interaction 

and tuning of carrier concentration or energy band diagram 

by electrical, magnetic and optical energy render them a 

promising candidate for optoelectronic gas sensors. Despite 

the huge potential of heterostructures of  MoS2 in gas sensing 

field, there are still few reports of  MoS2 heterostructures-

based optoelectronics gas sensors and it is in the nascent 

stage. Recently, Zhang and co-worker reported a highly 

selective  NO2 gas sensor using 2D planar van der Waals 

p-n homojunction of  MoS2 under UV illumination [126]. In 

this work, n-type and p-type  MoS2 were fabricated by CVD 

and sol-gel process, respectively (Fig. 14d). The p-n van 

der Waals homojunction of  MoS2 exhibited about 60 times 

higher sensitivity to 20 ppm  NO2 than that of the individual 

p-type  MoS2. Moreover, the sensor showed a low detection 

limit of 8 ppb with very fast complete recovery (< 30 s) at 

RT under the UV illumination. This excellent sensing per-

formance of van der Waals-based sensor was attributed to 

modulation of barrier height at the p-n junctions of  MoS2 

upon exposure to  NO2 gas (Fig. 14d, e). Further, Kim et al. 

demonstrated  NO2 gas sensor under UV light illumination 

using 2D/3D heterostructure of n-MoS2/p-GaN [127]. The 

sensor showed high sensitivity of 98.42% to 50 ppm  NO2 

with complete recovery at RT under UV illumination with 

applied reverse bias. Besides the well-known mechanism of 

heterostructures as modulation of barrier height at hetero-

junctions upon exposure to gas molecules, reverse bias strat-

egy also utilized here to enhance the sensing performance of 

heterostructure sensor through improving the photoextrac-

tion from the p-n junction [128].

All the above reports are limited to optoelectronic  MoS2 

gas sensors on rigid substrates; nonetheless, excellent flex-

ibility and mechanical properties of the  MoS2 render it a 

promising candidate for flexible and wearable sensors 

applications. Wang et al. reported a high-performance flex-

ible  MoS2 gas sensor at RT by exploiting photogating and 

piezo-phototronic effects [129]. Figure 15a, b illustrates the 

schematic of the flexible device and 3D representation of 

the current response of the sensor to  NO2 gas under dif-

ferent optical powers and tensile strain. The sensor exhib-

ited excellent sensitivity of 671% to 400 ppb  NO2 at RT 

under red light (625 nm) illumination with 0.67% tensile 

strain (Fig. 15d). Moreover, the sensor showed dramatically 

improved response time of 16 s and complete recovery time 

of 65 s at RT. The excellent sensing performance of the 

sensor was attributed to tuning the Schottky barrier height 

at two back-to-back Pd-MoS2 junctions upon exposure to 

gas molecules via a combination of photo-gating and piezo-

phototronic effects (Fig. 15e).
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4.3  MOTe2

Molybdenum ditelluride  (MoTe2) is an emerging material in 

TMDCs family and has a lower energy bandgap of ~ 1.0 eV 

than other semiconducting TMDCs materials. Due to a 

smaller bandgap,  MoTe2 showed photodetection in a wider 

range from visible to near-infrared wavelengths [130, 131]. 

Besides the excellent optoelectrical properties, larger bond 

length and lower binding energy of  MoTe2 are important 

aspects for utilizing it in the optoelectronic gas sensing field. 

Zhang et al. reported enhancement in sensitivity of  MoTe2 

gas sensor via continuous illumination of light throughout 

the gas sensing experiment [132].

In this work, the  MoTe2 sensor was fabricated by 

mechanical exfoliation, and interestingly,  MoTe2 device 

converted its p-type semiconducting behaviour into n-type 

after continuous illumination of UV light for 2 h in an  N2 

environment. This changed behaviour under UV illumi-

nation was attributed to the removal of contamination of 

impurity molecules  (O2 and  H2O). The n-type  MoTe2 sensor 

showed increase sensitivity to  NH3 gas under illumination 

with reducing wavelength sources (near-infrared-red-to-UV 

region). Further, the sensor showed a rapid increase in sen-

sitivity to  NH3 gas with increased intensity from 0.25 to 1 

mW/cm2 of UV light source (254 nm) and saturation trend 

in sensitivity for increased intensity up to 2.5 mW  cm−2. 
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As a result, the sensor exhibited excellent sensitivity about 

25 times more with a low detection limit of 3 ppb  NH3 gas 

under UV illumination with an intensity of 2.5 mW  cm−2. 

Also, the same group used the as-fabricated p-type  MoTe2 

gas sensor for  NO2 detection under UV light illumination 

[133]. The sensor dramatically exhibited enhanced sensi-

tivity of 58-1744% to 20-300 ppb  NO2 with an extraordi-

nary low detection limit of 123 ppt under UV illumination 

(254 nm). Moreover, the sensor showed complete recovery 

within 5 min at RT through accelerating desorption rate of 

 NO2 via photoactivation of  MoTe2. They suggested three 

reasons for enhancing the sensitivity of the sensor. First, 

p-type behaviour of  MoTe2 is more sensitive to oxidizing 

gas  (NO2) which extracts a large number of electrons from 

 MoTe2 and which results in shifting of Fermi level towards 

valence band. Thereby, holes easily tunnel from decreased 

Schottky barrier. Second, photon energy desorbed pre-

adsorbed ambient oxygen ions from the surface of  MoTe2, 

and therefore, a large number of availability of adsorption 

sites enhanced the adsorption of more number of  NO2 mol-

ecules. Third, photoexcited plasmons promote molecular 

desorption because UV light wavelength of 254 nm lies 

in strong optical absorption window of  MoTe2 owing to 

π-electrons plasmon excitation. Moreover, photogenerated 

holes react with adsorbed NO2
- and formed  NO2 gas during 

recovery process. Further, the same group also used p-type 

 MoTe2 FET-type gas sensor for discriminating ketone com-

pounds with high sensitivity from other volatile organic 

compounds (VOCs) by the influence of UV light (Fig. 16a) 

[40]. The sensor exhibited excellent sensitivity to acetone 

with a low detection limit of 0.2 ppm at RT under UV illu-

mination. The sensor showed a negative response to all 

VOCs in dark condition because electrons donor behaviour 

of VOCs decreased hole carriers concentration in p-type 

 MoTe2. Surprisingly, under UV illumination, the sensor 

showed positive response to acetone and same negative 

response to all other VOCs (Fig. 16b). This type of opposite 

response to acetone was also observed in  MoS2 and  ReS2 

sensors with the influence of UV light. An acetyl group 

in ketone compound enhanced UV absorption of 254 nm 

wavelength which stimulated strong photon–electron inter-

action within molecules, resulting in change behaviour 

of acetone from reducing to oxidizing. That change was 

responsible to show positive response to acetone under UV 

illumination, while the sensor exhibited negative response 

in dark condition.

4.4  WS2

Excellent photoelectrical properties of tungsten disulphide 

 (WS2) [134], a member of TMDCs family, make it a promis-

ing candidate for optoelectronic gas sensor. Li et al. fabri-

cated a field-effect transistor using mechanically exfoliated 

multilayer  WS2 (Fig. 16c) and measured the photoelectrical 

properties under the influence of different gases molecules 

[135]. Under the illumination of red light (633 nm) approxi-

mate to  WS2 bandgap, the device showed a change in its 

responsivity (Rλ) and external quantum efficiency (EQE) for 

both oxidizing and reducing gases at RT. This change was 

attributed to perturbation in charge carrier density in  WS2 

by charge transfer between  WS2 and physical-adsorbed gas 

molecules. The oxidizing gas  (O2) as ‘p-dopants’ extracted 

photogenerated electrons from  WS2 and reduced the (Rλ) and 

EQE of the device. In contrast, reducing gas (ethanol,  NH3) 

as ‘n-dopants’ contributed electrons into photoactivated  WS2 

and enhanced the (Rλ) and EQE value as shown in Fig. 16d. 

As a result, the device exhibited maximum (Rλ) and EQE 

value of 884 A  W−1 and 1.7 × 105%, respectively, under  NH3 

ambient due to strong electronic interaction between  NH3 

and  WS2. Further, Gaskov et al. demonstrated sensing per-

formance of  WS2 gas sensor under a wide wavelength range 

from UV to near-infrared light (Fig. 16e) [136]. Among 

these light sources, the sensor exhibited the highest response 

of 3.4 to 10 ppm  NH3 with fast response and recovery time at 

RT under UV light illumination (365 nm). The enhancement 

in the response under UV light was attributed to the orbital 

mixing theory. Due to optical energy, electrons in the highest 

occupied molecular orbital (HOMO) of  NH3 on the N atom 

were excited and transferred to  WS2 (Fig. 16f). Thereby, the 

response was increased under UV illumination compared to 

that of dark condition.

In addition to enhancing the sensitivity of  WS2 under 

light illumination, some research efforts such as noble metal 

decoration and incorporation of another material into  WS2 

in terms of nanocomposites or hybrid are also used. Goodi-

lin et al. decorated plasmonic Au nanoparticles on  WS2 

nanotubes (NT-WS2) and examined the sensing behaviour 

under the illumination of 530 nm LED source [137]. The 

Au-NT-WS2 sensor exhibited higher sensitivity in a range 

of 0.25–2.0 ppm  NO2 at RT than that of pristine NT-WS2. 

Gas sensing mechanism was attributed to physisorption-

charge transfer between  NO2 and NT-WS2. Further, Canta-

lini et al. reported a high-performance  NO2 gas sensor using 
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 WS2-rGO hybrids under purple-blue light (430 nm) illumi-

nation [138]. The sensor showed excellent sensitivity to  NO2 

with a low detection limit of 400 ppb and fast response and 

recovery kinetics.

4.5  SnS2

Tin disulphide  (SnS2) is an n-type semiconducting layered 

material, and its structure is similar to members of TMDCs 
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family [139–142]. Naturally abundant, higher electron-

egativity than TMDCs materials and wider direct band-

gap (2.1 eV) have been attracted attention for the usage of 

 SnS2 in optoelectronic gas sensing applications. Gu et al. 

reported a RT  NO2 gas sensor of  SnS2 under green light 

illumination [143]. A chemiresistive sensor was fabricated 

using  SnS2 nanosheets which were synthesized via a simple 

one-step hydrothermal method. Under green light, the sen-

sor exhibited reliable selectivity towards  NO2 with detec-

tion as low as 38 ppb concentration and also showed a 

fast response and complete recovery at RT. Improvement 

in the sensing performance of the sensor was ascribed to 

increased carriers concentration in  SnS2 via photon energy. 

Number of electrons increased in conduction band of  SnS2 

via direct photogenerated electrons as well as releasing 

electrons by adsorbed oxygen ions after reacting with pho-

toexcited holes (Fig. 17a). As a result, increased electrons 

in the conduction band of  SnS2 attracted more number of 

 NO2 molecules, and thereby, sensitivity was enhanced 

through charge transfer. On the other hand, thermal acti-

vation first enhances the sensitivity of the sensor with 

increase temperature from 100 to 110 °C (Fig. 17b) and 

later sensitivity was severely decreased above 110 °C tem-

perature due to higher desorption rate than adsorption rate. 

Further, Wu et al. enhanced the gas response of  SnS2 sen-

sor under light source via deliberately generated nanoscale 

defects as sulphur vacancy [144]. Sulphur vacancy contain-

ing  SnS2 showed excellent gas response with detection as 

low as 2.5 ppb at RT under UV illumination. Besides the 

photoexcited electron–hole pairs, sulphur vacancy acted as 

additional adsorption sites with high adsorption energy for 

 NO2 which was also verified via density functional theory 

calculations.

To further enhance the sensitivity of the  SnS2 gas sen-

sor, increased adsorption sites on sensing materials play 

a crucial role. In this view, Huang et al. demonstrated a 

RT ultrasensitive ammonia detection under white light 

irradiation using suspended  SnS2 layers which are shown 

in Fig.  17c [145]. The suspended structure increased 

sensing surface area for more number of  NH3 molecules 

interaction and also eliminated charge trap states at  SnS2/

SiO2 interface due to existence of air between  SnS2 and 

 SiO2 (substrate). As a result, the suspended  SnS2 sen-

sor exhibited about three times higher sensitivity to  NH3 

with faster response–recovery rate than that of the tra-

ditional  SnS2 sensor. Moreover, the sensor showed high 

selectivity towards  NH3 with detection as low as 20 ppb 

at RT under white light illumination. The enhancement in 

sensitivity was attributed to direct charge transfer as well 

as modulation of Schottky barrier upon exposure to  NH3, 

as illustrated in Fig. 17d. In addition, Wang et al. further 

enhanced the sensitivity of  SnS2 sensor at RT by synthe-

sizing  SnS2/rGO nanohybrids [146]. The n-type  SnS2/rGO 

nanohybrids exhibited about five times higher sensitivity 

to 10 ppb  NO2 with detection as low as 0.15 ppb and also 

showed a fast response and complete recovery at RT under 

red light (650 nm) illumination. The enhanced sensitivity 

was attributed to additional photoexcited electron–hole 

pairs and modulation of the potential barrier at  SnS2/rGO 

interface upon exposure to  NO2 gas.

4.6  Other Materials

ReS2 is a member of VII-group layered TMDCs family with 

distorted triclinic  CdCl2-type layer structure contrary to the 

hexagonal structure of VI-group TMDCs materials [147]. In 

contrast to VI-group TMDCs materials, VII-group TMDC 

 ReS2 possesses an extra d-orbital electron which introduces 

different and unique properties into  ReS2. The  ReS2 has 

shown great interest in advance electronic devices owing to 

in-plane anisotropy, interlayer coupling and hard to energy 

bandgap conversion from indirect to direct. Inspiring from 

all these significant properties, Jiang et al. investigated the 

photoelectrical properties of  ReS2 in the different gas envi-

ronment under red light (633 nm) source [148]. In this work, 

they fabricated a sensor from mechanically exfoliated  ReS2 

nanosheet and the sensor exhibited different changes in pho-

tocurrent values corresponding to various environments such 

as  O2, air, and  NH3, as shown in Fig. 17f. Two important 

calculated parameters responsivity (Rλ) and external quan-

tum efficiency (EQE) have higher values in  NH3 ambient 

than that of in air or  O2 ambient. This improvement was 

due to strong electronic interaction or higher charge trans-

fer between  NH3 and  ReS2 which was also verified by first-

principles calculations. Adsorbed  NH3 molecules have better 

adsorption energy of -205 meV compared to -130 meV of 

 O2 on  ReS2 surface. Physisorption of molecules substantially 

changed the carrier density of the  ReS2 through charge trans-

fer (Fig. 17g), and hence, the device showed good response 

to different gases through changing its current value under 

red light illumination.
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Among the discovery of new 2D materials, MXenes as a 

new family of 2D materials were first discovered in 2011. 

MXenes have shown their potential in different applications, 

including water purification, optoelectronics, energy stor-

age, gas sensing, etc. [149–151]. Mochalin et al. examined 

the effect of  H2, air,  O2 and  H2O vapour on MXene at RT 

under a light source illumination [152]. Therefore, visible 

light energy was not sufficient to produce a considerable 

change in photocurrent. However, under UV illumination, 

the MXene exhibited significant photoresponse owing to 
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containing in situ formed phase of  TiO2 (Fig. 17e). The 

photoinduced current decay was observed very long time 

(~ 24 h) in inert ambient due to long relaxation process. 

Oxygen-containing species such as  O2 and  H2O vapour 

accelerated the relaxation process and achieved fast decay of 

photoinduced current. This reversible process was obtained 

due to electron trapping by electronegative atoms as well 

as intercalation and swelling of MXene which reduced the 

electrical connection of MXene flakes. Thus, these results 

lead the utilization of MXene in optoelectronic gas sensor 

on a commercial platform.

5  Conclusion and Outlook

In this comprehensive review, gas sensing characteristics 

of different materials including metal oxide semiconduc-

tors (MOS), and emerging 2D materials, under the light 

illumination are presented. In the context of MOS mate-

rials, photoactivation has been proved to be a promising 

technique to enhance the gas sensing performances at RT. 

As discussed, in most cases, photoactivation can be an 

effective method to replace thermal heating activation to 

achieve detection of gases at RT. Removing the micro-

heater from MOS sensors decreases power consumption 

and reduces number of fabrication steps and which results 

in portable and miniaturized gas sensors for emerging IOT 

applications. Light illumination on MOS improves the gen-

eration of photoelectrons and modulates the carrier density 

in MOS, thus influence on the sensing properties can be 

expected. Improved sensing response, response–recovery 

speed and selectivity have been obtained using MOS such 

as  SnO2, ZnO and  WO3 to detect  NO2,  O3 and  O2. Mostly, 

individual metal oxide sensors exhibit gas sensing at RT 

in only UV wavelength region due to their higher energy 

bandgap and exploitation of UV light source over the long 

time is harmful for human beings. In this regard to further 

improve the photoactivation, various photosensitizers have 

been applied to MOS to expand the light absorption spec-

trum. It is important to note that the LSPR adsorption of 

noble metals can extend the light absorption spectrum into 

the visible range. This has driven the research in photoac-

tivated gas sensors from UV to visible lights such as blue, 

green, and red, as well as the mixed monochromatic, i.e., 

the white light. Heterojunctions of MOS can improve the 

separation of photoexcited electron–holes. When design-

ing photoactivated sensors, factors affecting the sensing 

characteristics to be considered include light intensity, 

wavelength, size of nanoparticles and film thickness. It also 

shows that most photoactivated sensors are more sensitive 

to oxidizing molecules such as  NO2 and  O2, although some 

works reported photo-enhanced sensitivity to  H2. In the 

future, more efforts should be explored to develop high-

performance detection of organic compounds.

Emerging 2D materials including graphene, TMDCs and 

MXenes show huge potential in gas sensing at RT under 

the light sources. Photoactivation enhanced the gas response 

of 2D materials-based sensors by increasing carrier den-

sity through photogenerated electron–hole pairs and also 

increasing adsorption sites on the surface of 2D materials 

through desorption of pre-adsorbed atmosphere oxygen ions 

after reacting with photoexcited holes. Especially, one of 

the most important problems slow response and recovery 

kinetics of 2D materials was rectified via photoactivation 

through improving response time and complete recovery at 

RT. On the other hand, thermoactivation improves response/

recovery kinetics of 2D material sensor; however, it dete-

riorates sensitivity of the sensor by increasing desorption 

rate than adsorption rate. Integration of 2D material with 

other materials improved the sensitivity by including their 

individual merits and modulation of the potential barrier at 

the interface upon exposure to gas. Besides the enhanced 

sensitivity with fast response/recovery kinetics of the sen-

sor, photoactivation improved the reliable selectivity through 

detection a particular gas by changing the semiconducting 

behaviour of material from n- to p-type or vice versa and 

helping to easy movement of carriers at the interface for in 

a particular direction. For example, 2D g-C3N4/rGO hybrid 

showed a response to  NO2 with its p-type semiconducting 

behaviour under the dark condition, and in contrast, the 

hybrid exhibited a response to  SO2 with its changed n-type 

behaviour under UV illumination. Despite the high sens-

ing performance of 2D materials heterostructures-based gas 

sensors, synthesis of large scale and high quality of hetero-

structures of 2D materials is limited and not yet reached on 

commercial platforms.

The detection of gases at elevated temperature is one 

of the major drawbacks of MOS sensors which has been 

addressed via photoactivation through generating active 

adsorbed oxygen ions on MOS surface for performing redox 

reaction with target analytes. On the other hand, emerging 

2D materials-based gas sensors show detection of gases at 

RT through charge transfer mechanism without using any 



Nano-Micro Lett. (2020) 12:164 Page 31 of 37 164

1 3

extra stimuli thermal or optical energy sources. However, 

slow response and incomplete recovery at RT problems of 

these sensors have been rectified under photoactivation. 

Besides the UV light, white light is also sufficient for reduc-

ing the desorption barrier to ease desorption of gases from 

sensing 2D materials surface due to the smaller bandgap 

of 2D materials in the visible range. The sensing results 

such as sensor response and response/recovery dynamics 

are not always enhanced. Light activation can sometimes 

lead to a compromise between the sensitivity and recovery 

performance of the gas sensor. As a result, selection of light 

source with proper wavelength and power intensity should 

be in priority for designing an optoelectronic gas sensor. 

Besides the perfect selection of appropriate light sources, 

choosing an individual material or a combination of materi-

als (in the form of nanocomposites and heterostructures) and 

engineering in sensing material structure would assist to fur-

ther enhance sensitivity and selectivity of the optoelectronic 

sensors. The exploitation of van der Waals heterostructures 

of 2D materials in gas sensing would be a new exciting area 

in optoelectronic sensor field for multifunctional sensing 

applications because they have already shown great potential 

in optoelectronic field owing its remarkable and extraordi-

nary optical properties. The proper selection of 2D materials 

in van der Waals heterostructure would make selective and 

highly sensitive sensing platform through significant change 

in band alignment and carriers transport by the contribu-

tion of each and every constituents materials. In addition, 

2D materials would also be good candidates for developing 

optoelectronic gas sensors on flexible and wearable sens-

ing platform for a particular sensing application due to their 

excellent flexibility and stretchability properties.

Photoactivation has improved gas response with fast 

response/recovery kinetics at RT, but there is limited 

research for improving selectivity and stability of the sensor. 

Moreover, a general consent on the correlations between the 

light activation, sensor structure and materials selection is 

still missing. So, optimization of the sensor structure, light-

ing conditions and initialization of sensor state would be 

helpful to obtain the best performance. Beyond the labo-

ratory gas sensing results under photoactivation, testing 

and analysing of the sensor for detecting gas in presence of 

interfering gases in the environment are challenging task. 

Generally, an external light source like Xe-lamps or LEDs 

is used for photoactivation; however, advent of the Internet 

of things (IOTs), miniaturized sensors with an integrated 

light source as an appealing monolithic integration of sens-

ing materials on a micro-LED is highly urgent. So, advanced 

micro-fabrication techniques for implementing innovative 

sensor designs for lower power consumption, more uniform 

irradiation of the sensor materials and higher photon energy 

efficiency should be further studied. Many researches in 

these contexts are still in progress, and we can expect that 

photoactivation would be a perfect tool for developing a gas 

sensor for practical applications.
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